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Industrial accidents, such as the Fukushima and Chernobyl disasters, release harmful
chemicals into the environment, covering large geographical areas. Natural flora may
serve as biological sensors for detecting metal contamination, such as cesium.
Spectral detection of plant stresses typically employs a few select wavelengths and
often cannot distinguish between different stress phenotypes. In this study, we apply
hyperspectral reflectance imaging in the visible and near-infrared along with multivariate
curve resolution (MCR) analysis to identify unique spectral signatures of three stresses
in Arabidopsis thaliana: salt, copper, and cesium. While all stress conditions result
in common stress physiology, hyperspectral reflectance imaging and MCR analysis
produced unique spectral signatures that enabled classification of each stress. As
the level of potassium was previously shown to affect cesium stress in plants, the
response of A. thaliana to cesium stress under variable levels of potassium was
also investigated. Increased levels of potassium reduced the spectral response of
A. thaliana to cesium and prevented changes to chloroplast cellular organization. While
metal stress mechanisms may vary under different environmental conditions, this study
demonstrates that hyperspectral reflectance imaging with MCR analysis can distinguish
metal stress phenotypes, providing the potential to detect metal contamination across
large geographical areas.

Keywords: Arabidopsis, cesium stress, copper stress, hyperspectral imaging, metal stress, multivariate curve
resolution, plant hyperspectral imaging, salt stress

INTRODUCTION

Anthropogenic activities or accidents associated with industrial processes may result in the release
of toxic metals into the environment. Toxic metal exposure, particularly through groundwater
contamination, poses a significant risk to human health. Additionally, metals in the environment
may also impact plant, animal, and microbial life, resulting in damage to the ecosystem. Nuclear
reactor accidents like the Chernobyl and Fukushima disasters released an estimated 149.8
petabecquerel (PBq) of radioactive cesium (Cs-134 and Cs-137) or approximately 47 kilograms
(Imanaka et al., 2015). Due to the high water solubility of cesium, Cs-134 and Cs-137 spread
rapidly in the environment and are taken up by local flora and fauna (Eikelmann et al., 1990;
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Ertel and Ziegler, 1991; Tsumune et al., 2013; Steinhauser et al.,
2014). Conventional analytical techniques that require sample
collection are ineffective at mapping Cs contamination from
these events due to the large geographical areas of contamination.
A rapid and non-invasive method for measuring environmental
contamination by Cs and other toxic metals would reduce the risk
of human exposure and facilitate cleanup efforts.

Metal stress in plants leads to changes in the natural
photosynthetic pigments along with morphological changes
in leaf structure. The pigment and morphological changes
in vegetation may therefore serve as indirect indicators of
metal contamination. Hyperspectral reflectance imaging has been
applied to identify stress indicators in plants, including spectral
signatures of metal contamination (Schuerger et al., 2003; Liu
et al., 2010b; Li et al., 2015; Martinez et al., 2015; Shi et al.,
2016; Zhang et al., 2017). These studies have generally focused
on two different approaches for analyzing the reflectance spectra:
(1) quantification of photosynthetic pigment concentration
(chlorophyll-a, chlorophyll-b, carotenoids, or anthocyanins)
from the spectral data (Blackburn, 2006), or (2) identification
of specific spectral bands to provide indices for measuring
metal stress (Horler et al., 1980; Liu et al., 2010b; Li et al.,
2015; Martinez et al., 2015). While the first approach provides
a direct link between the spectral data and plant physiology,
it does not allow for a unique indicator of metal stress, as
decreased chlorophyll or elevated carotenoid levels are general
stress responses (Bertrand and Schoefs, 1999), and the pigment
degradation products associated with specific stress responses
may be unknown. Vegetation indices have successfully been
applied for several decades in precision agriculture to assess
crop health (Bannari et al., 1995), and new indices have been
determined for metal stresses (Liu et al., 2010a,b; Martinez et al.,
2015; Shi et al., 2016; Zhang et al., 2017). However, vegetation
indices only utilize select wavelengths (typically 2–3) from the full
spectra, increasing the odds of false positive identification, and in
the case of metal stress indices, the wavelengths have not been
correlated to a change in plant physiology.

While advancements in hyperspectral imaging technology
now enable the collection of close-range hyperspectral datasets
at high resolution, classification of disease or plant stress
still often uses only a subset of those wavelengths. The
advantage of hyperspectral imaging over multispectral imaging
is that the subset of wavelengths to be employed need not
be determined in advance. Instead, statistical approaches can
be employed to determine which spectral bands offer the best
classification (Lowe et al., 2017; Mishra et al., 2017). Instead
of selecting a subset of features, feature extraction methods
such as principal component analysis (PCA), independent
component analysis (ICA), and multivariate curve resolution
(MCR) analysis can transform the data into a new feature space
with a reduced number of features (Mishra et al., 2017). Both
methods of feature extraction, subsetting and transformation,
reduce the effective dimensionality, where in the original, high-
dimensional data significant amounts of redundant information
were present (Mishra et al., 2017). Without such dimensionality
reduction, the number of samples required to obtain statistical
confidence for classification purposes would be prohibitive,

growing exponentially with the dimensionality due to Hughes’
Phenomenon or the curse of dimensionality (Hughes, 1968;
Thenkabail et al., 2014; Mishra et al., 2017). Since hyperspectral
image data typically suffer from noise (Lowe et al., 2017),
transformation feature extraction methods are often preferable
over subset methods as use of the entire spectrum results in
reduced noise. Among the feature extraction methods, MCR
has the added advantage of returning spectra which are readily
interpretable. Classification techniques, whether unsupervised
techniques such as k-means clustering or supervised techniques
including support vector machines, partial least squares-
discriminant analysis, or artificial neural networks can then
be employed on the reduced feature set (Mishra et al., 2017).
This combination of close-range hyperspectral imaging and
advanced analytics has been applied for drought stress and
disease phenotyping (Renge and Mauring, 2013; Asaari et al.,
2018; Bohnenkamp et al., 2019).

In this study, we applied hyperspectral reflectance imaging
and MCR alternating least squares (MCR-ALS) analysis to
identify unique spectral features associated with three stress
phenotypes in the model plant Arabidopsis thaliana: salt, copper,
and cesium stresses. To reduce variability in metal availability
due to soil chelation, A. thaliana was grown hydroponically. Salt
and copper stresses were included to determine whether cesium
stress could be identified from other similar stresses. Common
physiological measurements, such as root structure, leaf area,
and cellular chloroplast organization, were acquired to assess
the stress response. As cesium stress in A. thaliana has been
shown to be influenced by the availability of potassium (Hampton
et al., 2004), the effect of high and low potassium on the cesium
stress response was also investigated. This study demonstrates the
ability to distinguish between different types of stress responses
based on hyperspectral reflectance imaging.

MATERIALS AND METHODS

Materials
Seeds of A. thaliana Col-0 were obtained from the Lehle Seeds
(WT-02). Chemicals were purchased from MP Biomedicals
(KH2PO4 and ZnSO4

∗7H2O), Sigma-Aldrich (CuCl2∗2H2O and
CuSO4

∗5H2O), Alfa Aesar (KNO3 and Agar, plant cell culture
tested), and Fisher Scientific (all other chemicals).

Growth and Metal Stress Treatment
Arabidopsis thaliana Col-0 were grown hydroponically, as
described previously by Conn et al. (2013). Briefly, seeds were
cold-acclimated at 4◦C for 2 days on 0.7% germination medium
agar plugs, partially submerged in 250 mL of germination
medium. After cold acclimation, the gemination container was
moved to a Shel Lab refrigerated diurnal plant growth chamber
at 25◦C under solar spectrum LED lights (Build My LED) at
60 to 105 µmol photons m−2s−1 light intensity with a 16:8
light:dark cycle. After roots had grown through the agar plug
and into liquid medium, approximately 5–7 days, half (125 mL)
of the germination medium was replaced with basal nutrient
solution (Conn et al., 2013). After 24 h, all 250 mL of liquid

Frontiers in Plant Science | www.frontiersin.org 2 February 2021 | Volume 12 | Article 624656

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-624656 February 10, 2021 Time: 18:43 # 3

Ruffing et al. Hyperspectral Identification of Stress in Arabidopsis

growth medium was replaced with 250 mL of fresh basal nutrient
solution. Plants then grew until they reached an appropriate
size for hyperspectral imaging, approximately 5–7 more days.
Plants with agar plugs were then moved to 50 mL centrifuge
tubes with the conical end cut to allow for submersion in the
liquid growth medium and a hole in the cap for holding the agar
plug. Plants were randomly assigned to different experimental
conditions and placed in a foam holder to keep the tubes afloat in
4.5 L of either normal or modified basal nutrient solution with air
bubbling (Supplementary Figure 1). The modified basal nutrient
solutions included an alternative concentration of one or more
chemicals per condition. The conditions tested were: NaCl (25,
50, or 75 mM), CuCl2∗2H2O (25, 50, or 75 µM), CsCl (0.1, 1, or
10 mM), and CsCl (1 mM) with variable KCl (10 µM, 5.6 mM,
or 25 mM) along with healthy controls for each experiment. Four
to ten plants were grown in each condition per experiment, with
most experiments containing five plants per condition.

Confocal Fluorescence Microscopy
A leaf was cut from three different A. thaliana plants under
each experimental condition. The leaves were placed on a glass
microscope slide with the adaxial facing up. A No. 1.5 cover
slip was pressed on top and taped flat. Each leaf was imaged
using an Olympus IX71 confocal fluorescence microscope with
a Disk Scanning Unit (DSU). The 60×/1.42 oil objective
(∞/0.17/FN26.) was used to take all images. Images were
acquired using a Q-imaging Rolera EM-C2 camera and Slidebook
6.0 software with exposure times of 1,000 ms, a gain of 2,500,
intensification of 3,000, and using the chlorophyll fluorescence
filter. For each leaf, 10 images were acquired across various
regions of the leaf, each with 30 slices in the z-direction (step
size = 0.1 µm). Microscopy was performed at days three and nine
in the metal stress experiments. Data files were processed with
ImageJ and merged.

Quantification of Leaf and Root Areas
Leaf area for each A. thaliana plant was calculated from the
hyperspectral reflectance images. During preprocessing of the
hyperspectral reflectance data (described below), all plant pixels
in each image were identified. Leaf area was then calculated by
multiplying the total number of plant pixels by the measured
pixel area (0.000112 cm2/pixel).

To quantify root area, each plant was moved to a 1
L polycarbonate Nalgene container containing approximately
800 mL of basal medium. A black sheet of paper was placed
behind the container; a ruler was placed next to the container;
and a digital image was acquired using a Cannon EOS Rebel T2i
DSLR camera. In ImageJ, the scale was set for each image using
the ruler in the image, and it was then cropped to only contain
the white roots with the black background. The cropped images
were converted to binary, and root area was calculated using the
Analyze Particles function in ImageJ.

Hyperspectral Reflectance Imaging
Hyperspectral images were obtained using a Hyperspec R©

VNIR E-Series hyperspectral imager from Headwall Photonics
equipped with a Cinegon 1.4/12 mm Compact C-Mount

lens from Schneider-Kreuznach. A Spectralon puck with 99%
reflectance (LabSphere) was used as the white reference for all
images, and a black cap was placed over the lens for the dark
reference. A white reference was taken at the beginning and
end of each experiment, as well as in between conditions during
each imaging session. Both the Spectralon target and the plants
were placed horizontally onto a stand 1 ft. from the imager,
illuminated by two equidistant, broad-spectrum halogen lights,
which were allowed twenty minutes to warm up prior to each
imaging session. Hyperspec III application software was used to
capture images. The frequency of images (i.e., images every day
or every other day) and duration of plant growth were dependent
upon both condition and observable plant response.

Preprocessing of Hyperspectral
Reflectance Data
Preprocessing of hyperspectral reflectance data was performed
by reading hyperspectral data files (reflectance data normalized
to the white reference spectra) from the Headwall Photonics
Hyperspec R© VNIR E-Series hyperspectral imager into a custom
software application, executing an empirically derived algorithm
on the reflectance data, and outputting a comma separated value
file representing a plant mask of the hyperspectral reflectance
data. In addition, the total count of identified plant pixels was
also written to file.

The software algorithm formatted the reflectance data into
a waveform spectrum for each pixel in the 2D hyperspectral
reflectance image. For each pixel’s spectrum, the following
properties were determined:

• Red Average: Average intensity of pixels between 750
and 850 nm.
• Orange Average: Average intensity of pixels between 550

and 600 nm.
• Blue Average: Average intensity of pixels between 410

and 450 nm.
• Blue-Green Average: Average intensity of pixels between 3

and 450 nm.
• Orange Average to Blue Average: Ratio of the Orange

Average parameter to the Blue Average parameter.
• Red Average to Blue-Green Average: Ratio of the Red

Average parameter to the Blue-Green Average parameter.
• Red Cutoff Threshold: Boolean flag indicating the average

intensity of pixels between 750 and 850 nm is greater than
0.5 (referenced to the white reference spectra).

Once the properties for each pixel’s spectrum were calculated,
the software algorithm determined a pixel to be that of a plant
if the Red Cutoff Threshold was true, i.e., greater than 0.5, and
the Orange Average to Blue Average was greater than 1.5 or the
Red Average to Blue-Green Average was greater than 3. If a pixel
was determined to be that of a plant, a “1” was written to a
comma separated value file in the row, column corresponding
to the X, Y position of the pixel. Otherwise, a “0” was written
to the comma separated value file. In addition, if a pixel was
determined to be that of a plant, the total number of plant pixels
counter was incremented. The algorithm continued to analyze
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each pixel until all pixels in the hyperspectral reflectance image
were evaluated. Once complete, the final count of the pixels
counter was written to a file.

Multivariate Curve Resolution Analysis
Sandia National Laboratories has developed software to
efficiently analyze large hyperspectral images using MCR-ALS,
which has previously been described (Van Benthem et al.,
2002; Van Benthem and Keenan, 2004; Haaland et al., 2009;
Jones et al., 2012). While the fundamental algorithms are as
described in Jones et al. (2012), the graphical user interface
(GUI) and workflow have been improved and are currently
implemented in Matlab (version R2019b, MathWorks, Inc.).
Critically, the current version is capable of analyzing arbitrarily
large hyperspectral data matrices, limited only by the amount
of memory installed on the computer; the datasets in this work
were often tens of gigabytes. The MCR-ALS software also allows
equality constraints to be applied to any variables or portions
thereof (Van Benthem et al., 2002); this capability allows models
to be built using portions of the data (e.g., control plants) and
then later extended to additional conditions (e.g., metal stress).

MCR alternating least squares analysis was first applied to the
control plants in order to determine the spectral components
necessary to model normal growth of A. thaliana. The raw
hyperspectral image data set, consisting of multiple dimensions
(one spectral, two spatial, and additional dimensionalities
corresponding to images of different plants at different times)
were first unfolded into a two-dimensional matrix of individual
spectra. Unfolding the data in this manner allowed information
from all control plants throughout the entire experimental time
course to be effectively combined for the determination of
spectral components. After unfolding, the previously generated
masks were applied to reduce the data matrix to only those
image pixels within the masks (where the plant was present).
To estimate the number of spectral components required, the
eigenvalues of the hyperspectral data matrix were calculated
using principal component analysis. The “elbow” in the scree plot
of these eigenvalues then served as an estimate of the required
number of spectral components. The estimated number of
spectral components were initialized using randomly generated
spectra and an additional baseline component (constant offset)
was included, which allows offset correction. After performing
MCR-ALS with the estimated number of components until
convergence, the obtained spectral components and the principal
components of the residuals were examined. If the estimated
number of spectral components was too low, unmodeled signal
is evident in the principal components of the residuals, whereas
when the estimated number of components is too high, one
or more of the spectral components appears as either a null
component or pure noise. The number of spectral components
employed was then adjusted, and MCR-ALS was rerun until a
model was developed with an appropriate number of spectral
components. As further discussed later, five spectral components
were required to model the normal growth of A. thaliana,
modeling both the plant and reflections from the background.
For simplicity, these five components are collectively referred to
as the control components.

Additional spectral components were then determined for
each of the metal stress conditions, with the NaCl stress condition
serving as an example. Another unfolded two-dimensional data
matrix was generated containing the hyperspectral image data
for the NaCl exposed plants across the entire experimental time
course. The number of spectral components required to model
this data was estimated as before. However, when the estimated
number of spectral components were initialized along with the
added baseline component, the first five spectral components
were initialized with the control components while the remaining
components were randomly initialized. Additionally, the control
components were equality constrained so that their values
remained constant throughout the MCR-ALS convergence
process. As such, any additional components modeled aspects
of the hyperspectral data which could not be modeled by the
control components. MCR-ALS was run until it converged
with an appropriate number of spectral components, where
the number of spectral components employed was adjusted
as previously described. In the case of NaCl stress, only one
additional component was required. An identical process was
performed for CuCl2, where again a single additional component
was required, though the component was not identical to the
one found for NaCl stress. When the same process was applied
to the CsCl stress condition, two new spectral components
were required. However, when MCR-ALS was applied to the
hyperspectral data from plants where K+ was added in addition
to CsCl, no additional spectral components were required
beyond those employed for plants exposed to CsCl alone. For
statistical analysis of the MCR analysis results, standard ANOVA
analysis followed by Tukey-Kramer post-hoc testing would
have been inappropriate due to observed heteroscedasticity
(variance heterogeneity). Therefore, the Games-Howell test, an
extension to the Tukey-Kramer post-hoc test to account for
unequal variances, was used to identify which treatments have
different mean concentration and the statistical significance
(Games and Howell, 1976).

RESULTS

Metal Stresses Lead to Changes in
Biomass and Chlorophyll
For each metal stress in this study (NaCl, CuCl2, and CsCl), we
varied the concentration of the metal stressor in the hydroponic
growth medium to determine the concentration at which visible
signs of stress (leaf necrosis or chlorosis) were visible. For NaCl,
concentrations of 25, 50, and 75 mM were tested, and 75 mM
of NaCl yielded consistent visible signs of stress in A. thaliana.
For CuCl2, concentrations of 25, 50, and 75 µM were tested, and
75 µM of CuCl2 produced the most consistent stress response in
A. thaliana. Lastly, CsCl concentrations of 0.1, 1, and 10 mM were
tested, where concentrations of 1 mM or higher of CsCl resulted
in reliable necrosis of hydroponically grown A. thaliana. Images
from these concentration tests are shown in Supplementary
Figure 2. This preliminary concentration screening identified the
concentration of each stress treatment resulting in visible stress
responses in A. thaliana.
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In order to compare different metal stress responses, the
lowest concentration of each treatment that produced a visible
stress response (75 mM of NaCl, 75 µM of CuCl2, and 1 mM
of CsCl) was applied to hydroponically grown A. thaliana along
with a control condition, with a total of five biological replicates
under each condition. Both root and leaf areas were quantified
to estimate changes in plant biomass resulting from each stress
treatment. After 9 days of stress exposure, the root area of each
plant was quantified using digital imaging and ImageJ pixel
analysis, as described in subsection “Quantification of Leaf and
Root Areas” of the methods section. As shown in Figure 1A,
all metal stress conditions reduced root biomass compared to
the control. The 75 µM CuCl2 condition showed the most
significant reduction in root area, nearly 80% less than the
control. Decreased root biomass was due to both a reduction
in root length and lateral root structure (Supplementary
Figure 3). Leaf area of each A. thaliana plant was quantified
from the hyperspectral reflectance images of each plant, with
image acquisition and image analysis described in subsections

FIGURE 1 | Changes in A. thaliana biomass with metal stress treatments.
(A) root area after 9 days of metal stress treatment and (B) leaf area over time.
All data are averages of at least five biological replicates with error bars
indicating the standard deviation. Statistical significance determined by
two-tailed t-test with equal variance comparing the treatment to the control;
∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

“Hyperspectral Reflectance Imaging” and “Quantification of Leaf
and Root Areas” of the methods section (Figure 1B). While the
healthy control plants showed increasing leaf area over the 9 days
of growth, all metal stress treatments had either decreased or no
change in leaf area. Reduced root and leaf biomass are common
physiological indicators of stress in plants.

Changes in leaf chlorophyll content is another common
physiological indicator of plant stress, and changes in
photosynthetic pigments are the main contributors to spectral
responses of plant stress. Therefore, confocal fluorescence
microscopy images of chlorophyll fluorescence in the adaxial
leaf surface were used to determine changes in chloroplast
organization under each stress condition. Under the control
condition, the chloroplasts surround the central vacuole with a
spherical organization (Figure 2A). All metal stress conditions
result in loss of the central vacuole and a disordered structure
of the chloroplasts within the leaf tissue (Figures 2B–D). Under
75 mM NaCl conditions, the chloroplasts appear to be fuzzy,
suggesting possible disruption of the chloroplast membrane due
to osmotic stress. While there is considerable variability in the
chlorophyll fluorescence images due to heterogeneity within and
between each leaf, these features in chloroplast organization are
observed in each treatment (see Supplementary Figure 4 for
additional microscopy images of each condition).

Metal Stresses Can Be Identified by
Hyperspectral Reflectance Imaging
While A. thaliana showed common physiological stress responses
to all metal treatments, the main goal of this study was to
determine whether different stress responses can be identified
solely from changes in their reflectance spectra. Hyperspectral
reflectance images of each A. thaliana plant were collected across
the 9 days of exposure to the control, 75 mM NaCl, 75 µM
CuCl2, and 1 mM CsCl conditions, as described in subsections
“Growth and Metal Stress Treatment” and “Hyperspectral
Reflectance Imaging” of the methods section. The hyperspectral
reflectance data were preprocessed and analyzed using MCR
to identify the underlying component spectra as described in
subsections “Preprocessing of Hyperspectral Reflectance Data”
and “Multivariate Curve Resolution Analysis” of the methods
section. Two chlorophyll components were identified under all
conditions (chl-1 and chl-2) (Figure 3A). The healthy control and
75 µM CuCl2 treated plants contain higher levels of the chl-1
component, while all stress conditions have greater levels chl-2.
Interestingly, the control plants show increased chl-2 component
at the edges of the lower leaves (Figure 3B). The average signal
intensities of chl-1 and chl-2 components for all plant pixels in
the five biological replicates under each condition at day nine
are shown in Figures 3C,D. This confirms that the observed
changes in chlorophyll components from the images in Figure 3B
are statistically significant. Signal intensity images and the mean
signal intensities of chl-1 and chl-2 components over the entire
timecourse of the experiment are included in Supplementary
Figures 5,6.

In addition to the chlorophyll components, MCR analysis
masked to the plant pixels required three additional components
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FIGURE 2 | Confocal fluorescence microscopy images of A. thaliana leaves 4 days after stress exposure. (A) Control, (B) 75 mM NaCl, (C) 75 µM CuCl2, and (D)
1 mM CsCl conditions. Scale bar = 20 µm.

to model the reflectance, even for the control condition. While
necessary for modeling, these components are most likely
due to reflectance (including multiple reflections) from the
surroundings rather than from the plants as the average signal
intensity for these components is higher in the background pixels
than in the plant pixels. Additionally, a uniform offset baseline
component was employed.

While the combination of the baseline component, two
chlorophyll components, and three background components
appropriately modeled the control condition, MCR analysis
required additional components to model each stress condition.
For the NaCl and CuCl2 conditions, MCR analysis identified a
single stress component for each condition, while analysis of the
CsCl data yielded two components (Figure 4A). Of those two

components, the first CsCl spectral component shows very little
spectral similarity with the NaCl and CuCl2 spectral components
(Figure 4A). The second CsCl spectral component is spectrally
similar to the NaCl and CuCl2 spectral components, and its
concentration was a more statistically significant indicator of
CsCl stress. Therefore, only CsCl-2 component is included in the
spectral images (Figure 4B). When the signal intensities of the
stress spectra are mapped back onto the A. thaliana images, the
control condition only has limited concentrations of the stress
spectra primarily at the edges of the lower leaves (Figure 4B),
indicating low levels of stress. For the stress conditions, all
A. thaliana plants have pixels with each of the three stress
components; however, the stress component associated with
each condition is the predominant component in each image.

Frontiers in Plant Science | www.frontiersin.org 6 February 2021 | Volume 12 | Article 624656

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-624656 February 10, 2021 Time: 18:43 # 7

Ruffing et al. Hyperspectral Identification of Stress in Arabidopsis

FIGURE 3 | Chlorophyll spectral components of A. thaliana under different stress conditions from MCR analysis of hyperspectral reflectance data. (A) chlorophyll
component spectra, (B) chl-1 (green) and chl-2 (blue) spectra in plant images under control and stress conditions, and (C,D) box and whisker plot of the mean signal
intensity for the chl-1 (C) and chl-2 (D) components under control and stress conditions after 9 days of treatment. Mean signal intensity of the chlorophyll stress
components is the average intensity of all plant pixels in an image for at least five biological replicates. For each box plot, the top and bottom of the box corresponds
to the 25th and 75th percentile of the data, respectively, while the red line in the middle of the notch corresponds to the sample median across the replicates. The
whiskers above and below each box show the extent of the data, aside from any outliers (marked with red asterisks). Observations are defined as outliers if they are
more than 1.5 times the interquartile range away from the top or bottom of the box. Results of the Games-Howell test for statistical significance are shown in Table 1.

The NaCl (blue) and CsCl-2 (red) stress components appear as
major spectral components in both 75 mM NaCl and 1 mM
CsCl images. However, the NaCl and CsCl-2 components show
spatial differences. In the 75 mM NaCl condition, the NaCl
component is located in the leaf tissue closer to the stem, while
the CsCl-2 component is predominantly located in the leaf tips
and severely discolored tissue. In the 1 mM CsCl condition,
the CsCl-2 component is found in the leaf tissue near the stem
and primary veins. Signal intensity images of the three stress
components for all plants under the four experimental conditions
are displayed in Supplementary Figure 7. The stress spectral
component images provide qualitative evidence that CuCl2 stress
can be distinguished from NaCl and CsCl stresses based on
reflectance spectra.

For quantitative identification of stresses from hyperspectral
reflectance data, Games-Howell statistical analysis was applied
to the stress spectral signal intensities across all biological
plant replicates (Table 1). Games-Howell is a post-hoc test

for performing multiple comparisons. In many ways, the
Games-Howell test provides results analogous to performing
ANOVA followed by Tukey’s honestly significant difference
(HSD) test. Both Games-Howell and Tukey’s HSD perform
pairwise comparisons of the means (compare the mean of every
condition to the mean of every other condition). While ANOVA
followed by Tukey’s HSD is more commonly employed, our data
clearly violates two of the necessary assumptions for this form
of analysis, namely homogeneity of variances and equal sample
sizes. The Games-Howell test is a straightforward extension of
Tukey’s HSD to permit conditions to have differing variances and
sample sizes, and hence it may be applied to our data.

The NaCl and CsCl-2 components were shown to be
statistically significant for determining their respective
conditions at the p < 0.05 level when examining the mean signal
intensities across all plant pixels in the images (Figures 4C–F).
In Figure 4D, the CuCl2 condition visually appears to have a
much higher mean signal intensity of the CuCl2 component
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FIGURE 4 | Stress spectral components of A. thaliana under different stress conditions from MCR analysis of hyperspectral reflectance data. (A) stress component
spectra, (B) CuCl2 (green), NaCl (blue), and CsCl-2 (red) stress spectra in plant images under control and stress conditions, and (C–F) box and whisker plot of the
mean signal intensity for the stress spectral components of NaCl (C), CuCl2 (D), CsCl-1 (E), and CsCl-2 (F) under control and stress conditions after 9 days of
treatment. Mean signal intensity of each stress component is the average intensity of all plant pixels in an image for at least five biological replicates. For each box
plot, the top and bottom of the box corresponds to the 25th and 75th percentile of the data, respectively, while the red line in the middle of the notch corresponds to
the sample median across the replicates. The whiskers above and below each box show the extent of the data, aside from any outliers (marked with red asterisks).
Observations are defined as outliers if they are more than 1.5 times the interquartile range away from the top or bottom of the box. Results of the Games-Howell test
for statistical significance are shown in Table 1.

than the control condition, and in fact, the two conditions
can be completely separated by a simple threshold at 0.3.
However, due to the large variance for the CuCl2 condition,
Games-Howell was not able to establish statistical significance
for this particular comparison p = 0.06. When considering
all pairwise comparisons between conditions, statistically
significant (p < 0.05) differences between conditions could

not always be established when examining only a single
spectral component. However, highly statistically significant
(p < 0.01) differences could be established between all pairs
of conditions when employing simple combinations of the
spectral components. Mean signal intensities for all stress
spectra across the experimental timecourse are shown in
Supplementary Figures 8–10.
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TABLE 1 | Games-Howell test results for statistical significance for all
spectral components.

Spectral
component

Conditions p-value Significance

Chlorophyll-
1

Control vs. NaCl 0.0035 Significant

Control vs. CuCl2 0.9993 Not Significant

Control vs. CsCl 0.0572 Not Significant

NaCl vs. CuCl2 0.0107 Significant

NaCl vs. CsCl 0.1608 Not Significant

CuCl2 vs. CsCl 0.2154 Not Significant

Chlorophyll-
2

Control vs. NaCl 0.0097 Significant

Control vs. CuCl2 0.0012 Significant

Control vs. CsCl 0.0000 Significant

NaCl vs. CuCl2 0.5581 Not Significant

NaCl vs. CsCl 0.0888 Not Significant

CuCl2 vs. CsCl 0.0004 Significant

NaCl Control vs. NaCl 0.0062 Significant

Control vs. CuCl2 0.5590 Not Significant

Control vs. CsCl 0.0003 Significant

NaCl vs. CuCl2 0.0148 Significant

NaCl vs. CsCl 0.0706 Not Significant

CuCl2 vs. CsCl 0.2783 Not Significant

CuCl2 Control vs. NaCl 0.0000 Significant

Control vs. CuCl2 0.0607 Not Significant

Control vs. CsCl 0.0025 Significant

NaCl vs. CuCl2 0.1882 Not Significant

NaCl vs. CsCl 0.3591 Not Significant

CuCl2 vs. CsCl 0.3813 Not Significant

CsCl-1 Control vs. NaCl 0.0072 Significant

Control vs. CuCl2 0.0737 Not Significant

Control vs. CsCl 0.0007 Significant

NaCl vs. CuCl2 0.9681 Not Significant

NaCl vs. CsCl 0.3204 Not Significant

CuCl2 vs. CsCl 0.3009 Not Significant

CsCl-2 Control vs. NaCl 0.1058 Not Significant

Control vs. CuCl2 0.3687 Not Significant

Control vs. CsCl 0.0000 Significant

NaCl vs. CuCl2 0.4309 Not Significant

NaCl vs. CsCl 0.0778 Not Significant

CuCl2 vs. CsCl 0.0006 Significant

NaCl Control vs. 1 mM CsCl, 25 mM KCl 0.1223 Not Significant

Control vs. 1 mM CsCl, 5.6 mM KCl 0.0003 Significant

Control vs. 1 mM CsCl, 10 µM KCl 0.0331 Significant

1 mM CsCl, 25 mM KCl vs. 1 mM
CsCl, 5.6 mM KCl

0.9991 Not Significant

1 mM CsCl, 25 mM KCl vs. 1 mM
CsCl, 10 µM KCl

0.9526 Not Significant

1 mM CsCl, 5.6 mM KCl vs. 1 mM
CsCl, 10 µM KCl

0.9759 Not Significant

CuCl2 Control vs. 1 mM CsCl, 25 mM KCl 0.4041 Not Significant

Control vs. 1 mM CsCl, 5.6 mM KCl 0.0025 Significant

Control vs. 1 mM CsCl, 10 µM KCl 0.0124 Significant

1 mM CsCl, 25 mM KCl vs. 1 mM
CsCl, 5.6 mM KCl

0.2387 Not Significant

1 mM CsCl, 25 mM KCl vs. 1 mM
CsCl, 10 µM KCl

0.0192 Significant

1 mM CsCl, 5.6 mM KCl vs. 1 mM
CsCl, 10 µM KCl

0.1103 Not Significant

(Continued)

TABLE 1 | Continued

Spectral
component

Conditions p-value Significance

CsCl-1 Control vs. 1 mM CsCl, 25 mM KCl 0.1780 Not Significant

Control vs. 1 mM CsCl, 5.6 mM KCl 0.0007 Significant

Control vs. 1 mM CsCl, 10 µM KCl 0.0407 Significant

1 mM CsCl, 25 mM KCl vs. 1 mM
CsCl, 5.6 mM KCl

0.1497 Not Significant

1 mM CsCl, 25 mM KCl vs. 1 mM
CsCl, 10 µM KCl

0.4089 Not Significant

1 mM CsCl, 5.6 mM KCl vs. 1 mM
CsCl, 10 µM KCl

0.9740 Not Significant

CsCl-2 Control vs. 1 mM CsCl, 25 mM KCl 0.1562 Not Significant

Control vs. 1 mM CsCl, 5.6 mM KCl 0.0000 Significant

Control vs. 1 mM CsCl, 10 µM KCl 0.0011 Significant

1 mM CsCl, 25 mM KCl vs. 1 mM
CsCl, 5.6 mM KCl

0.0007 Significant

1 mM CsCl, 25 mM KCl vs. 1 mM
CsCl, 10 µM KCl

0.0018 Significant

1 mM CsCl, 5.6 mM KCl vs. 1 mM
CsCl, 10 µM KCl

0.9999 Not Significant

Increasing Potassium Concentration
Reduces Cesium Stress
While these hydroponic metal stress experiments are conducted
under controlled conditions, environmental samples will have
significant variability in the chemical composition of the soil
matrix. Previous studies have provided evidence that the
mechanism of cesium toxicity in plants is due to either inhibition
of potassium channels or functional effects on intracellular
proteins that use potassium as a co-factor for folding or
enzymatic activity (Hampton et al., 2004; Qi et al., 2008).
To determine whether the spectral cesium stress response is
dependent upon the level of potassium, we characterized the
stress response of hydroponically grown A. thaliana to 1 mM
of CsCl in the presence of low (10 µM), normal (5.6 mM), and
high (25 mM) concentrations of potassium chloride (KCl), as
described in subsection “Growth and Metal Stress Treatment” of
the methods section.

The physiological measurements of root area, leaf area,
and chloroplast organization showed variable responses to
1 mM CsCl stress with changing potassium levels. Across
all KCl levels, there was no significant change in root
biomass (Supplementary Figure 11). However, leaf area was
significantly reduced for all CsCl treatment conditions after
7 days of CsCl exposure, regardless of the level of potassium
(Figure 5A). In contrast, confocal fluorescence microscopy
showed that the addition of 25 mM KCl leads to retention
of the central vacuole and chloroplast structural organization
within the A. thaliana cells that is indistinguishable from
the control without CsCl (Figures 5B,E and Supplementary
Figure 12). Reducing potassium levels to 10 µM did not
have a significant effect on chloroplast organization under
Cs stress relative to the 5.6 mM KCl level (Figures 5C,D).
These results suggest that some physiological changes of
Cs stress, such as reduced leaf biomass, are independent
of background K levels, while other Cs stress responses,
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FIGURE 5 | Physiological and spectral changes in A. thaliana exposed to 1 mM CsCl stress with varying levels of KCl. (A) leaf area; (B–E) confocal fluorescence
microscopy images of A. thaliana leaves 9 days after exposure for control (B), 1 mM CsCl with 5.6 mM KCl (C), 1 mM CsCl with 10 µM KCl (D), and 1 mM CsCl
with 25 mM KCl (E); and (F–I) mean signal intensity of NaCl (F), CuCl2 (G), CsCl-1 (H) and CsCl-2 (I) stress components 9 days after treatment. Leaf area is the
average of at least five biological replicates with error bars indicating the standard deviation. Statistical significance for leaf area was determined by two-tailed t-test
with equal variance comparing the treatment to the control; ∗∗p < 0.01, ∗∗∗p < 0.001. Scale bar for microscopy images is 20 µm. Mean signal intensities of the
stress components are the average intensity of all plant pixels in an image for at least five biological replicates. For each box plot, the top and bottom of the box
corresponds to the 25th and 75th percentile of the data, respectively, while the red line in the middle of the notch corresponds to the sample median across the
replicates. The whiskers above and below each box show the extent of the data, aside from any outliers (marked with red asterisks). Observations are defined as
outliers if they are more than 1.5 times the interquartile range away from the top or bottom of the box. Results of the Games-Howell test for statistical significance are
shown in Table 1.

such as chloroplast cellular organization, may be alleviated
by increasing K.

The effect of variable K on the spectral response to CsCl
stress was investigated using hyperspectral reflectance imaging
and MCR analysis, as described in subsections “Hyperspectral
Reflectance Imaging, Preprocessing of Hyperspectral Reflectance
Data, and Multivariate Curve Resolution Analysis” of the
methods section. The MCR results showed reduced levels of the

CsCl-1 and CsCl-2 stress components with increased K levels of
25 mM (Figures 5H,I). For both CsCl spectral components, the
pairwise comparisons of control-5.6 mM KCl and control-10 µM
KCl were statistically significant (p < 0.01 for CsCl-2 and p < 0.05
for CsCl-1), while the pairwise comparison of control-25 mM
KCl was not statistically significant (p > 0.05) (Table 1),
providing additional evidence that increasing K levels reduces
the spectral stress response to CsCl. Interestingly, low levels of
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K (10 µM KCl) resulted in increased CuCl2 spectra under 1 mM
CsCl stress (Figure 5G), and while the NaCl stress component
was elevated relative to the control, there was no significant
change under variable KCl concentrations (Figure 5F).

DISCUSSION

The objective of this study was to determine whether spectral
reflectance signatures of plants may provide unique indicators
to distinguish between different types of metal stresses. The
three stresses applied in this study – salt, copper, and cesium –
have all been previously studied in A. thaliana (Zhu, 2000;
Wójcik and Tukiendorf, 2003; Hampton et al., 2004; Le Lay
et al., 2006; Wang et al., 2009; Zolla et al., 2009; Lequeux et al.,
2010; Martínez-Peñalver et al., 2012; Burger et al., 2019). The
significant decrease in root biomass (Figure 1A) and lateral roots
(Supplementary Figure 3) under copper stress is in agreement
with these previous studies (Wójcik and Tukiendorf, 2003;
Lequeux et al., 2010). Reduced leaf biomass (Figure 1B) is
also a commonly reported stress feature under all three stress
conditions (Hampton et al., 2004; Lequeux et al., 2010; Ellouzi
et al., 2011). While cesium stress was previously shown to
lead to reduced chlorophyll-a and -b content in A. thaliana,
particularly under conditions of depleted potassium (Le Lay
et al., 2006), reduced chlorophyll content has also been detected
under other stress conditions (Jansen et al., 2009; Martínez-
Peñalver et al., 2012). These stress phenotypes were observed
in the hydroponic metal stress treatments in this study, and
while these serve as general stress indicators, they do not provide
a unique signature for identification of the chemical stressor.
This study demonstrated that MCR analysis of hyperspectral
reflectance in the visible and near infrared (Vis-NIR) enables the
identification of unique spectral components for the classification
of stress phenotypes in A. thaliana. This capability represents
an advancement over previous methods for stress identification
using reflectance spectra which often rely on spectral indices of
only a few wavelengths and have only demonstrated the ability
to distinguish between healthy and a single stress condition
(Liu et al., 2010b; Mahlein et al., 2013; Humplík et al., 2015;
Li et al., 2015; Martinez et al., 2015). Using the full Vis-NIR
reflectance spectra, this study distinguished between multiple
stress conditions with similar phenotypes.

Multivariate curve resolution analysis of the hyperspectral
reflectance data identified two chlorophyll spectral components
(Figure 3A) and four stress-associated spectral components
(Figure 4A). The chl-1 component shows common features for
healthy plants with chlorophyll, including increased reflectance
in the green region (520–560 nm) along with chlorophyll
transparence near 700 nm, resulting in the “red edge” feature
associated with cellular reflectance of infrared light (Figure 3A).
In contrast, the chl-2 component contains a broader blue
reflectance shoulder from 400 to 430 nm; greater green, yellow,
and orange reflectance (500–640 nm); sharper chlorophyll
absorbance features at 450–500 and 680 nm; a left shift and
increased slope for the “red edge” between 690 and 705 nm; a
dip following the red edge >710 nm; and reduced reflectance in

the near infrared (910–940 nm). The left shift in the chlorophyll
dip near 680 nm may indicate higher levels of chlorophyll-
b in this component (Renge and Mauring, 2013), while the
enhanced absorbance dip in the infrared indicates lower water
content in the leaf tissue (Peñuelas et al., 1993). While the
metal stress components share many common features, such as
the peaks or shoulders at around 490 and 680 nm, there are
clear differences across the three stress spectra. For example,
the absorbance dips near 510 and 710 nm are shifted to the
right for the NaCl spectrum; the CuCl2 spectral component has
weaker absorbance dips at 450 and 715 nm; and the CsCl-2
spectral component has a stronger peak at 680 nm, a left shifted
absorbance dip at 705 nm, and reduced reflectance in the near
infrared (800–1000 nm). When the entire Vis-NIR reflectance
spectrum is analyzed using MCR, these unique features within
the stress spectral components can be used to distinguish between
different types of metal stresses in A. thaliana.

Additional analytical techniques may be applied to improve
the sensitivity of plant stress classification based on the
hyperspectral reflectance response. For example, the localization
of stress component spectra within the plant may be an important
factor. In Figure 4B, the CsCl-2 stress spectrum has higher
abundance near the primary leaf vein under the 1 mM CsCl
condition yet is primarily in the leaf tips under the 75 mM
NaCl condition. Similar localization is observed for the NaCl
stress component spectra, which shows higher concentrations
near the primary leaf vein under the 75 mM NaCl condition.
Therefore, higher weighting of the stress component spectra near
the primary leaf vein may improve the classification.

While MCR-ALS analysis of Vis-NIR reflectance enabled
stress classification in A. thaliana, additional testing and
improvements are likely necessary before this technology may
be applied to identify metal contamination in the environment.
Multiple plant species must be tested beyond A. thaliana to
determine whether the stress component spectra are conserved
across plant species. The conservation of spectral response will
be linked to the underlying stress mechanisms. Therefore, plant
species with different tolerances to the stress condition will
have variable concentration-dependent responses, yet conserved
mechanisms, such as the inhibition of potassium transport or
function by cesium, may produce similar spectral responses.
Furthermore, environmental vegetation may be subject to
multiple stresses simultaneously; the effect of multiple stresses
on the plant spectral response must also be investigated.
While spectral-based identification of plant stresses may be
applied empirically, understanding the physiological mechanism
associated with the unique spectral response will allow for
a comprehensive understanding of plant stress responses and
possibly mechanisms for stress tolerance.

This study demonstrates that hyperspectral reflectance in the
Vis-NIR can be used to identify stresses in A. thaliana through the
application of MCR analysis. This technology may be applied to
track the spread of chemical contaminants in the environment,
such as the release of radioactive Cs from nuclear power plant
accidents, and it may also be used in precision agriculture
to detect nutrient limitations or crop diseases that produce a
spectral response (Lee et al., 2010).

Frontiers in Plant Science | www.frontiersin.org 11 February 2021 | Volume 12 | Article 624656

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-624656 February 10, 2021 Time: 18:43 # 12

Ruffing et al. Hyperspectral Identification of Stress in Arabidopsis

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AR conceived and designed this study and established all
experimental protocols. SA analysed the hyperspectral reflectance
data. LS and IL conducted the growth experiments, collected the
hyperspectral data, performed the microscopy and analysis, and
analysed the root area. CD developed the method for quantifying
leaf area and performed preprocessing of the hyperspectral data.
AR and SA wrote the introduction, results, and discussion
sections. All authors contributed to writing the methods section,
reviewed, and approved the manuscript.

FUNDING

This work was supported by the Laboratory Directed Research
and Development Program at Sandia National Laboratories and

the National Nuclear Security Administration’s Office of Defense
Nuclear Nonproliferation Research and Development Program.

ACKNOWLEDGMENTS

Sandia National Laboratories was a multimission laboratory
managed and operated by National Technology and Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
contract DE-NA0003525. The authors also acknowledge Dr. Julia
Craven and Mr. Dylan Anderson (Sandia National Laboratories)
for their assistance in selecting and operating the Headwall
Hyperspec III Instrument.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
624656/full#supplementary-material

REFERENCES
Asaari, M. S. M., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., et al.

(2018). Close-range hyperspectral image analysis for the early detection of stress
responses in individual plants in a high-throughput phenotyping platform.
ISPRS J. Photogr. Remote Sens. 138, 121–138. doi: 10.1016/j.isprsjprs.2018.
02.003

Bannari, A., Morin, D., Bonn, F., and Huete, A. (1995). A review of vegetation
indices. Remote Sens. Rev. 13, 95–120.

Bertrand, M., and Schoefs, B. (1999). “Photosynthetic pigment metabolism in
plants during stress,” in Handbook of Plant and Crop Stress, ed. M. Pessarakli
(New York, NY: Marcel Dekker, Inc.), 527–544. doi: 10.1201/9780824746728.
ch23

Blackburn, G. A. (2006). Hyperspectral remote sensing of plant pigments. J. Exp.
Bot. 58, 855–867. doi: 10.1093/jxb/erl123

Bohnenkamp, D., Kuska, M., Mahlein, A. K., and Behmann, J. (2019).
Hyperspectral signal decomposition and symptom detection of wheat rust
disease at the leaf scale using pure fungal spore spectra as reference. Plant
Pathol. 68, 1188–1195. doi: 10.1111/ppa.13020

Burger, A., Weidinger, M., Adlassnig, W., Puschenreiter, M., and Lichtscheidl, I.
(2019). Response of Arabidopsis halleri to cesium and strontium in hydroponics:
extraction potential and effects on morphology and physiology. Ecotoxicol.
Environ. Saf. 184:109625. doi: 10.1016/j.ecoenv.2019.109625

Conn, S. J., Hocking, B., Dayod, M., Xu, B., Athman, A., Henderson, S., et al.
(2013). Protocol: optimising hydroponic growth systems for nutritional and
physiological analysis of Arabidopsis thaliana and other plants. Plant Methods
9:4. doi: 10.1186/1746-4811-9-4

Eikelmann, I., Bye, K., and Sletten, H. (1990). Seasonal variation of cesium 134 and
cesium 137 in semidomestic reindeer in Norway after the Chernobyl accident.
Rangifer 10, 35–38. doi: 10.7557/2.10.3.818

Ellouzi, H., Ben Hamed, K., Cela, J., Munné-Bosch, S., and Abdelly, C. (2011). Early
effects of salt stress on the physiological and oxidative status of Cakile maritima
(halophyte) and Arabidopsis thaliana (glycophyte). Physiol. Plant. 142, 128–143.
doi: 10.1111/j.1399-3054.2011.01450.x

Ertel, J., and Ziegler, H. (1991). Cs-134/137 contamination and root uptake of
different forest trees before and after the Chernobyl accident. Radiat. Environ.
Biophys. 30, 147–157. doi: 10.1007/bf01219349

Games, P. A., and Howell, J. F. (1976). Pairwise multiple comparison procedures
with unequal n’s and/or variances: a Monte Carlo study. J. Educ. Stat. 1,
113–125. doi: 10.2307/1164979

Haaland, D. M., Jones, H. D., Van Benthem, M. H., Sinclair, M. B., Melgaard,
D. K., Stork, C. L., et al. (2009). Hyperspectral confocal fluorescence imaging:
exploring alternative multivariate curve resolution approaches. Appl. Spectrosc.
63, 271–279. doi: 10.1366/000370209787598843

Hampton, C. R., Bowen, H. C., Broadley, M. R., Hammond, J. P., Mead, A.,
Payne, K. A., et al. (2004). Cesium toxicity in Arabidopsis. Plant Physiol. 136,
3824–3837. doi: 10.1104/pp.104.046672

Horler, D., Barber, J., and Barringer, A. (1980). Effects of heavy metals on the
absorbance and reflectance spectra of plants. Int. J. Remote Sens. 1, 121–136.
doi: 10.1080/01431168008547550

Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. IEEE
Trans. Informat. Theory 14, 55–63. doi: 10.1109/tit.1968.1054102
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