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Salvia miltiorrhiza Bunge (S. miltiorrhiza), a traditional Chinese medicinal herb, contains
numerous bioactive components with broad range of pharmacological properties. By
increasing the levels of endogenous jasmonate (JA) in plants or treating them with
methyl jasmonate (MeJA), the level of tanshinones and salvianolic acids can be greatly
enhanced. The jasmonate ZIM (JAZ) proteins belong to the TIFY family, and act as
repressors, releasing targeted transcriptional factors in the JA signaling pathway. Herein,
we identified and characterized 15 TIFY proteins present in S. miltiorrhiza. Quantitative
reverse transcription PCR analysis indicated that the JAZ genes were all constitutively
expressed in different tissues and were induced by MeJA treatments. SmJAZ3, which
negatively regulates the tanshinones biosynthesis pathway in S. miltiorrhiza and the
detailed molecular mechanism is poorly understood. SmJAZ3 acts as a bait protein
to capture and identify a WD-repeat containing the protein SmWD40-170. Further
molecular and genetic analysis revealed that SmWD40-170 is a positive regulator,
promoting the accumulation of secondary metabolites in S. miltiorrhiza. Our study
systematically analyzed the TIFY family and speculated a module of the JAZ-WD40
complex provides new insights into the mechanisms regulating the biosynthesis of
secondary metabolites in S. miltiorrhiza.

Keywords: Salvia miltiorrhiza, jasmonate, TIFY proteins, SmJAZ3, SmWD40-170

Abbreviations: JA, jasmonate; MeJA, methyl jasmonate; JAZ, jasmonate ZIM; WD40 protein, WD40 repeat-containing
protein; TF, transcription factor; CDS, coding sequence; RT-qPCR, quantitative reverse transcription PCR; LC/MS,
liquid chromatography/mass spectrometry; CK, control check; OE, overexpression; RNAi, ribonucleic acid interference;
YFP, yellow fluorescent protein; GFP, green fluorescent protein; Y2H, yeast two-hybrid; BiFC, bimolecular fluorescence
complementation; EAR, ethylene-responsive element binding factor-associated amphiphilic repression; SA, salicylic acid;
MBS, MYB binding site; HSE, heat shock element; DRE, dehydration responsive element; WUN, wound.
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INTRODUCTION

The plant-specific TIFY family is characterized by a highly
conserved motif (TIF[F/Y]XG) positioned within a TIFY domain
of approximately 28-amino acids (aa) (Vanholme et al., 2007; Bai
et al., 2011). According to phylogenetic and structural analyses,
genes in that family can be assigned to four subgroups: TIFY,
JAZ, PEAPOD (PPD), and ZIM-like (ZML). The TIFY subfamily
proteins contain only a TIFY domain, whereas the ZML
subfamily, including the ZIM and ZML proteins, contain a C2C2-
GATA zinc-finger domain and a CCT domain (CONSTANS,
CO-like, TOC1) (Staswick, 2008; Chung et al., 2009). In
addition to the TIFY domain, the JAZ subfamily proteins
are characterized by a conserved Jas motif of approximately
27 aa, near the C-terminal. These Jas sequences possess the
characteristic SLX2FX2KRX2RX5PY motif and are similar to the
N-terminal portion of the CCT domain (Staswick, 2008; Chung
et al., 2009). In contrast, the PPD subfamily proteins possess a
characteristic N-terminal PPD domain, and a modified Jas motif,
that lacks the conserved PY (proline tyrosine) in the C-terminal
region (Chung et al., 2009). Genes in the TIFY family have
previously been systematically analyzed in several plant species,
including 36 in Brassica rapa, 21 in Brachypodium distachyon,
34 in Glycine soja, 19 in grape (Vitis vinifera), 20 in rice (Oryza
sativa), and 18 in Arabidopsis (Vanholme et al., 2007; Ye et al.,
2009; Bai et al., 2011; Zhang et al., 2012, 2015; Zhu et al., 2013;
Saha et al., 2016). The members of this family are involved in
regulating diverse aspects of plant development, responses to
abiotic stresses, and phytohormone treatments. For example, the
PvTIFY gene plays a vital role in the adaptation of Phaseolus
vulgaris to phosphorus (P) starvation by mediating JA signaling
(Aparicio-Fabre et al., 2013). Certain VvTIFY genes in grapes
can be induced by osmotic, low temperature, or drought, salinity
conditions, as well as jasmonic acid (JA), or abscisic acid (ABA)
treatments (Zhang et al., 2012). In rice, most OsTIFY genes
are responsive to at least one type of abiotic stress, such as
drought, salinity, or low temperatures (Ye et al., 2009). Perhaps
the best-characterized members are the JAZ genes, which play
a key role in the JA pathway (Chini et al., 2007; Thines et al.,
2007; Yan et al., 2007; Garrido-Bigotes et al., 2019). Jasmonoyl-
isoleucine (JA-Ile), the bioactive JA, is an important plant
hormone that regulates various biological processes, including
plant development, defense processes, and secondary metabolism
(Creelman and Mullet, 1997; Liechti and Farmer, 2002; Farmer
et al., 2003; De Geyter et al., 2012; Wasternack and Hause, 2013).
Proteomic analysis of the JAZ interacting proteins under MeJA
treatments in Eleusine coracana, illustrated that EcJAZ acts as a
signaling hub for JA and other phytohormone signaling pathways
(Sen et al., 2016). Moreover, JAZ expression, which regulates and
fine-tunes the expression of downstream JA-responsive genes, is
differential in various pathways and with certain stress responses
(Demianski et al., 2011).

Salvia miltiorrhiza (S. miltiorrhiza), a model medicinal
plant, is a well-known traditional Chinese herb (Ma et al.,
2012; Xu et al., 2015). Its dried roots have been used to
treat cardiovascular and cerebrovascular disorders, such as
coronary heart disease, hyperlipidemia, and acute ischemic

strokes (Su et al., 2015; Liu et al., 2016). S. miltiorrhiza has
two primary active compounds namely water-soluble phenolic
acids, including caffeic acid, rosmarinic acid, and salvianolic
acid B (Liu et al., 2006), and lipid-soluble tanshinones
containing dihydrotanshinone, cryptotanshinone, tanshinone I,
and tanshinone IIA (Kai et al., 2011). These natural products
can accumulate at low levels in plants over a long period
(Ma et al., 2015). Both biotic and abiotic elicitors can induce
the accumulation of secondary metabolites in S. miltiorrhiza
(Zhao et al., 2010). Treatment with MeJA can lead to marked
increase in tanshinones and salvianolic acids levels, as well
as the expression of genes involved in their biosynthesis (Gu
et al., 2012; Luo et al., 2015). However, it remains unclear how
JA modulates the synthesis of these secondary metabolites in
S. miltiorrhiza. The process of JA signal transduction occurs in
three main stages: (1) The bioactive JA, JA-Ile is recognized by
coronatine-insensitive 1 (COI1) protein forming Skp1/Cullin1/F-
box protein COI1 (SCFCOI1) complexes. (2) JAZ proteins are
ubiquitinated by SCFCOI1-type E3 ubiquitin ligase and degraded
by the 26S proteasome. (3) MYC TFs are released thereby
inducing the expression of downstream genes (Farmer, 2007).
The JAs, SCFCOI1 receptor complex, JAZ repressors, and TFs
are all involved in JA signal transduction (Xie et al., 1998;
Xu et al., 2002; Boter et al., 2004; Thines et al., 2007; Chini
et al., 2010). JAZ is an important juncture that represses
responses to JA by interacting with bHLH-TFs (MYC2, MYC3,
MYC4, MYC5, GL3, EGL3, and TT8) and R2R3-MYB TFs
(PAP, GL1, MYB21, and MYB24) (Fernández-Calvo et al., 2011;
Song et al., 2011, 2013; Fonseca et al., 2014; Qi et al., 2014;
Garrido-Bigotes et al., 2020). Certain JAZ proteins and their
interaction partners have been identified in S. miltiorrhiza.
SmMYC2a and SmMYC2b may interact with SmJAZ1 and
SmJAZ2 to positively regulate tanshinones and salvianolic acid
B production (Zhou et al., 2016; Yang et al., 2017). SmJAZ8 is
a repressor involved in JA-induced biosynthesis of salvianolic
acids and tanshinones via interactions with SmMYC2a (Ge
et al., 2015; Pei et al., 2018). SmJAZ3 and SmJAZ9 negatively
regulate tanshinones biosynthesis and JA signaling pathway in
S. miltiorrhiza (Shi et al., 2016). SmJAZ9 can interact with
AtMYC2, whereas SmJAZ3 cannot. In our study, we investigated
the interaction partners of SmJAZ3 protein and molecular
mechanism underlaying SmJAZ3 role in JA signaling pathway to
regulate secondary metabolism.

WD40 repeat (WDR)-containing proteins feature a conserved
sequence of approximately 40 amino acids, identified as
the WD40 motif, which begins with glycine-histidine (Gly-
His) and ends with tryptophan-aspartate (Trp-Asp) (Neer
et al., 1994; Smith et al., 1999). Without a DNA-binding site,
WD40 functions as a rigid scaffold for protein–protein and
protein–DNA interactions, rather than directly regulating
gene expression (Ramsay and Glover, 2005). Among the
WD40 families, TTG1 has been the most studied regarding
secondary metabolism. AtTTG1 and ortholog TTG1 genes
from Zea mays, Medicago truncatula, Vitis vinifera, and
Malus domestica have been reported to be involved in the
biosynthesis of anthocyanins or flavonoids (Walker et al.,
1999; Carey et al., 2004; Pang et al., 2009; Matus et al., 2010;
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An et al., 2012). We have previously reported that SmTTG1
increased salvianolic acid B accumulations by forming the
SmTTG1-SmMYB111-SmbHLH51 ternary transcription
complex (Li et al., 2018). We also identified 225 SmWD40 genes
and analyzed the evolutionary relationship, gene structure, and
conserved protein motif, which provided prelamination data
for studying the function of SmWD40 in secondary metabolism
(Liu et al., 2020).

In this study, we aimed to identify and characterize TIFY
proteins present in S. miltiorrhiza. Phylogenetic trees, gene
structures, and conserved motif analyses were conducted on the
SmTIFY proteins. Further, a Y2H screening assay was used to
elucidate the molecular mechanisms of SmJAZ3 in mediating
JA signaling and secondary metabolism. The functions of its
interaction partner, SmWD40-170, were then also identified
and analyzed. We hypothesize that the molecular mechanism
underlaying JAZ3-mediated regulation of secondary metabolism
is via the JAZ-WD40 regulatory module in S. miltiorrhiza.

MATERIALS AND METHODS

Plant Material
Salvia miltiorrhiza plants were acquired from Shangluo County,
Shaanxi Province, China, and maintained in our laboratory at
Shaanxi Normal University, Xi’an, China. Root, stem, leaf, and
flower samples were collected from uniformly grown 2-year-old
plants and immediately frozen in liquid nitrogen.

Tissue culture-derived plants of S. miltiorrhiza were used for
the JA treatment experiments. After 30 days of culturing under
normal laboratory conditions, the plants were assigned to two
groups: (1) mock control, in which the leaves were sprayed
with 10% ethanol; or (2) JA treatment, in which the leaves were
sprayed with a solution of 100 µM MeJA plus 10% ethanol
(Gu et al., 2012). Each experiment was performed three times
(n = 3 per group) and whole plants were harvested from each
group after 0.5 h, 1 h, 2 h, 4 h, 8 h, and 12 h. All samples
were immediately frozen in liquid nitrogen and stored at −80◦C
until RNA extraction.

Identification and Characterization of
TIFY Family Genes and Phylogenetic
Analyses
To identify all of the putative SmTIFY family members, we used
the sequences for 18 Arabidopsis TIFY family genes, as well
as 20 from rice, and 19 from grape, that were obtained from
the TAIR databases1, TIGR databases2, and the Grape Genome
Database3, respectively. Local BLASTs were conducted with the
S. miltiorrhiza genome (Xu et al., 2016). The protein sequences
database for Arabidopsis, rice, and grape TIFY proteins were
used as queries for BioEdit. The SmTIFYs were determined
by screening for the conserved TIFY domains using an NCBI

1http://www.arabidopsis.org
2http://rice.plantbiology.msu.edu
3http://www.genoscope.cns.fr

conserved domain search4, Pfam5, HM-MER6, InterPro7, and
SMART8 online tools. MEGA 6 software9 was used to investigate
the phylogenetic relationships among TIFY proteins in the
four species, based on the neighbor-joining algorithm and the
bootstrap method (1000 replicates).

Sequence Analysis of the SmTIFY
Proteins
Relative molecular weights and isoelectric points (pI) of the
TIFY family members were analyzed using ExPASy10. Subcellular
localization of the proteins was determined according to WoLF
PSORT11. The DNA and CDS sequences of the SmTIFY genes
were submitted to the GSDS online tool12 to analyze their gene
structures. The SmTIFY protein sequences were submitted to the
MEME web server13 for analysis of the protein motifs. To explore
potential cis-elements in the promoter sequences, 2000 bp of the
SmTIFY genomic DNA upstream of the initiation codon (ATG)
were downloaded, using the S. miltiorrhiza genome database.
The promoter sequences were submitted to the Plant CARE
database14 to predict the cis-acting elements.

Expression Analysis of SmTIFY Genes in
Different Tissues and Under MeJA
Treatment
Total RNA was extracted from the S. miltiorrhiza root, stem,
leaf, and flower samples. First-strand cDNA was reversed
from the total mRNA, according to the instructions for
the Prime Script R© RT Master Mix (Takara). RT-qPCR
primer sequences were designed using Primer Premier
5.0, and a housekeeping gene (β-Actin) was used as an
internal control (Supplementary Table 1). Several key genes
encoding enzymes such as phenylalanine ammonialyase
(PAL), cinnamate 4-hydroxylase (C4H), hydroxycinnamate-
CoA ligase (4CL), tyrosine aminotransferase (TAT), hydroxyl
phenylpyruvate reductase (HPPR), rosmarinic acid synthase
(RAS), 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 3-
hydroxy-3-methylglutaryl-CoA reductase (HMGR), farnesyl
diphosphate synthase (FPPS), geranylgeranyl diphosphate
synthase (GGPPS), copalyl diphosphate synthase (CPS), and
kaurene synthase-like synthase (KSL) were investigated using
RT-qPCR (Supplementary Table 1). RT-qPCR analysis was
conducted with SYBR Green (Takara Biotechnology) and a
Roche LightCycler R© 96 real-time PCR machine. All experiments
were performed with three biological replicates. Relative
expression levels were calculated based on the 2−MMCt method

4https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
5http://pfam.xfam.org/
6http://www.ebi.ac.uk/Tools/hmmer/
7http://www.ebi.ac.uk/interpro/search/sequence-search
8http://smart.embl.de/
9http://www.megasoftware.net/
10http://web.expasy.org/protparam/
11http://www.genscript.com/wolf-psort.html
12http://gsds.gao-lab.org/
13http://meme-suite.org/
14http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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(Vandesompele et al., 2002). Statistical significance was assessed
using the Student’s t-test.

Yeast Two-Hybrid (Y2H) Screening and
Assay
The CDS and partial Jas domain of the SmJAZ3 were amplified
with specific primers (Supplementary Table 2) and cloned into
the pGBKT7 vector as bait, to search for interacting proteins. The
autoactivation test of the SmJAZ3 in the yeast was conducted as
previously described (Li et al., 2018). Based on the previously
described protocols (Pan et al., 2017), the S. miltiorrhiza cDNA
library expressed in the Y187 yeast cells was mated with the
AH109 yeast cells expressing SmJAZ3, and then screened for the
interacting partners of SmJAZ3.

The Y2H assay was conducted to confirm the interaction
between SmJAZ3 and SmWD40-170. The CDS of SmWD40-
170 was cloned into pGADT7 to fuse with the activation
domain as the prey. According to the manufacturer’s protocol
for the Matchmaker Gold Yeast Two-Hybrid System (Clontech),
BD-SmJAZ3 and AD-SmWD40-170 fusion constructs were co-
transformed into yeast strain AH109, using the lithium acetate
method (Gietz and Schiestl, 2007), and yeast cells were grown
on SD/-Leu/-Trp medium. Positive clones were then selected on
SD/-Ade/-His/-Leu/-Trp medium with X-α-gal. The sequences
for the primers used are listed in Supplementary Table 2.

Bimolecular Fluorescence
Complementation (BiFC) Assay
Based on the protocol from the Gateway technology
manufacturer (Invitrogen, United States), the ORFs (without the
termination codon) of SmJAZ3 (SmWD40-170) were amplified
from pMD19T-SmJAZ3 (pMD19T-SmWD40-170) with adaptor
primers (Supplementary Table 2) and then cloned into the
pDONR207 vector using a BP recombination reaction. For the
BiFC assay, pDONR207-SmJAZ3 and pDONR207-WD40-170
were cloned into pEarleyGate202-YC and pEarleyGate201-YN,
respectively, using the LR recombination reaction (Earley et al.,
2010). Equal concentrations of the YN and YC recombinant
plasmids were mixed before co-transformation. Co-transformed
YC-SmJAZ3/YN and YN-SmWD40-170/YC served as negative
controls. Then, the mixed plasmids were bombarded into onion
epidermal cells, using particle bombardment with the Gene Gun
PDS-1000, and then incubated at 28◦C for 24 h. The fluorescence
signals were detected using a Leica DM6000B microscope (Leica,
Germany) at an excitation wavelength of 475 nm.

Determination of Salvianolic Acids and
Tanshinones Concentrations by Liquid
Chromatography/Mass Spectrometry
(LC/MS) Analysis
Transgenic lines were obtained by Agrobacterium-mediated
transformation method (Yan and Wang, 2007). Three OE lines
(OE-3, OE-7, and OE-8) and three RNAi lines (i-11, i-14, and
i-15) were acquired from our laboratory and used for further
studies (Liu et al., 2020). Two-month-old culture seedlings were

first cultivated in hydroponic cultures for 7 days and then
transplanted into the soil medium (perlite: vermiculite: grass
ash = 1:1:3). After 2 months of cultivation, the roots were
removed, washed, dried in an oven at 30◦C, and then ground to a
powder. The salvianolic acids and tanshinones compounds were
extracted, as previously described (Wang et al., 2018).

Separation of the lipophilic tanshinone and hydrophilic
salvianolic acid was performed using a conventional Welch
Ultimate XB-C18 column with two ion monitoring modes
(2.1 × 150 mm, 3 µm, Agilent Corporation, MA, United States)
and the following conditions: mobile phase A, acetonitrile;
mobile phase B, 0.1% formic acid; injection volume, 5 µL;
flow rate, 0.4 mL/min; gradient elution conditions, 0 min (25%
A) → 5 min (10% B); ion source, AJS (Agilent jet) and
ESI (electrospray ionization); quantitative detection, multiple
reaction monitoring (MRM) mode. The negative ion mode
detection of salvianolic acid B and rosmarinic acid had the
following properties: salvianolic acid B detection range (m/z), 717
519; rosmarinic acid detection range (m/z), 359→ 161; fragment
voltage, 130 V; collision energy, 20 eV. The ion pattern test
for the tanshinone IIA had the following properties: tanshinone
IIA detection range (m/z), 295.1 → 277.1, fragment voltage of
140 V, and collision energy of 32 eV. The ion pattern test for
cryptotanshinone had the following properties: cryptotanshinone
detection range (m/z), 297.1→ 254.1, fragment voltage of 140 V,
and collision energy of 26 eV. The standards and samples were
tested according to the above conditions, and standard curves
were constructed. The peak area measured with the standard
solution was the ordinate, while the standard concentration was
the abscissa. Regression equations and linear coefficients were
then calculated.

RESULTS

Identification and Characterization of the
TIFY Family Genes in the S. miltiorrhiza
Genome
In additions to the four SmJAZ genes that we have previously
reported, a total of 15 SmTIFY genes (1 TIFY, 1 PPD, 3 ZMLs, and
10 JAZs) were identified in the S. miltiorrhiza genome (Table 1)
(Ge et al., 2015; Xu et al., 2016). These were named according
to the existing numbering system used for the phylogenetic tree
of Arabidopsis (Figure 1). The lengths of the SmTIFY amino acids
ranged from 122 to 455, which is higher than that of other species.
Subcellular localization analysis indicated that 10 of the SmTIFY
proteins were nuclear, while SmJAZ7, SmJAZ8, and SmJAZ10
were located in the chloroplasts, and SmJAZ1 and SmJAZ6 in the
cytoplasm and mitochondria, respectively.

Phylogenetic Analysis of the TIFY Family
Members
To investigate the evolutionary patterns and phylogenic
relationships among the TIFYs in S. miltiorrhiza (15 proteins),
grape (19 proteins), rice (20 proteins), and Arabidopsis
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TABLE 1 | The basic information of SmTIFY family genes.

Gene ID Accession no. Genomic length (bp) CDS length (bp) Protein length (aa) Molecular weight (Da) pI Sub-cellular localization

SmJAZ1 JQ936590 700 543 180 19815.67 9.14 Cyto

SmJAZ2 KX814385 855 642 213 22501.41 7.86 Nucl

SmJAZ3 KY225688 3367 1011 336 35515.09 9.16 Nucl

SmJAZ4 KY225684 2184 945 314 32463.59 9.38 Nucl

SmJAZ5 KY225689 4890 1368 455 49022.40 9.57 Nucl

SmJAZ6 KC864779 1968 705 234 25417.54 9.51 Mito

SmJAZ7 KX814384 962 372 123 14681.92 10.34 Chlo

SmJAZ8 JQ936591 557 369 122 13766.72 9.69 Chlo

SmJAZ9 KX814388 3129 921 306 32428.60 8.28 Nucl

SmJAZ10 KX814383 1902 540 179 19637.53 9.45 Chlo

SmTIFY8 KX814386 3427 1119 372 39330.10 8.82 Nucl

SmPPD KX814387 4107 828 275 30085.00 5.79 Nucl

SmZML1 KY225685 2930 894 297 32564.05 6.06 Nucl

SmZML2 KY225686 2627 918 305 33295.74 5.54 Nucl

SmZML3 KY225687 4027 981 326 35776.06 5.07 Nucl

Cyto, cytoplasmic; Nucl, nuclear; Mito, mitochondrial; Chlo, Chloroplast.

(18 proteins), a neighbor-joining phylogenetic tree was
constructed (Figure 1). All proteins fell into four major
groups: TIFY, PPD, ZML, and JAZ. Among them, the ZML/ZIM
proteins from all four species were clustered together. The TIFY
proteins, which contain only a TIFY domain, were clustered
into a single branch, except for OsTIFY. The PPD subfamily
members comprised only AtPPD, VvPPD, and SmPPD. As
expected, the JAZ subfamily members accounted for most
proteins, including all the AtJAZ, VvJAZ, SmJAZ, and some
OsTIFY (putative OsJAZ) proteins. SmJAZ proteins were
clustered into four layers (JAZ I, JAZ II, JAZ III, and JAZ IV).
SmJAZ1, SmJAZ2, SmJAZ5, and SmJAZ6 were assigned to
JAZ I; SmJAZ7 and SmJAZ8, to JAZ II; and SmJAZ3, SmJAZ4,
and SmJAZ9, to JAZ IV; JAZ III contained only one of these
proteins, SmJAZ10.

Sequence Analysis of the SmTIFY Family
The full lengths of the CDSs with their corresponding genomic
DNA sequences were compared to determine the number and
positions of the exons and introns. Each SmTIFY gene has three
to nine exons (Figure 2B). The structures in this family are
diverse, especially within the SmJAZ subfamily. To identify the
distribution of the conserved domains and the multiple sequence
alignments among the SmTIFY proteins, we examined their
sequences. The results from our MEME analysis showed that
members of this family have six putative conserved domains,
namely the TIFY domain, Jas domain, GATA zinc finger, CCT
domain, PPD domain, and EAR-like motif (Figure 2A). In
general, the TIFY domain contains 31 amino acids, with a
highly conserved pattern of TIFYXG, T [L/I] SFXG, and SLSFQG
(Figure 2C). All SmTIFY proteins include a TIFY domain, while
all SmJAZ proteins have a Jas domain, with the conserved motif
SLX2FX2KRX2RX5PY (Figure 2D). In addition, the N-terminals
of SmJAZ1, SmJAZ2, SmJAZ5, and SmJAZ6 have EAR-like
motifs. Three of the SmZML proteins (SmZML1, SmZML2, and
SmZML3) contain a TIFY domain, Jas domain, CCT domain,

and GATA zinc finger. The N-terminal of the SmPPD also has
a PPD domain. In contrast to all other members, SmTIFY8 only
has a TIFY domain.

Analysis of the Cis-Elements in the
SmTIFY Family
A search of the PlantCARE database showed the promoter
sequences of the SmTIFYs. Among them, were a series of
cis-elements that are involved in responses to light, biotic
and abiotic stresses, phytohormones (ABA, MeJA, auxin, SA,
gibberellin, and ethylene), circadian rhythms, and fungal elicitors
(Supplementary Table 3). We also identified TF binding sites,
such as an MBS and G-box. Almost all members, except
SmPPD and SmZML1, contained TC-rich repeats that are
involved in plant defenses and stress responsiveness. All these
genes, except SmJAZ1, SmTIFY8, and SmZML2, also have TCA-
elements that are responsive to SA. SmJAZ1, SmJAZ2, SmJAZ5,
SmJAZ6, SmJAZ7, and SmZML2 have cis-elements involved
in responses to MeJA. Except for SmJAZ1 and SmZML2, all
genes contain a HSE and MBS in their promoter sequences,
and, except for SmJAZ3, have a G-box, which is a possible
MYC2-binding motif (Yu et al., 2016). However, only SmJAZ10
has C-repeat/DRE and WUN-motif elements that are involved
in responses to cold, dehydration, and wounding. MBSI, an
MBS that helps regulate genes for flavonoid biosynthesis, was
only found in the SmPPD promoter sequence. All these cis-
elements have essential roles in modulating gene expression,
by controlling promoter efficiency. Therefore, these results
provide vital information for further research into the functions
of SmTIFY genes.

Expression Analysis of the SmTIFY
Genes
To determine the function of the SmTIFY genes, we monitored
the expression of these genes in four tissue types sampled from
S. miltiorrhiza (Figure 3). The most highly expressed genes were
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FIGURE 1 | Neighbor-joining phylogenetic tree of TIFY proteins from Salvia miltiorrhiza, Arabidopsis, Vitis vinifera, and Oryza sativa. The tree was developed using
MEGA 6 software and the bootstrap method (1000 replicates).

as follows: SmJAZ1, SmJAZ6, SmJAZ8, and SmJAZ9 in the leaf;
SmJAZ4, SmJAZ5, SmJAZ7, SmPPD, SmZML2 and SmZML3, in
the flower; and SmJAZ3 was predominantly expressed in the
root. Expressions of SmJAZ2, SmJAZ6, SmJAZ10, SmTIFY8, and
SmZML1were lower in the flower tissues, while the expressions of
SmJAZ4 and SmJAZ7 were lower in the leaf tissues. Interestingly,
the expression patterns of SmJAZ1 and SmJAZ8 were similar
in different tissues. However, none of the genes in the same
subfamily showed similar expression patterns, which indicates
that each member plays an irreplaceable role. To investigate the
role of the SmTIFY family genes in the JA signaling pathway,
we monitored their expression in response to exogenous MeJA
(Figure 4). Most genes were induced within 2 h of treatment and
their expression continued to increase over time. In particular, the
peak in expression of SmJAZ3, SmJAZ4, and SmJAZ9 was delayed

compared with that of the other SmJAZ genes. In contrast, MeJA
inhibited the expression of SmTIFY8, SmPPD, and SmZML1 at
2 h, but delayed the response of SmZML2 and SmZML3.

Y2H Screening
Since the JA-responsive gene SmJAZ3 negatively regulates
tanshinones biosynthesis in S. miltiorrhiza (Shi et al., 2016),
we selected SmJAZ3 as a candidate gene, to explore the
molecular mechanisms underlaying the regulation of JA-
mediated secondary metabolism of S. miltiorrhiza. To determine
whether SmJAZ3 affects potential target proteins or TFs, we
screened for interacting proteins using a Y2H system. Initially, no
autoactivation of the SmJAZ3 baits was detected (Supplementary
Figure 1C). Since the results were not satisfactory when the
full-length SmJAZ3 was used as the bait protein for the
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FIGURE 2 | (A) Distribution of conserved domains within SmTIFY, SmJAZ, SmPPD, and SmZML proteins. Relative positions of domains within each protein are
shown in different colors. (B) Gene structures of SmTIFY gene family. Exon, yellow-filled boxes; intron, black single lines. (C) Sequence logos of TIFY domains from
SmTIFY proteins. (D) Sequence logos of Jas domains from SmTIFY proteins.

FIGURE 3 | Relative expression of SmTIFY genes in root, stem, leave, and flower. All data represent averages of three biological replicates, error bars indicate SD.
Statistical significance was determined using the Student’s t-test (*p < 0.05, **p < 0.01) between root, stem, leaf, and flower.
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FIGURE 4 | Relative expression level of SmTIFY genes in S. miltiorrhiza plants treated with mock control and 100 µM MeJA. All data represent averages of three
biological replicates, error bars indicate SD. Statistical significance was determined by the Student’s t-test (*p < 0.05, **p < 0.01).

library screening, we used the Jas domain as the bait. The
screening for the cDNA library in S. miltiorrhiza, resulted in
36 candidate proteins being identified, that interacted with
SmJAZ3-Jas (Supplementary Figure 1F and Supplementary
Table 4). Function annotation suggested that these candidate
interaction proteins including JA signal member MYC2, as
well as some enzymes are associated with biosynthesis process,
metabolism process, and stress resistance (Supplementary
Table 4). Interestingly, a WD40 protein, SmWD40-170 (Gene
ID: ATA66299), was among them. The full-length CDS of the
SmWD40-170 was 972 bp, and it encoded a protein of 323 amino
acids. It was located in the nucleus and the cytoplasm and is
predicted to respond to MeJA-responsive elements (Liu et al.,
2020). In addition, the SmWD40-170 responded to drought stress
and regulated ABA- and H2O2-induced stomatal movements in
the S. miltiorrhiza (Liu et al., 2020).

Interactions Between the SmJAZ3 and
SmWD40-170 Proteins
We analyzed the interactions between the SmJAZ3 and
SmWD40-170 proteins. For the Y2H, except for the full-length
sequence, the SmJAZ3 was divided into three parts: N-terminal

fragment (amino acids 1 to 275), Jas motif fragment (amino
acids 276 to 304), and C-terminal fragment (amino acids 305
to 336), to examine whether other domains of the SmJAZ3
were responsible for the interaction with the SmWD40-170
protein (Figure 5A). The results showed that the full-length
and Jas motif of the SmJAZ3 interacted with the SmWD40-
170 in yeast (Figure 5B). A BiFC assay was then used to
examine the Y2H results. SmWD40-170 and SmJAZ3 were
fused with the N-terminal and C-terminal, respectively, of the
YFP. As expected, a strong fluorescent signal was detected
in the nucleus when SmWD40-170 and SmJAZ3 were co-
transformed into onion epidermal cells, whereas no fluorescent
signal was observed in the control groups (Figure 5C).
Taken together, our results suggest that SmJAZ3 could interact
with SmWD40-170.

SmWD40-170 Affects the Biosynthesis
and Accumulation of Secondary
Metabolites in S. miltiorrhiza
The levels of the total phenolic acids and total flavonoids in the
OE-3, OE-7, and OE-8 lines, as well as in the i-11, i-14, and i-15
RNAi lines, were determined using the Folin–Ciocalteu method
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FIGURE 5 | SmJAZ3 interacts with SmWD40-170. (A) Schematic diagrams show domain constructs of SmJAZ3. (B) Y2H assays was used to test the interactions
of SmWD40-170 with different domains of SmJAZ3. (C) BiFC assays was used to detect the interaction between SmJAZ3 and SmWD40-170.

FIGURE 6 | Secondary metabolites contents in control and SmWD40-170 transgenic roots of S. miltiorrhiza. Comparisons of total phenolic acid, total flavonoids,
rosmarinic acid, salvianolic acid B, tanshinone IIA, and cryptotanshinone concentration among transgenic and control lines. All data represent averages of three
biological replicates, error bars indicate SD. Statistical significance was determined using the Student’s t-test (**p < 0.01).
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and the sodium nitrite-aluminum chloride colorimetric method
(Dewanto et al., 2002; Chew et al., 2009) with 2-month-old roots
of S. miltiorrhiza. Compared to the CK, the total phenolic acids
and total flavonoids contents increased by more than 2 and 1.5
times, respectively, in the three OE lines. In the three RNAi lines,
especially i-14, the contents of both total phenolic acids and total
flavonoids were significantly decreased by 59.47% and 50.63%,
respectively (Figure 6).

To further understand the effects of SmWD40-170 on the
biosynthesis and accumulation of secondary metabolites
in S. miltiorrhiza, the active components of salvianolic
acids and tanshinones were more accurately determined
and analyzed using LC/MS (Supplementary Figure 2).
In comparison to CK, the concentrations of salvianolic
acids and tanshinones were significantly increased in the
OE-3, OE-7, and OE-8 lines (Figure 6). The rosmarinic
acid content increased by 2.04 times, at most, and the
salvianolic acid B content increased by approximately 1.54
times in the three OE lines, while the two tanshinones
compounds increased by 1.37–1.78 times for tanshinone
IIA and 1.72–1.91 times for cryptotanshinone, respectively.
Compared to the CK, the levels of the three interference
lines were the opposite, as was expected, and the contents
of the four detected secondary metabolites were reduced by
more than half. In particular, in the i-11 interference line,
rosmarinic acid, salvianolic acid B, tanshinone II A, and
cryptotanshinone were reduced by 71.93%, 67.95%, 82.23%, and
66.83%, respectively.

To determine whether metabolite accumulation was caused
by changes in enzyme gene expression in the metabolic
pathway, RT-qPCR was used to detect the expression of
key enzyme genes involved in the salvianolic acids and
tanshinones biosynthesis pathways in different lines. In the
salvianolic acid biosynthesis pathway, the expression levels
of SmTAT, SmHPPR, SmPAL, SmC4H, Sm4CL, SmRAS, and
SmCYP98A14 in the OE lines were significantly upregulated
compared to the CK, but the activities of all the enzymes were
repressed in the three interference lines (Figures 7A,C). In
the tanshinones biosynthesis pathway, several enzyme genes,
such as SmDXS, SmHMGR, SmFPPS, SmGGPPS, SmCPS,
SmKSL, and SmCYP76AH1 were markedly induced in the
OE lines. In contrast, the expression levels of these genes
were decreased in the interference lines compared to those in
the CK (Figures 7B,D).

Morphological Differences Between
Transgenic Lines of SmWD40-170 in
S. miltiorrhiza
After obtaining the OE and interference lines of S. miltiorrhiza,
the plantlet seedlings were cultured for 60 days, transplanted
into soil media as part of a hydroponic cultivation system,
and then cultivated for another 60 days. There were obvious
morphological differences in the OE and interference SmWD40-
170 transgenic lines. The results showed that the growth
state of OE-3 line was better than the CK line and had

FIGURE 7 | Expression analysis of salvianolic acids and tanshinones biosynthesis genes. RT-qPCR analyses of the key enzyme genes of salvianolic acids
biosynthetic pathway in OE (A) and RNAi (C) lines. RT-qPCR analyses of the key enzyme genes of tanshinones biosynthetic pathway in OE (B) and RNAi (D) lines.
All data represent averages of three biological replicates, error bars indicate SD. Statistical significance was determined using the Student’s t-test (*p < 0.05,
**p < 0.01). PAL, phenylalanine ammonialyase; C4H, cinnamate 4-hydroxylase; 4CL, hydroxycinnamate-CoA ligase; TAT, tyrosine aminotransferase; HPPR, hydroxyl
phenylpyruvate reductase; RAS, rosmarinic acid synthase; DXS, 1-deoxy-D-xylulose-5-phosphate synthase; HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase;
FPPS, farnesyl diphosphate synthase; GGPPS, geranylgeranyl diphosphate synthase; CPS, copalyl diphosphate synthase; KSL, kaurene synthase-like synthase.
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higher biomass accumulation in both leaves and roots. In
contrast, the RNAi line was shorter, and the growth state was
poorer (Figures 8A–F). Statistical data was consistent with
the phenotype. Compared with the CK, the OE lines had
the advantages of root length. The feature was more obvious
compared to those in the RNAi lines (Figures 8G–I,M). In
addition, morphological changes were observed in the leaves.
There was no significant difference in leaf size between OE
with CK lines, however, the RNAi lines had smaller leaves
with curled leaf edges (Figures 8J–L,N). These results indicate
that the SmWD40-170 protein is necessary for the growth and
development of S. miltiorrhiza.

DISCUSSION

The plant-specific TIFY family plays vital roles in the growth,
development, and secondary metabolism of plants (Vanholme
et al., 2007; Ye et al., 2009; Bai et al., 2011; Zhang et al., 2012, 2015;
Zhu et al., 2013; Saha et al., 2016). Significant progress has been
made toward identifying and characterizing the TIFY genes in
various species. In the present study, we identified and analyzed
the TIFY families in S. miltiorrhiza. This species contains 10
SmJAZs, 3 SmZMLs, 1 SmTIFY, and 1 SmPPD genes (Table 1).
Similar to other species, the SmJAZ proteins have two typical
domains, N-terminal TIFY and C-terminal Jas. The TIFY domain

FIGURE 8 | Morphological differences in the control and SmWD40-170 transgenic lines. (A/B/C,D/E/F,G/H/I,J/K/L) represent three independent repeats. (A–F)
Control and transgenic seedlings cultured in soil for 2 months. (G–I) Control and transgenic roots. (J–L) Control and transgenic leaves. (M) Comparison of the root
length in control and transgenic lines. (N) Comparison of the leaf size in control and transgenic lines. All data represent averages of three biological replicates, error
bars indicate SD. Statistical significance was determined using the Student’s t-test (*p < 0.05, **p < 0.01).
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participates in homomeric and heteromeric interactions, or in
the interactions between JAZ proteins and MYC TFs (Bai et al.,
2011). The Jas motif interacts with COI1, bHLH, or R2R3-MYB
members (Chico et al., 2008; Browse, 2009). The SmZML proteins
not only have these two domains, but also contain a CCT domain,
similar to the Jas domain, and a GATA zinc finger. In contrast,
SmPPD also has a PPD domain at its N-terminal (Figure 2A).
SmJAZ1, SmJAZ2, SmJAZ5, and SmJAZ6 each carry an EAR-like
motif (Figure 2A), which also exists in plant AUX/IAA proteins
and functions as a binding motif for the regulator repressor
TOPLESS. This suggests that these four proteins have different
functions that are more critical than those of the other SmTIFY
proteins (Szemenyei et al., 2008). Although all SmJAZ proteins
could be clustered into the four groups previously described for
other species (Figure 1), the high degree of variability among the
sequences within this subfamily, suggests that these proteins have
had a possible divergence in functions.

Members of the SmTIFY family are diverse in their exons and
introns (Figure 2B), implying an important evolutionary role
for their gene structure (Bai et al., 2011). Sequence alignments
and phylogenetic analysis of the SmTIFY proteins indicated that
almost all could be classified into the same four major groups
with TIFY proteins from other species with the exception is
for the rice members, from which OsPPD is missing. Screening
the TIFY proteins from the different species has demonstrated
that they only occur among Embryophyta (land plants) and that
both group I (TIFY proteins with a C2C2-GATA domain) and
group II (TIFY proteins without C2C2-GATA domain) of TIFY
proteins are present in the liverworts (Marchantiophyta), which
are considered primitive land plants (Vanholme et al., 2007). This
suggests that the TIFY family was essential for the emergence
of land plants during a series of evolutionary adaptations that
increased the complexity of plant structure. This probably also
enhanced the ability of those plants to respond to adverse
environmental conditions. In contrast to many plant-specific
gene families, obvious diversification has occurred between
monocot and dicot species (Bai et al., 2011). Therefore, the plant
TIFY genes may be derived from common ancestors that existed
before the divergence of monocot and dicot species.

SmTTG1, a member of the WD40 protein family, has been
shown to promote the accumulation of salvianolic acids in
S. miltiorrhiza (Li et al., 2018). In the present study, we screened
a WD40 protein, which participates in both salvianolic acids and
tanshinones biosynthesis, except in drought stress responses (Liu
et al., 2020). In the OE lines, the contents of the salvianolic acids
and tanshinones were significantly increased, by approximately
two fold, and the RNAi lines were expectedly decreased by at
least 50%, which is consistent with the changes in the biosynthesis
of the enzyme genes in the transgenic lines (Figures 6, 7).
Notably, all 14 key genes selected were induced by SmWD40-
170. However, the WD40 protein is unable to directly regulate
enzyme genes, and probably functions together with MYB and
bHLH proteins to generate the MBW complex. In future research,
we will focus on investigating the interaction partners of the
SmWD40-170 protein. In addition, some obvious phenotypic
changes were observed in the transgenic lines. Compared with
the CK line, the RNAi lines presented underdeveloped roots,

smaller leaves, and curled leaf edges, but the OE lines showed
the opposite traits, with well-developed roots (Figure 8). In
particular, the roots of OE lines were redder than those of the
CK and RNAi lines. These results are consistent with the content
determination of tanshinones in the transgenic and CK lines
(Figure 6), and in accordance with the fact that more tanshinones
were gathered in the redder roots of S. miltiorrhiza (Wang et al.,
2014). It is great significance when aiming to improve the quality
of S. miltiorrhiza. SmWD40-170 not only regulates secondary
metabolism, but also affects growth and development, however,
links between growth and secondary metabolite accumulation
warrant further investigation.

Jasmonic acid has been shown to enhance the accumulation of
secondary metabolites and promote growth and development in
S. miltiorrhiza (Xiao et al., 2010; Gu et al., 2012; Ge et al., 2015;
Shi et al., 2020), where SmCOI1 also plays a critical role (Chen
et al., 2018). JAZ proteins are the targets of the SCFCOI1 complex
and function as key components of the JA signaling pathway
(Shi et al., 2016; Pei et al., 2018), however, the mechanisms
underlying JAZ-regulated repression events remain unclear for
S. miltiorrhiza. Since JAZ proteins contain no DNA-binding
domain, JAZs might affect gene expression and metabolite
accumulation through their interactions with target genes (Cheng
et al., 2011). It has been reported that a Jas motif of the JAZ
proteins, participates in the protein–protein interactions with the
MYB, bHLH, and other TFs (Withers et al., 2012). In the present
study, we found that a WD40 protein interacts with the Jas motif
of SmJAZ3 using Y2H screening, and determine the interaction

FIGURE 9 | Proposed module of the roles of JA in regulating secondary
metabolites biosynthesis as well as growth and development. When treating
with exogenous JA, the complex formation between the JA-Ile and COI1
promotes SmJAZ3 degradation via the 26S proteasome, and release the
positive regulators such as WD40, then enhances the activities of enzymes to
promote secondary metabolites biosynthesis. In addition, SmWD40-170
protein may regulate growth and development through JA-dependent or
JA-independent pathway. Arrows, positive regulation; blunt ends, negative
regulation; dotted line, uncertified process.
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relationship between the SmJAZ3 and SmWD40-170. SmJAZ3
has been reported to act as a repressive transcriptional regulator
in tanshinones biosynthesis regulation (Shi et al., 2016), while
SmWD40-170 responds to drought stress by regulating ABA-
and H2O2- induced stomal movement in S. miltiorrhiza (Liu
et al., 2020). In the present study, we speculated that SmWD40-
170 regulates the accumulation of secondary metabolites by
interacting with SmJAZ3 in S. miltiorrhiza, which brings insights
into the molecular mechanism of SmJAZ3 regulates tanshinone
biosynthesis. We propose that SmJAZ3 protein interacts with
SmWD40-170 in the JA signaling pathway and plays a vital
role in the accumulation of secondary metabolites (Figure 9),
which provides essential information for further exploring
the mechanisms by which JA regulates the biosynthesis and
accumulation of secondary metabolites in S. miltiorrhiza.

CONCLUSION

This study identified and analyzed 15 SmTIFY family members.
Phylogenetic analysis suggested that the SmTIFY proteins could
be clustered into four groups. RT-qPCR results showed that
most of the SmTIFY genes responded to the MeJA treatments.
Our analysis illustrated diversity in the cis-elements among the
SmTIFY members, indicating that these genes have important
roles in several hormone signaling pathways and stress responses,
and may thus be applied to increase the production of valuable
plant compounds. Furthermore, a novel interaction partner
of SmJAZ3 was screened and physical interactions between
SmJAZ3 and SmWD40-170 was also demonstrated in this
study, which suggests a potential regulation mechanism for the
SmJAZ involved in the JA signaling pathway. Subsequently,
genetic assays showed that SmWD40-170 positively induced
the accumulation of salvianolic acids and tanshinones, and
promoted plant growth and development. Collectively, our
research lays a foundation for future investigations into the
mechanism of the hormone signal regulation network among the
SmTIFY family members.
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