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Clematis is a superior perennial ornamental vine known for varied colors and shapes
of its flowers. Clematis crassifolia is sensitive to high temperature, whereas Clematis
cadmia has a certain temperature adaptability. Here we analyzed the potential regulatory
mechanisms of C. crassifolia and C. cadmia in response to heat stress by studying the
photosynthesis, antioxidant parameters, amino acids, and gene expression patterns
under three temperature treatments. Heat stress caused the fading of leaves; decreased
net photosynthetic rate, stomatal conductance, superoxide dismutase, and catalase
activity; increased 13 kinds of amino acids content; and up-regulated the expression
of seven genes, including C194329_G3, C194434_G1, and C188817_g1, etc., in
C. crassifolia plants. Under the treatments of heat stress, the leaf tips of C. cadmia
were wilted, and the net photosynthetic rate and soluble protein content decreased,
with the increase of 12 amino acids content and the expression of c194329_g3,
c194434_g1, and c195983_g1. Our results showed that C. crassifolia and C. cadmia
had different physiological and molecular response mechanisms to heat stress during
the ecological adaptation.
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INTRODUCTION

Clematis is a large genus that belongs to Ranunculaceae and has great ornamental value. There are
various species of Clematis, which have rich variations in colors and shapes of flower. Clematis can
be widely used in flower stands, corridors, lamp pillars, fences, arches, and other configurations to
form an independent landscape, and it occupies a very important position in landscaping (Lehtonen
et al., 2016). Clematis also has a certain medicinal value, which can be used as anti-inflammatory,
antirheumatism, and analgesic agents (Hao et al., 2013; Li et al., 2017). There are approximately 355
species of Clematis in the world and 147 species in China (Pringle, 1971; Liu et al., 2018). In terms of
adaptability to the environment, Clematis prefers a cool climate and is often associated with shrubs
in the wild. At present, most cultivars of Clematis on the market are susceptible to high temperature
in summer (Gao et al., 2017; Jiang et al., 2020). After the heat stress, the leaves will fade, wilt, and
fall off, stem will wither, and there will be other heat damage symptoms, which severely affects the
ornamental characteristics of Clematis.
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With the global warming caused by the greenhouse effect, the
heat stress has become one of the most important abiotic stresses
that restrict plant growth (Berry and Bjorkman, 1980). In recent
years, the frequent occurrence of extreme high temperature posed
a severe challenge to the ability of plants to withstand high
temperatures (Hasanuzzaman et al., 2013; Borrell et al., 2020).
Therefore, the regulatory mechanism of plants in response to heat
stress and the cultivation of heat-resistant varieties have become
a focus of attention. Plants have produced a series of adaptation
mechanisms to resist heat stress in the process of evolution
(Wahid et al., 2007). One is heat resistance, which strengthens
plants by changing leaf orientation, increasing leaf trichomes, and
increasing xylem cells (Tozzi et al., 2013; Bickford, 2016). The
other is heat tolerance mechanism, which is involved in a series
of signal pathways, including ion transporters, osmoprotectants,
free radical scavengers, signal cascades, and transcription factor
regulation (Rodríguez et al., 2008; Ohama et al., 2017).

Previous studies have shown that heat stress changes the
components and structure of plant cell membranes, reduces cell
membrane integrity, increases cell membrane permeability, and
causes the ion leakage (Wise et al., 2004; Bita and Gerats, 2013;
Lohani et al., 2020). Heat stress can cause plants to accumulate
excess reactive oxygen species (ROS), break the balance of
ROS in cells, inhibit the photosynthetic electron transport
chain, and cause irreversible damage to photoresponse system II
while intensifying membrane lipid peroxidation (Ahmad et al.,
2010; Gururani et al., 2015; Choudhury et al., 2017). Plants
have evolved both enzymatic and nonenzymatic systems to
remove ROS to maintain the growth of plants. The currently
reported enzymatic antioxidant systems include superoxide
dismutase (SOD), catalase (CAT), and ascorbic peroxidase
(APX), etc. Nonenzymatic antioxidants are antioxidants in
plants such as proline, ascorbic acid, mannitol, and glutathione,
etc (Hameed et al., 2012; Tripathy and Oelmüller, 2012). In
Lilium longiflorum, the antioxidant enzyme activities including
SOD, peroxidase (POD), CAT, APX, and glutathione reductase
(GR) were stimulated after 10 h of high-temperature treatment
at 37◦C and 42◦C, and the concentrations of ascorbic acid
(AsA) and glutathione (GSH) were maintained at a high
level, resulting in the decrease of ROS content, so as to
mitigate the damage caused by heat stress (Yin et al., 2008).
The accumulation of osmotic regulation substances is also an
important physiological mechanism for plants to respond to heat
stress (Kaplan et al., 2004).

The up-regulated expression of genes has been reported to
help plants adapt to heat stress (Atkinson and Urwin, 2012).
Heat shock proteins (HSPs) are a type of stress protein that is
induced in organisms under the heat stress (Jacob et al., 2017).
They are involved in protein synthesis, folding, cell localization,
protein transmembrane transport, and target protein degradation
to maintain the stability of the plant homeostasis (Qu et al.,
2013; Xu et al., 2016). Heat shock transcription factors (HSFs)
are the key regulator of plant response to heat stress and play
a critical role in the regulation of plant heat stress response
(Guo et al., 2016). HsfA1 was an important transcription factor
for Arabidopsis thaliana to obtain heat resistance (Ohama et al.,
2016). The transcription factor FaHsfA2c of Festuca arundinacea

was upregulated in leaves and roots under heat stress, which
could enhance the heat resistance of F. arundinacea (Wang et al.,
2017). In tomato (Solanum lycopersicum), Mishra founded that
plants with silenced of HsfA1a were more sensitive to heat stress
than wild type in each developmental stage (Mishra et al., 2002).
HsfB1 was a transcriptional inhibitor, and it could also be used
as coactivator of HsfA1a to inhibit the expression of HsfA1b and
HsfA2 (Röth et al., 2017; Zhou et al., 2018).

As an excellent ornamental vine, the market demand for
Clematis is constantly rising in the world. However, the
continuous loss of wild resources and the limited heat tolerance of
horticultural varieties put forward a severe test to the cultivation
of Clematis. How to effectively improve the heat resistance
and reduce the damage of heat stress is the emphasis work of
cultivation and breeding of Clematis. Clematis crassifolia is a
kind of evergreen species, which blooms in winter and is mostly
distributed in dense forests or sparse forests with an altitude of
100–300 m in China. Clematis cadmia is a potential material for
resistance breeding because of its strong resistance and abundant
flowers. In preliminary study, we found that C. cadmia has
a certain temperature adaptability, whereas C. crassifolia was
more sensitive to temperature in summer, so it is necessary to
analyze the physiological and biochemical differences between
C. crassifolia and C. cadmia. In this study, in order to understand
the effects of heat stress on Clematis, we explored the response of
photosynthesis, antioxidant enzyme activity system, amino acid
levels, and gene expression in C. crassifolia and C. cadmia, which
is expected to provide a theoretical foundation for the cultivation
and breeding of C. crassifolia and C. cadmia.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Plants of C. crassifolia and C. cadmia were grown under different
heat stress and conducted in the Zhejiang Institute of Subtropical
Crops (120◦37′53′′E, 28◦0′8′′N), China. Two-year-old healthy
and homogenous plants were grown in a grown chamber under
a 16/8-h long-day cycle at 25◦C/20◦C, 65% humidity for 2 weeks.
After 2 weeks of pretreatment, in order to carry out the heat
stress, the pretreated plants of C. crassifolia and C. cadmia were
transferred to the grown chamber for cultivation at 25◦C/20◦C,
35◦C/30◦C, and 45◦C/40◦C temperature, respectively. Heat stress
treatments lasts for 4 days; during the treatment period, water
was poured every 2 days, 500 mL each time, to ensure sufficient
soil moisture. Take the mature leaves of two to five positions
after 4 days of treatments, respectively. Fresh leaves were tested
for physiological indicators, and other samples were frozen
in liquid nitrogen and stored at −80◦C for the analysis of
amino acid and gene expression. Experimental treatments were
repeated three times.

Leaf Gas Exchange Parameters
Healthy and fully developed leaves from each treatment were
randomly chosen for photosynthetic parameter measurements,
using LI-6400 XT portable photosynthesis system (Li-Cor Inc.,
Lincoln, NE, United States), and equipped with a 6400-18 RGB
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LED light source. The measurements were carried out from 9:00
to 11:00 AM, the photosynthetic photon flux density was 1200
µmol m−2 s−1, the CO2 concentration was 400 ppm, and the
relative humidity was 65%.

Photosynthetic Pigments
The finely cut and well-mixed leaf samples (100 mg) were
transferred to a 10 mL tube. Then, 8 mL of 80% acetone was
added to the test tube and mixed. Chlorophyll was extracted at
4◦C in the dark. The absorbance of supernatant was measured
at 663, 645, and 470 nm with a spectrophotometer (Shimadzu
UV-2550, Kyoto, Japan). The total chlorophyll content was
calculated and was expressed as mg g−1 FW. The total
chlorophyll content was measured according to the described
method by Lichtenthaler and Buschmann (2001).

Measurement of MDA Content,
Hydrogen Peroxide Content, and Soluble
Protein Content
The malondialdehyde (MDA) content was determined as
previously described (Ouyang et al., 2010).

The H2O2 content and soluble protein content were
measured according to the method as previously described
(Luo et al., 2012).

Determination of SOD, CAT, and POD
Activity
For antioxidant enzyme activity analysis, fresh leaves (0.1 g)
were ground in liquid nitrogen and then suspended in 8.0 mL
solution containing 50 mM phosphate buffer (pH 7.4). The
homogenate was centrifuged 10,000 rpm for 15 min at 4◦C, and
the supernatant was collected to obtain crude enzymes.

The SOD activity was analyzed by measuring the inhibiting
rate of the enzyme to O2

− produced. One-unit SOD activity
(U) was defined as the amount of enzyme that resulted in 50%
inhibition of reduction of nitrite in 1 mL reaction solution. The
SOD activity was determined at 550 nm after 40 min of reaction
at 37◦C and expressed as U g−1 FW (Ma et al., 2017).

The CAT activity was determined by the hydrolysis reaction
of hydrogen peroxide (H2O2) with CAT; the reaction could
be terminated rapidly by molybdenum acid (MA) to produce
yellow MA-H2O2 complex (Li et al., 2013). The CAT activity was
calculated in absorbance at 405 nm. One unit was defined as the
amount of enzyme that resulted in the decompose of 1 µmol
H2O2 per second in 1.0 g fresh tissue.

The POD activity was measured based on the change of
absorbance at 470 nm by catalyzing H2O2 (Zheng et al., 2018).
One unit was defined as the amount of enzyme that resulted in
the change of 0.01 at 470 nm per minute by 1.0 g fresh tissues in
the reaction system.

Amino Acid Contents Analysis
Samples (10 mg) were weighed, mixed with 1 mL methanol, and
subsequently homogenized in an ultrasonic instrument for 3 min,
tubes were static for 5 min at room temperature, and 10,000 rpm
centrifuged for 15 min at 4◦C. The supernatant was diluted 10

times. One hundred microliters of dilution was transferred to
heat-resistant tubes, and 100 µL of internal standard solution
(100 ppb) was added; the mixture was filtered through a 0.45-µm
membrane and then injected into the Ultra Performance Liquid
Chromatography (UPLC) for analysis. The 24 kinds of standards
were weighed accurately. Stock solutions were prepared using
methanol or water, and a series of mixed working standard
solutions were properly prepared and diluted with water. The
standard solutions were stocked under 0◦C.

UPLC separation was performed on an Acquity UPLC system
(Waters, United Kingdom) equipped with an ACQUITY UPLC R©

BEH HILIC (1.7 µm, 2.1 × 100 mm, Waters) column. The
temperature of the column was set at 40◦C. The sample injection
volume was 5 µL. Eluents consisted in water/methanol (90:10)
with 0.1% (vol/vol) formic acid (eluent A) and water/methanol
(50:50) with 0.1% (vol/vol) formic acid (eluent B). The gradient
elution started with 10% B for 0 min, ramped to 30% of B within
next 6.5 min, ramped to 100 % of B in 7 min, kept at 100% of
B until 8 min and dropped to 10% B in 8.5 min at a flow rate of
0.3 mL/min, and finally kept at 10% of B until 12.5 min at a flow
rate of 0.4 mL/min.

The MS analysis was performed using a AB 4000 mass
spectrometer (AB, United States) equipped with an ESI source
in the positive-ion mode working in the multiple reaction
monitoring mode. An ion source voltage of 5.5 kV and a source
temperature of 500◦C were used. Collision gas and the curtain
gas were set at 6 and 30 psi, respectively, whereas both of the
atomization gas and auxiliary gas were 50 psi.

Gene Expression
Isolation of total RNA from the leaf tissues and real-time
quantification of transcriptional expression of the genes were the
same as that reported previously (Ma et al., 2019). All of the
primers used for quantitative reverse transcriptase–polymerase
chain reaction (PCR) are listed in Supplementary Tables 1, 2. All
of the PCR products were confirmed by sequencing.

Statistical Analysis
Data were analyzed by two-way analysis of variance
(ANOVA) using the SPSS 10 program (SPSS Inc., Chicago,
IL, United States). Different letters on the histograms between
different treatments indicate their statistical difference at
P ≤ 0.05.

RESULTS

High-Temperature Stress Caused Leaf
Discoloration and Crimping of
C. crassifolia and C. cadmia
Under different temperature treatments, the leaves damage
degree of C. crassifolia and C. cadmia showed significant
differences. In comparison with the normal-temperature
treatment (25◦C), C. crassifolia mainly showed water loss, leaf
carnification degree reduced, and leaf turned yellow (Figure 1B).
C. cadmia exhibited partial curling with the yellow leaf tips
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FIGURE 1 | Effect of heat stress on the morphology of the leaves of C. crassifolia and C. cadmia. (A) Treatment conditions. (B) The phenotype of C. crassifolia
leaves. (C) The phenotype of C. cadmia leaves. Bar means 1 cm.

(Figure 1C). In addition, after 45◦C heat stress treatment, the
MDA content of C. crassifolia was increased 443.97% compared
with normal-temperature treatment (25◦C). No significant
differences were observed in C. cadmia between two heat stress
treatments (Supplementary Figure 1).

Heat Stress Inhibited the Photosynthesis
of C. crassifolia and C. cadmia
The heat stress can aggravate the degradation of chlorophyll
and inhibit its synthesis, so the change of chlorophyll content
can reflect the damage degree of high temperature to plants
(Zhou and Leul, 1999). According to the heat stress treatments,
the Chla, Chlb, and carotenoid content of C. crassifolia were
decreased, instead of the increased Chla/b ratio. Even at the same
heat stress condition, C. cadmia plants have high photosynthetic
pigments than C. crassifolia; the Chla and Chlb content under the
moderate (35◦C) temperature increased by 31.59% and 24.10%,
respectively, compared with those under the normal temperature
(25◦C) in C. cadmia, and decreased by 21.59% and 14.79% under
high (45◦C) temperature compared with the normal temperature
(25◦C), respectively (Figure 2).

The photosynthetic parameters of C. crassifolia and C. cadmia
were also strikingly affected by heat stress treatments. The
net photosynthetic rate (Pn) of C. crassifolia and C. cadmia
showed significant decrease in high-temperature treatment
(45◦C), which were only 1.29% and 3.25% of normal-
temperature treatment (25◦C), respectively (Figure 3A). With
the increase of temperature, the variation trends of stomatal
conductance (Gs), intercellular CO2 concentration (Ci), and
transpiration rate (TR) of C. crassifolia and C. cadmia were
similar. C. crassifolia plants grown under 45◦C condition have
extremely low Gs and TR values, decreased 71.58% and 65.80%,
respectively, compared with the plants under normal temperature
(25◦C). However, the Gs, Ci, and TR of C. cadmia has

no significant difference between 25◦C and 45◦C treatments
(Figures 3B–D).

The Antioxidant System of C. crassifolia
Was More Influential Than C. cadmia
Under Heat Stress
The activities of POD and SOD in C. cadmia leaves were
significantly affected by heat stress treatments. The POD activity
was 1.95 times that in the normal-temperature treatment
(25◦C).The SOD activity was decreased significantly with
different heat stress, by 27.33% and 32.79%, respectively. In
C. crassifolia, there was no significant difference of POD activity
among three temperature degrees, but SOD activity decreased
gradually with the increase of temperature (Figure 4).

The CAT activity of C. crassifolia was significantly inhibited by
heat stress. Under the condition of 45◦C heat stress, the activity
of CAT decreased by 91.76%, whereas there was no significant
change in C. cadmia plants (Figure 5A), while the H2O2
content in C. crassifolia was increased obviously by gradient
with the increase of temperature, increased by 60.64% and
215.54%, respectively, under moderate (35◦C) and high (45◦C)
temperature compared with the normal temperature (25◦C). The
C. cadmia plants exposed to high-temperature treatment (45◦C)
showed 150.60% increase of the H2O2 content than those under
normal (25◦C) treatment (Figure 5B).

The Content of Soluble Protein and
Amino Acid in C. crassifolia and
C. cadmia Showed Difference Patterns
Under Heat Stress
After different heat treatments, the soluble protein content
of C. cadmia decreased 45.67% under high-temperature
treatment (45◦C) compared with normal-temperature treatment
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FIGURE 2 | Chlorophyll a (Chla), chlorophyll b (Chlb), chlorophyll a/b ratio, and carotenoid (Car) in C. crassifolia and C. cadmia grown under three different
temperatures including normal temperature (25◦C), moderate temperature (35◦C), and high temperature (45◦C). (A) Chla content. (B) Chlb content. (C) Chla/b ratio.
(D) Car content. Error bars indicate SE (n = 5 plants). Different letters indicate significant differences based on two-way ANOVA followed by Tukey multiple
comparisons (P ≤ 0.05).

(25◦C); however, there was no significant change of soluble
protein content in C. crassifolia plants under heat-stressed
conditions (Figure 6).

The amino acid content was assessed in C. crassifolia
and C. cadmia plants under different heat stress treatments
(Table 1). Isoleucine, glutamine, histidine, and tryptophan were
significantly increased in both C. crassifolia and C. cadmia plants
under moderate-temperature (35◦C) and high-temperature
(45◦C) treatments compared with normal-temperature
treatment (25◦C). Ornithine hydrochloride was only detected in
C. crassifolia plants, and glycine was only detected in C. cadmia
under 45◦C heat treatment. Proline, valine, threonine, lysine,
phenylalanine, and tyrosine were up-regulated at 45◦C condition
in C. crassifolia and at 35◦C treatment in C. cadmia (Table 1).

Gene Expression Pattern in C. crassifolia
and C. cadmia Under Heat Stress
To explain the response of C. crassifolia and C. cadmia plants
to heat stress, we examined the expression of 12 genes under
45◦C culture condition, including HSP, HSF, photosystem, and
POD genes, which were descripted in transcriptome profiling
(Figure 7). The transcript levels were significantly different

in C. crassifolia and C. cadmia. The expression levels of
HSP and HSF genes including c194329_g3 and c194434_g1
in C. cadmia were remarkably higher (>2.0-fold) after heat
stress, and those two genes have significant up-regulation
in C. crassifolia except endure the heat stress for 12 h
(Figures 7A,B). Four genes associated with heat stress, including
c188817_g1, c200811_g3, c187075_g1, and c194962_g2, which
were involved in biosynthesis of photosystem and chlorophyll,
have high transcript levels after heat stress in C. crassifolia plants,
and only c188817_g1 and c208712_g3 showed a small amount
of increase after 6 h of heat stress treatment in C. cadmia. For
antioxidant enzyme genes, the transcript level of c199977_g2 has
substantially increased in C. crassifolia after heat stress, and the
expression of c202620_g2, c195983_g1 and c198009_g1 varied
slightly in C. cadmia (Figures 7C,D).

DISCUSSION

With the aggravation of greenhouse effect and the rise of
global temperature, heat stress is the main environmental stress
that restricts plant growth and development. Plants respond
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FIGURE 3 | Photosynthetic parameters of C. crassifolia and C. cadmia grown under three different temperatures including normal temperature (25◦C), moderate
temperature (35◦C), and high temperature (45◦C). (A) Net photosynthetic rate (Pn). (B) Stomatal conductance (Gs). (C) Intercellular CO2 concentration (Ci).
(D) Transpiration rate (TR). Error bars indicate SE (n = 5 plants). Different letters indicate significant differences based on two-way ANOVA followed by Tukey multiple
comparisons (P ≤ 0.05).

to heat stress through changes in physiological, biochemical,
and transcriptional regulatory systems (Baniwal et al., 2004;
Rizhsky et al., 2004; Wu et al., 2018). This study presents the
leaves phenotype, physiological mechanism, and gene expression
pattern of C. crassifolia and C. cadmia in response to different
heat stress. The damage to plant organs, tissues, and cells caused
by heat stress was multifold. Plants exposed to heat stress damage
showed discoloration or peeling of leaves, damage of flowers
and fruits, poor seed germination rate, and inhibition of plant
growth (Rodríguez et al., 2005). With the increase of temperature,
C. crassifolia and C. cadmia manifested different symptoms of
heat damage. The fading and wilting leaves were observed in
C. crassifolia, whereas C. cadmia leaves showed rolling and drying
in leaf tip and leaf margins (Figure 1).

Photosensitive pigment regulation is an important regulation
mechanism of photosynthesis protection in plants under heat
stress. Increasing the chlorophyll content with a certain range
can improve the absorption and transformation of light energy

by plants (Shi et al., 2006). In this study, the content of
Chla and Chlb decreased under the 45◦C heat stress and
caused a 35.49% increase in Chla/b and a 40.84% decrease in
C. crassifolia (Figures 2A–C), indicating that Chlb was more
sensitive to heat stress than Chla in C. crassifolia. Heat stress
affects the early stage of photosynthesis and mainly changes
the membrane properties of chloroplasts and the uncoupling
of energy transfer mechanism, but protein denaturation under
continuous heat stress can cause irreversible damage (Fan et al.,
2018). The reasons for the decrease of Pn in plant leaves
are mainly divided into stomata limiting factors and non–
stomata-limiting factors. The previous studies have observed
that the heat stress can cause plant stomatal closure and reduce
the photosynthetic rate (Crafts-Brandner and Salvucci, 2002;
Pnueli et al., 2003).

In this study, the Pn, Gs, and Tr of C. crassifolia were
significantly reduced under heat stress of 45◦C, indicating that
heat stress caused the decline in photosynthesis of C. crassifolia by
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FIGURE 4 | Effect of heat stress on the peroxidase (POD) activity and the superoxide dismutase (SOD) activity of C. crassifolia and C. cadmia grown under three
different temperatures. (A) POD activity. (B) SOD activity. Error bars indicate SE (n = 5 plants). Different letters indicate significant differences based on two-way
ANOVA followed by Tukey multiple comparisons (P ≤ 0.05).

FIGURE 5 | Effect of heat stress on the Catalase (CAT) activity and the peroxide (H2O2) content of C. crassifolia and C. cadmia grown under different temperatures.
(A) CAT activity. (B) H2O2 content. Error bars indicate SE (n = 5 plants). Different letters indicate significant differences based on two-way ANOVA followed by Tukey
multiple comparisons (P ≤ 0.05).

both stomata-limiting factors and non–stomata-limiting factors.
The total chlorophyll content of C. cadmia decreased significantly
at 45◦C heat stress, and there were no significant differences in
Gs and Tr, whereas the increased of Gs and Tr were observed
in C. cadmia plants under 35◦C, resulting in a 54.02% increase
in Pn. These results indicated that C. cadmia can adapt to
the environment by increasing the chlorophyll content and Gs
under moderate temperature conditions, and the decrease of
photosynthetic activity under heat stress was the main reason for
the reduction of photosynthesis.

The injury of plants under adversity is closely related to
membrane lipid peroxidation induced by the accumulation
of ROS (Asada, 2006). MDA is one of the most important
products of membrane lipid peroxidation. Therefore, MDA
level can be measured as an indirect measure of injury
to membrane lipid and stress resistance of plants. In this
study, we observed that 45◦C heat stress led to a significant

increase in MDA content and H2O2 content of C. crassifolia;
however, there were no significant changes in C. cadmia under
different temperature treatments (Supplementary Figure 1 and
Figure 5B). The results suggested that the high temperature could
result in the accumulation of excessive H2O2 in C. crassifolia,
which would cause the destruction of cell membrane. But
C. cadmia could maintain a relatively stable cell homeostasis
under heat stress.

Plant in long-term evolution formed in the process of
enzymatic reaction system in order to eliminate the oxidative
stress caused by heat stress and enhance the protection ability
of plants, including POD, CAT, and SOD, etc., which play a key
role in the regulation of ROS homeostasis in the cell (Larkindale
and Vierling, 2008; Vidya et al., 2018). The stress tolerance
of tomatoes at heat is closely associated with its antioxidant
mechanism (Zhou et al., 2019). In our study, it was shown that
C. crassifolia and C. cadmia could respond to heat stress by
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FIGURE 6 | Soluble protein content of C. crassifolia and C. cadmia grown under three different temperatures. Values are the means ± standard error (n = 5 plants).
Different letters indicate significant differences based on two-way ANOVA followed by Tukey multiple comparisons (P ≤ 0.05).

TABLE 1 | Amino acid contents (data shown are the mean) of C. crassifolia and C. cadmia grown under different temperature treatments.

Amino acid Absolute content (µg g−1) Relative content to normal temperature

C. crassifolia C. cadmia C. crassifolia C. cadmia

25◦C 35◦C 45◦C 25◦C 35◦C 45◦C 35◦C 45◦C 35◦C 45◦C

Glycine – – – – – 604.04 – – – I

Alanine 22.20 20.00 30.61 125.00 310.10 434.34 0.90 1.38 2.48 3.47

Aminobutyric acid 10.24 38.29 19.13 58.65 75.56 231.31 3.74 1.87 1.29 3.94

Serine 27.80 44.95 21.74 313.54 582.83 520.20 1.62 0.78 1.86 1.66

Proline 10.56 12.67 135.48 114.58 352.53 142.42 1.20 12.83 3.08 1.24

Valine 5.08 5.70 69.22 108.33 533.33 635.35 1.12 13.61 4.92 5.86

Threonine 72.71 82.10 594.78 146.88 500.00 483.84 1.13 8.18 3.4 3.29

Isoleucine 3.58 7.81 81.39 60.63 433.33 549.49 2.18 22.76 7.15 9.06

Leucine 11.39 9.37 129.39 112.50 200.00 495.96 0.82 11.36 1.78 4.41

Asparagine 608.47 163.05 30.26 776.04 12828.28 955.56 0.27 0.05 16.53 1.23

Ornithine hydrochloride 0.22 0.14 0.48 – – – 0.65 2.15 / /

Aspartic acid 58.98 39.43 10.56 63.75 361.62 160.61 0.67 0.18 5.67 2.52

Glutamine 121.02 321.90 688.70 902.08 7565.66 97676.77 2.66 5.69 8.39 108.28

Lysine 10.00 11.10 66.09 68.96 145.45 46.36 1.11 6.61 2.11 0.67

Glutamic acid 618.64 382.86 89.04 1052.08 1636.36 1545.45 0.62 0.14 1.56 1.47

Histidine 0.50 1.17 5.53 5.59 107.07 69.60 2.33 11.02 19.14 12.44

Phenylalanine 7.00 11.45 87.48 78.96 543.43 91.21 1.64 12.5 6.88 1.16

Arginine 0.74 0.70 5.01 18.75 63.13 – 0.94 6.76 3.37 D

Tyrosine 18.98 29.90 311.30 – 95.96 169.70 1.58 16.4 I I

Tryptophan 6.49 14.13 70.61 23.54 234.34 218.18 2.18 10.88 9.95 9.27

D ≤ 1.0 1–2 2–4 ≥ 4.0 I

D, detected in normal temperature but not in moderate- and high-temperature treatments; I, detected in moderate and high temperature but not detected in normal-
temperature treatments; —, indicates not detectable.

Frontiers in Plant Science | www.frontiersin.org 8 March 2021 | Volume 12 | Article 624875

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-624875 March 26, 2021 Time: 11:48 # 9

Hu et al. Heat Stress Response of Clematis

FIGURE 7 | Effect of heat stress on the gene expression in C. crassifolia and C. cadmia leaves. Time course of heat in C. crassifolia and C. cadmia shifted to 45◦C.
(A,C) C. carassifolia. (B,D) C. cadmia. Soluble protein content. Bars indicate SE (n = 3).

regulating the antioxidant mechanism, but sustained heat stress
would reduce the enzyme activity.

Amino acids are a class of important physiological active
substances. Substances such as amino acids or polyamines
synthesized with amino acids as precursors can accumulate
under heat stress, stabilize proteins, and maintain cell osmotic
pressure (Bowlus and Somero, 1979). Glycine, as an important
amino acid, is a synthetic substrate of glycine betaine (GB),
which can protect photosystem II, stabilize membranes, and
reduce oxidative damage (Sita et al., 2018; Alhaithloul et al.,
2020). γ-Aminobutyric acid (GABA) is a nonprotein amino acid
widely present in plants. Under heat stress, GABA can improve
the activity of antioxidant enzymes such as POD and CAT to
reduce peroxidation damage (Nayyar et al., 2014). Exogenous
application of GABA could enhance accumulation of osmolytes
such as proline and trehalose due to increase in the activities of
their biosynthetic enzymes and improved the leaf turgor, carbon
fixation, and assimilation processes to protect the reproductive
function from heat stress in mungbean (Priya et al., 2019). In
this study, amino acids such as Pro, Val, Thr, Ile, Leu, Glu, Lys,
His, and Tyr were increased to relieve osmotic pressure of leaf
cell in C. crassifolia. C. cadmia sufficiently increased the content
of amino acids such as Gly, GABA, Glu, and Tyr; maintained
the activity of antioxidant enzymes; and reduced the content of
MDA, thereby enhancing the stability of cell membrane structure
and alleviating the damage caused by heat stress.

Plant response to heat stress involves a complex gene
regulatory network, and the damage caused by stress can
be alleviated by regulating the expression of related genes
(Krasensky and Jonak, 2012). In the previous study, a total of
81 SRAP and 133 EST-SSR polymorphic loci were detected in
Clematis (Li et al., 2018). HSPs, especially small HSPs, antioxidant
enzymes (e.g., APX), and galactosyl alcohol synthesis enzymes
play key roles in the heat resistance of grapes (Liu et al.,
2012). The HSF HsfA1 plays an important role in transcriptional
regulatory networks in promoting the expression of heat stress–
related genes, to regulate intracellular protein activity, rehabilitate
denatured proteins, degrade misfolded proteins, and alleviate the
damage caused by heat stress (Yoshida et al., 2011). We screened
out the expression patterns of 12 genes associated with heat
stress (Figure 7). The expressions of c194329_g3, c204515_g1,
c194434_g1, and c195983_g1 were up-regulated in C. cadmia
within a short period of heat stress, whereas the response time of
C. crassifolia was longer. c194329_g3 and c194434_g1 were up-
regulated 12 h later. The results showed that C. cadmia could
rapidly respond to heat shock stress and promote the synthesis
of related enzymes and metabolites by enhancing the expression
of small HSP, HSFs, and APX genes, thus alleviating the damage
caused by heat stress. PsaH is a membrane peripheral protein
located at the surface of PSI, and PSBY protein is located in
the thylakoid membrane, both of which play an important role
in photosynthetic system composition and electron transport
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(Obokata et al., 1993; Ozawa et al., 2018). C. crassifolia leaves
photosynthetic system response was more sensitive to heat stress
than C. cadmia, by increasing the expression of photosynthesis-
related genes in the early stage of heat stress. It increased
the excitation energy transferred to the PSII core complex
and promoted the increase of electron transfer efficiency. But
continuous heat stress will lead to a decrease in the chlorophyll
content and net photosynthetic rate.

In summary, these investigation results indicated C. crassifolia
and C. cadmia exhibited different photosynthetic characteristic,
metabolic characteristics, antioxidant system, and gene
expression patterns, which were related to their suitable living
environment and genetic evolution. And we found that the
photosynthetic system and enzymatic system may be the key
links in the response to heat stress of C. crassifolia and C. cadmia,
respectively. The hypothesis will be tested in future work. This
study will pave the way to research the response and tolerance
molecular mechanisms in clematis under heat stress.
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