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Soybean cyst nematode (SCN, Heterodera glycines) has become the major yield-limiting

biological factor in soybean production. Common bean is also a good host of SCN,

and its production is challenged by this emerging pest in many regions such as the

upper Midwest USA. The use of host genetic resistance has been the most effective and

environmentally friendly method to manage SCN. The objectives of this study were to

evaluate the SCN resistance in the USDA common bean core collection and conduct

a genome-wide association study (GWAS) of single nucleotide polymorphism (SNP)

markers with SCN resistance. A total of 315 accessions of the USDA common bean

core collection were evaluated for resistance to SCN HG Type 0 (race 6). The common

bean core set was genotyped with the BARCBean6K_3 Infinium BeadChips, consisting

of 4,654 SNPs. Results showed that 15 accessions were resistant to SCN with a Female

Index (FI) at 4.8 to 9.4, and 62 accessions were moderately resistant (10 < FI < 30) to HG

Type 0. The association study showed that 11 SNP markers, located on chromosomes

Pv04, 07, 09, and 11, were strongly associated with resistance to HG Type 0. GWAS

was also conducted for resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7 based on

the public dataset (N = 276), consisting of a diverse set of common bean accessions

genotyped with the BARCBean6K_3 chip. Six SNPs associated with HG Type 2.5.7

resistance on Pv 01, 02, 03, and 07, and 12 SNPs with HG Type 1.2.3.5.6.7 resistance

on Pv 01, 03, 06, 07, 09, 10, and 11 were detected. The accuracy of genomic prediction

(GP) was 0.36 to 0.49 for resistance to the three SCN HG types, indicating that genomic

selection (GS) of SCN resistance is feasible. This study provides basic information for

developing SCN-resistant common bean cultivars, using the USDA core germ plasm

accessions. The SNP markers can be used in molecular breeding in common beans

through marker-assisted selection (MAS) and GS.

Keywords: common bean, Phaseolus vulgaris, soybean cyst nematode, Heterodera glycines, genomic prediction,

genome wide association study, genomic selection, single nucleotide polymorphism

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.624156
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.624156&domain=pdf&date_stamp=2021-06-07
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chenx099@umn.edu
mailto:ashi@uark.edu
https://doi.org/10.3389/fpls.2021.624156
https://www.frontiersin.org/articles/10.3389/fpls.2021.624156/full


Shi et al. SCN Resistance in Common Bean

INTRODUCTION

Common bean (Phaseolus vulgaris L.) is the most important
edible grain legume crop worldwide, with crop value equal to
the combined value of all other food legumes such as peas and
chickpeas (Jain et al., 2016). The most common bean is harvested
as seed grain called “dry bean,” but it is also grown as a green
vegetable (called “green bean” or “snap bean”) in many parts of
the world. Common bean has high nutritional value and is one
of the most important sources of protein for billions of people in
the world. In recent years, about 2million acres were planted, and
approximately 1.3 million metric tons of common beans valued
at US$2 billion were produced annually in the United States (US)
(USDA NASS, 2020).

The production of dry beans in the US may be challenged by
an emerging, invasive pest, the soybean cyst nematode (SCN),
Heterodera glycines Ichinohe (Tylenchida: Heteroderidae). The
SCN is the most serious pathogen of soybean [Glycine max (L.)
Merr.] in the US and suppresses a yield more than any other
pathogen (Koenning and Wrather, 2010; Allen et al., 2017). The
SCN reduces a yield by feeding on plant nutrients, retarding root
growth, reducing water and nutrient uptake and transportation
from roots to shoots, and inhibiting rhizobium nodulation. Yield
losses can exceed 40% (Koenning andWrather, 2010), depending
on many factors such as SCN population density, soil texture
and fertility, rainfall, and the presence of susceptible soybean
genotypes (Duan et al., 2009). The SCN has been widely spread
in the US, especially in the North Central region that produces
most soybeans (Tylka and Marett, 2017). Unfortunately, the top
four common bean-growing states, North Dakota, Michigan,
Nebraska, and Minnesota, which produce approximately 70% of
the common bean in the US, are also in the North Central region.
The SCN has been reported in the common bean fields of those
states (Poromarto et al., 2010; Yan et al., 2017). SCN infection
can cause severe yield loss without any aboveground symptoms
in common beans (Poromarto et al., 2010, 2012) and becomes a
serious threat to common bean production.

The use of host resistance has been highly successful in SCN
management for soybeans. Numerous commercial SCN-resistant
soybean cultivars are available and are planted in most soybean
fields in the US. Similarly, the use of host resistance in common
bean cultivars will also be crucial to SCN management in dry
bean production. Growing common bean cultivars resistant to
SCN infection will not only reduce common bean yield loss but
also relieve SCN pressure for soybean production if common
beans and soybean are rotated with wheat (Triticum aestivum L.).
Recently, Osorno et al. (2020) has released the first pinto bean
cultivar “ND Falcon,” a new pinto bean with combined resistance
to SCN and rust. Screening more common bean germplasm for
SCN resistance, using different HG Types (races) will provide
breeders to use germplasm as parents to develop and release
new superior common bean cultivars with broad and more
stable resistance.

Limited research has demonstrated that some common bean
germplasm and cultivars are resistant to SCN. Smith and Young
(2003) conducted a greenhouse study to evaluate 20 common
bean lines for SCN resistance and found a few lines resistant to

SCN, and some Mesoamerican genotypes were more resistant
than Andean genotypes. Poromarto et al. (2012), in North
Dakota, evaluated 416 accessions (germplasm lines) in the USDA
core collection of P. vulgaris and found 23% of the lines had
low nematode reproduction and were considered highly resistant
to SCN HG Type 0 (Jain et al., 2016, 2019). Wen et al. (2019),
in Illinois, evaluated 363 accessions of the same core collection
and found 19 accessions (5%) were highly resistant to SCN HG
Type 2.5.7, and 160 (44%) resistant to HG Type 1.2.3.5.6.7, with
FI < 10.

Jain et al. (2016) analyzed the transcriptome sequences
of the SCN-resistant line PI533561 vs. SCN-susceptible P.
vulgaris line GTS-900 and demonstrated that genes-encoding
nucleotide-binding site leucine-rich repeat resistance (NLR)
proteins, WRKY transcription factors, pathogenesis-related (PR)
proteins, and heat shock proteins involved in diverse biological
processes were differentially expressed between SCN-resistant
and susceptible genotypes. Recently, two reports on SCN-
resistant quantitative trait loci (QTLs) in common beans
were published. Wen et al. (2019) conducted a genome-wide
association study (GWAS) based on the dataset of 363 USDA
common bean core accessions phenotyped against SCN HG
types 2.5.7 and 1.2.3.5.6.7 and genotyped, using 84,416 single
nucleotide polymorphisms (SNPs) obtained from genotyping by
sequencing (GBS) and reported that there were five SNPs on
chromosome Pv01 and one on Pv09 associated with resistance
to HG Type 2.5.7. They also reported a gene cluster orthologous
to the three genes at the SCN-resistant rhg1 locus in soybeans. In
addition, an SNP was found on Pv09, associated with resistance
to HG Type 1.2.3.5.6.7. Jain et al. (2019) conducted GWAS in 317
accessions of USDA common bean core collection, challenged
with SCN HG Type 0, and found 14 significant SNP markers
on Pv04, 05, 06, 07, 08, 10, and 11 in the Middle American
subpopulation and 23 SNP markers on Pv01, 02, 07, 08, 09,
and 11 for the Andean subpopulation. Besides, Jain et al. (2019)
reported several candidate genes on Pv01 and Pv08, which had
high similarity to the three genes of rhg1 of soybean for SCN
resistance. Based on previous reports and the study, the SCN
resistance in the common bean is polygenic traits with multiple
genes or alleles.

Plant molecular breeding has been the foundation for crop
improvement into the twenty first century and has become
part of the breeding programs to expedite advances and genetic
gains in many crops (Moose and Mumm, 2008). Marker-assisted
selection (MAS) has been successfully used in the selection of
specific major genes/alleles in plant breeding (Collard et al.,
2005; Collard and Mackill, 2008; Xu and Crouch, 2008). More
recently, predictive breeding via GS has become an essential tool
in crop improvement. GS refers to selecting the performance
of individuals within a population based on genomic-estimated
breeding values (GEBV) (Hayes et al., 2009; Desta and Ortiz,
2014). The decreasing cost of DNA sequencing renders GS
affordable and powerful by providing high-density markers
across the genome (Lin et al., 2014). GS is more efficient than the
traditional MAS when dealing with small-effect QTL (Bernardo
and Yu, 2007; Heffner et al., 2009, 2011; Cortés et al., 2020). So far,
genomic prediction (GP) as a GS parameter has been investigated
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in a dozen of crops such as maize (Zeamays L.), rice (Oryza sativa
L.), soybean, and wheat (Bernardo and Yu, 2007; Heffner et al.,
2009, 2011; Albrecht et al., 2011; Jarquin et al., 2014, 2016; Onogi
et al., 2016; Xavier et al., 2016; Shikha et al., 2017; Zhang et al.,
2017; Qin et al., 2019) for various agronomic traits, and abiotic
and biotic stress traits. Genomic breeding value estimation in GP
is the key step in GS. Several approaches have been proposed for
GEBV, such as BLUP methods (gBLUP, RR-BLUP, cBLUP, and
sBLUP) and Bayesian methods (BayesA and BayesB). All articles
discussed the selection prediction accuracy (PA), estimated using
the Pearson’s correlation coefficient (r) between the GEBV and
observed values for each trait in validation sets (testing sets),
using several models. In recent years, GP has also been reported
in common beans to predict agronomic traits under different
environmental stresses (Keller et al., 2020) and SCN resistance
(Wen et al., 2019).

Currently, SNP technology is the molecular-marker platform
of choice in genome-wide mapping, association studies, diversity
analysis, and tagging of important genes in plant genomics and
breeding. SNPs are abundant in the genome, cost-effective, and
amenable to high throughput analysis (Collard and Mackill,
2008; Xu and Crouch, 2008). Therefore, the identification of
SNP markers will provide breeders with powerful tools to
assist in selecting biotic and abiotic stress resistance/tolerance
and expedite the development of elite cultivars with stress
resistance/tolerance in common bean breeding programs.
SNPs have been reported and used in common beans (Cortés
et al., 2011; Blair et al., 2013). Gene-based SNP markers were
developed in common beans (Galeano et al., 2012). SNP genetic
maps for common beans have been constructed, using the 6K
SNP BeadChips (Song et al., 2015) and were used to anchor
the scaffold of the common bean whole-genome sequence
reference assembly for the Andean landrace G19833 (Schmutz
et al., 2014). In common beans, the BARCBean6K_3 Infinium
BeadChip has been used for QTL and association mapping to
identify genes/QTL controlling different traits (Hagerty et al.,
2015, 2016; Hoyos-Villegas et al., 2016, 2017; Moghaddam
et al., 2016; Castro et al., 2017; Hurtado-Gonzales et al., 2017;
Valentini et al., 2017). Recently, several versions of P. vulgaris
(common bean) genome assembles were released. They include
the aforementioned Andean genome (Schmutz et al., 2014;
https://phytozome-next.jgi.doe.gov/info/Pvulgaris_v2_1) and
four Middle American genomes: (1) race Mesoamerica: cultivar
OAC Rex (https://www.ncbi.nlm.nih.gov/genome/380?genome_
assembly_id=1500596) and breeding line BAT93 (https://www.
ncbi.nlm.nih.gov/genome/380?genome_assembly_id=262776;
Vlasova et al., 2016; Rendón-Anaya et al., 2017); (2) race
Durango: cultivar Pinto UI111 (https://phytozome-next.jgi.
doe.gov/info/PvulgarisUI111_v1_1), and cultivar Labor Ovalle
of race Guatemala (https://phytozome-next.jgi.doe.gov/info/
PvulgarisLaborOvalle_v1_1). The genome assembly of G19833
has been used as a reference to map SNPs of the BARCBean6K_3
Infinium BeadChip to the 11 chromosomes in common beans
(Song et al., 2015).

With the decreased genotyping cost and improved statistical
methods, GWAS and GS offer new approaches for genetic
improvement of complex traits in crop species. GWAS, based
on a population of unrelated lines and high-density markers,

has been used to identify candidate genes for a broad range of
complex traits in different crops (Huang et al., 2010; Li et al.,
2013; Morris et al., 2013; Yano et al., 2016). GWAS is relatively
new for common beans, but it has been reported to be an effective
approach to identify SNPmarkers associated with SCN resistance
(Jain et al., 2019; Wen et al., 2019). However, MAS has been
successfully coupled with backcrossing schemes for transferring
several traits, among which anthracnose resistance and seed
mineral accumulation traits (even from the wild) in common
beans (Garzón et al., 2008; Blair and Izquierdo, 2012). Therefore,
research is needed to identify SNP markers associated with SCN
resistance and to use these SNPmarkers in molecular breeding to
enhance common bean improvement.

We initiated a project in 2016 to study the SCN resistance in
common beans, using SCN HG Type 0. So far, two studies for
SCN resistance QTLs in the USDA common bean core collection
have been reported (Jain et al., 2019; Wen et al., 2019). Wen et al.
(2019) conducted GWAS in 363 accessions of USDA common
bean core collection phenotyped against SCNHGTypes 2.5.7 and
1.2.3.5.6.7 and genotyped, using GBS. The common bean core
sets were also genotyped BARCBean6K_3 Infinium BeadChip
SNPs, and the SNP data are available (Song et al., 2015;
Gepts et al., 2019; Kuzay et al., 2020). The BARCBean6K_3
Infinium BeadChip could provide additional SNPs for a breeding
program. Therefore, we conduct GWAS and GP analysis for
resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7, using the
phenotypic data from Wen et al. (2019) and genotypic data of
the BARCBean6K chip SNPs in this report. Although Jain et al.
(2019) conducted GWAS in 317 accessions of USDA common
bean core collection with SCN HG Type 0, only 86 accessions
with FI < 10 were published in the article; hence, their data
are not included in this study for further analysis. The overall
goal of the research was to develop technology to effectively
manage the SCN in common bean productions. Specifically, the
objectives of this study were to evaluate the SCN resistance in
the USDA common bean core collection, to conduct GWAS,
and to identify SNP markers associated with SCN resistance. The
approach was to first conduct GWAS to identify associated SNP
markers and then use the associated SNP markers to do GS. This
is an approach combining MAS and GS through GEBVs, using
associated SNP markers (Spindel et al., 2016; Zhang J. P. et al.,
2016; Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021; Ali
et al., 2020). The information presented in this report is a new
contribution to the understanding of SCN resistance in common
beans beyond the previous studies (Jain et al., 2019; Wen et al.,
2019).

MATERIALS AND METHODS

Plant Materials
About 315 common bean germplasm accessions, a core set
of common beans, described at USDA Germplasm Resources
Information Network (GRIN), were used in this study. This
common bean core set has been widely used for genetic diversity
analysis (Kwak and Gepts, 2009; McClean et al., 2012; Campa
et al., 2018; Gepts et al., 2019; Kuzay et al., 2020). The core
set was mainly from two gene pools, i.e., the Andean and
Mesoamerican pools (Gepts et al., 1986, 2019; Koenig and Gepts,
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1989; Koinange and Gepts, 1992; Beebe et al., 1997, 2000; Kwak
and Gepts, 2009; Bitocchi et al., 2012, 2013; McClean et al.,
2012; Schmutz et al., 2014; Campa et al., 2018; Kuzay et al.,
2020), and can form three clusters and seven groups (Kuzay
et al., 2020). The 315 accessions in this study were originally
collected from 11 countries, including Mexico (163 accessions),
Colombia (35), Guatemala (30), Peru (17), Costa Rica (17),
Ecuador (16), El Salvador (13), Nicaragua (13), Honduras (9),
Bolivia (1), and United States (1) (Supplementary Table 1)
They represented 241 accessions from Middle American gene
pools, 67 from the Andean pool, and seven from an admixture
(Supplementary Table 1).

In addition, the seven soybean SCN HG Type indicator
(differential) lines PI 548402 (Peking), PI 88788, PI 90763, PI
437654, PI 209332, PI 89772, and PI 548316 (Niblack et al.,
2002), and four SCN race differential lines PI 548402 (Peking),
PI 548982 (Pickett 71), or PI 548988 (Pickett), PI 88788, and PI
90763 (Riggs and Schmitt, 1988), with the susceptible Williams
82 (PI 518671) as control were included to confirm the virulence
phenotype of the SCN population (Supplementary Table 2).
Based on the reactions of the differential lines to the SCN
population, the population was HG Type 0 and race 6 similar to
race 3.

Soybean Cyst Nematode Resistance
Phenotyping
The 315 common bean accessions were tested for their resistance
to SCN HG Type 0 (race 6). HG Type 0 is avirulent to most
current commercial SCN-resistant soybean cultivars, and if there
is any SCN resistance in common beans, it is likely resistant
to HG Type 0 based on the knowledge of SCN resistance in
soybeans. Consequently, we started screening, using the HG
Type 0, to identify more SCN-resistant common bean lines
and genes/alleles.

The SCN population was collected from a field in Swift
County, Minnesota, USA, in 2007. Since it was collected from
the field, the population had been maintained in the greenhouse
on susceptible soybean cultivars or stored in a freezer at −20◦C.
Prior to the experiment, the nematode population was cultured
on susceptible soybean “sturdy” for about 45 days. Newly formed
females and cysts were washed with a vigorously applied water
stream through an 850-µm-aperture sieve onto a 250-µm-
aperture sieve and extracted by centrifugation in a 63% (w/v)
sucrose solution. Eggs were released from the cysts by crushing
the cysts on a 150-µm-aperture sieve with a rubber stopper
mounted on a motor (Faghihi and Ferris, 2000). The eggs were
separated from debris by centrifugation in a 35% (w/v) sucrose
solution for 5min at 1,500 g, and an egg suspension of 800
eggs/ml was made. The reproduction of the SCN population on
the soybean or bean lines was assayed by growing the bean in
cone-tainers (4-cm diameter and 13.5-cm high) in a growth room
(Supplementary Figure 1).

The experimental design was a randomized complete block
design (RCBD) with three replicates. Each replicate included
two common bean plants in two separate cone-tainers per
common bean accession. Control soybean Williams 82 in each

replicate included five plants in five separate cone-tainers. All
three replicates of the 315 common bean accessions, with a total
of 1,890 cone-tainers, plus the Williams 82, were set up within
2 days of December 14 to 15, 2016, in the growth room, and
they were arranged in three blocks (Supplementary Figure 1).
The cone-tainers were filled with autoclaved soil (80% sands
+ 20% field clay loam soil) to half to which 2,000 eggs in
2.5ml of water were added. Additional soil was placed in
the cone-tainer to approximately 2 cm from the top. Another
inoculum of 2,000 eggs in 2.5ml of water was added to the
soil surface, and one common bean or soybean seed was sowed
in each cone-tainer. The seed was covered with additional soil
to about 1-cm depth. The cone-tainers were placed on a rack
and maintained in the growth room with the temperature set at
28◦C and daily artificial lights for 16 h. Water was applied with
a sprinkler irrigation system to maintain adequate soil moisture
(Supplementary Figure 1). The environments, including soil
temperature, moisture, and lights, were controlled relatively even
over time and across the benches in the growth room. After 35
days in the growth room, the plants were cut to about 1 cm above
the soil surface, and all of the cone-tainers were moved to a cool
room (4◦C) to stop SCN development. The samples were stored
in the cool room until processed.

Cysts (females) were extracted from the roots and soil
according to established procedures after 35 days. Briefly, the soil
and plant roots were removed from the cone-tainer and placed in
a beaker, and water was added. Any cysts on the wall of the cone-
tainer were washed off. Plant roots were removed and females
washed off on an 850-µm-aperture sieve, nested on a 250-µm-
aperture sieve. In addition, the cysts in the soil were extracted by
pouring soil suspension on the sieves. After rinsing the materials
on the 850-µm-aperture sieve, the cysts with debris on the 250-
µm-aperture sieve were collected. The cysts were separated from
the debris by flotation centrifugation in sucrose solution (63%)
and counted under a dissecting microscope.

A FI for each common bean plant was determined by
comparing SCN female number of the plant with the average
female number on the five plants of Williams 82: FI = female
number on a given plant × 100/mean number of females on
Williams 82, where we defined FI on Williams 82 as 100. The
average FI of the two plants in each block was considered as one
replicate, and three replicates were included.

So far, two studies for SCN resistance in the USDA common
bean core collection have been reported (Jain et al., 2019;
Wen et al., 2019). Wen et al. (2019) conducted GWAS in 363
accessions of USDA common bean core collection phenotyped
against SCN HG Types 2.5.7 and 1.2.3.5.6.7. Among the 363
accessions reported in Wen et al. (2019), 276 accessions were
further analyzed for GWAS and GP in this report based on
available SNP data. Therefore, we also include their SCN FI
data in this study for comparative data analysis. Although
Jain et al. (2019) conducted GWAS in 317 accessions of
USDA common bean core collection with SCN HG Type
0, only 86 accessions with FI < 10 were published in the
article; hence, their data are not included in this study for
further analysis.
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Phenotypic Data Analysis
The SCN resistance phenotypic data FI of SCN HG Type 0 (race
6) among the 315 common bean accessions were analyzed, using
the ANOVA, with the general linear models (GLM) procedure
of JMP Genomics 7 (SAS Institute, Cary, NC). For comparisons
among individual accessions in JMP, the “LSMeans Student’s
t” was used to perform multiple comparisons at α = 0.05.
The mean, range, SD, SE, and coefficient of variation (CV)
were estimated for FI, using “Tabulate.” Person’s correlation
coefficients (r) were calculated, using “Multivariate Methods.”
The distribution of FI was drawn, using “Distribution” in JMP
Genomics 7. The average of FI to SCN HG Type 0 (race 6) for
each soybean accession fromANOVAwas used as the phenotypic
data for GWAS.

The broad-sense heritability (H) was estimated, using the
following formula (Holland, 2003).

H = σ
2g/[σ2g+ (σ2e/r)]

with σ
2
g being the total genetic variance, σ

2
e being the residual

variance, and r being the number of blocks. The estimates for
σ
2
g and σ

2
e were [EMS(G)–Var (Residual)]/r and Var (Residual),

respectively. EMS(G) and Var (Residual) were obtained from the
ANOVA table.

Genotyping
The common bean core set was genotyped with the
BARCBean6K_3 Infinium BeadChips (Song et al., 2015),
consisting of 5,398 SNPs distributed across the 11 pairs of
common bean chromosomes with the Illumina BeadStation
500G (Gepts et al., 2019; Kuzay et al., 2020). The 5,389 SNPs
across 382 accessions of the common bean core set are available
and can be downloaded on the website at https://datadryad.
org/stash/dataset/10.25338/B8KP45, with AA BB AB—format.
The AA BB AB—was changed to the nucleotide format (A C
T G) based on P. vulgaris G19833 reference sequences. After
elimination of the missing data, a total of 4,654 SNPs were used
for genetic diversity, population structure analysis, and GWAS
in this study with a missing rate <20%, heterogeneous <10%,
and minor allele frequency (MAF) > 5%. The distribution of
the 4,654 SNPs on the 11 chromosomes of the common bean is
shown in Supplementary Figure 2.

Genetic Diversity and Population Structure
Analysis
This collection was previously analyzed with simple-sequence
repeats (SSRs) (McClean et al., 2012) and SNPs (Gepts et al.,
2019; Kuzay et al., 2020) for their genetic diversity and population
structure. They found mainly three or seven subpopulations in
the core set. In this study, we repeat the genetic diversity and
population structure in the 315 accessions from the core set.
A model-based clustering method in the STRUCTURE 2.3.4
program (Pritchard et al., 2000) was used to infer the population
structure of the common bean accessions based on the 4,654
SNPs. To identify the number of populations (K) capturing the
major structure in the data, the burn-in period was set at 50,000,
with the Markov Chain Monte Carlo iterations, and the run

length was set at 10,000 in an admixture model; correlated allele
frequencies were assumed to be independent for each run (Lv
et al., 2012). Ten runs were performed for each simulated value of
K, ranging from 1 to 10. For each simulated K, the statistical value
delta K was calculated, using the formula described by Evanno
et al. (2005). The optimal K was determined, using Structure
Harvester (Earl and Vonholdt, 2012; http://taylor0.biology.ucla.
edu/structureHarvester/). Each common bean genotype was then
assigned to a cluster (Q) based on the probability determined
by the software that the genotype belonged in the cluster. The
cutoff probability for assignment to a cluster was 0.50 or above.
Based on the optimum K, a bar plot with “Sort by Q” was
obtained to show the population structure among the common
bean genotypes (accessions).

The number of principal components (PC) was chosen
according to the optimum subpopulation determined in
STRUCTURE 2.3.4, and a PCA plot was drawn, using R package
ggplot2 by the data from TASSEL 5 (Bradbury et al., 2007;
http://www.maizegenetics.net/tassel). Genetic diversity also was
assessed, and phylogenetic trees were drawn, using MEGA 7
(Kumar et al., 2016) based on the Maximum Likelihood (ML)
tree method with the following parameters (Shi et al., 2016,
2017): the bootstrap method with the number of bootstrap
replications 500; model/method: the General Time Reversible
model; rates among sites: Gamma distributed with Invariant
sites (G + I); the number of discrete gamma categories: five;
gaps/missing data treatment: Use all sites; the ML heuristic
method: Subtree-Pruning-Regrafting-Extensive (SPR level 5); the
initial tree for ML: Make the initial tree automatically (Neighbor-
Joining); and a branch swap filter: Moderate. During the drawing
of the phylogeny trees, the population structure and the cluster
information were imported to MEGA 7 for combined analysis
of genetic diversity. For the sub-tree of each Q (cluster), the
shapes of “Node/Subtree Marker” and the “Branch Line” were
drawn with the same color as in the figure of the bar plot of the
population clusters from the STRUCTURE 2.3.4 analysis.

Association Analysis
GWAS was performed, using the Genomic Association and
Prediction Integrated Tool version 3 (GAPIT3) (Lipka et al.,
2012; Wang and Zhang, 2020; https://zzlab.net/GAPIT/index.
html; https://github.com/jiabowang/GAPIT3), where the mixed
linear model (MLM), compressed MLM (CMLM) (Zhang
et al., 2010), GLM, SUPER (Wang et al., 2014), multiple-
locus MLM (MLMM), Fixed and Random Model Circulating
Probability Unification (FarmCPU) (Liu et al., 2016), and
Bayesian-information and Linkage-disequilibrium Iteratively
Nested Keyway (BLINK) (Huang et al., 2019) were run in this
study. Single marker regression (SMR), GLM (Q), and MLM
(Q+K) were also conducted, using TASSEL 5 (Bradbury et al.,
2007; http://www.maizegenetics.net/tassel). Q-matrix (Q) was
obtained from the population structure analysis by STRUCTURE
2.3.4, and Kinship (K) was estimated by the tool Kinship with
the Scald_IBS method built-in TASSEL 5. In addition, a t-test
was performed for every single SNP, using visual basic codes
in Microsoft Excel 2016. Multiple modes in several tools were
used to identify SNP markers associated with resistance to SCN
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HG Types to recognize more sTable NP markers and to tag the
candidate gene(s) or QTL region(s) strongly associated with the
SCN resistance. Highly significant associations were determined,
using a strict Bonferroni correction of P-value at an α = 0.05, in
which the P = 0.05/ (SNP number) as the significance threshold
(López-Hernández and Cortés, 2019). In this study, for the panel
of all 315 accessions, the significant LOD [−log10 (P-value)]
[LOD was used instead of−log10 (P-value) in the text] threshold
value was 4.97, 4.84, and 4.52 for the panel of all 315 accessions,
Q1, and Q2, respectively, based on the 4,654 SNPs, 3,455 SNPs,
and 1,653 SNPs used for each panel after filtered with a missing
rate <20%, heterogeneity <10%, and MAF > 5%.

Besides the SCN phenotypic data of resistance to HG Type
0 (race 6) in the USDA common bean core collection from
the experiment used to conduct GWAS for SCN resistance,
the phenotypic data of resistance to HG Types 2.5.7 and
1.2.3.5.6.7 from the report by Wen et al. (2019) were also used
to conduct GWAS, using the same BARCBean6K_3 Infinium
BeadChips (Song et al., 2015). Although Wen et al. (2019)
conducted the GWAS for the two HG Types, using 84,416
SNPs identified from GBS, more information and more SNP
markers would be provided that are associated with resistance
to HG Types 2.5.7 and 1.2.3.5.6.7 when using different SNP sets
and different GWAS models. An LD heat map was drawn for
regions containing a significant SNP marker, using Haploview
(Barrett et al., 2005; https://www.broadinstitute.org/haploview/
haploview). However, we do not conduct an LD-based haplotype
association analysis in this research.

Candidate Gene Prediction
Candidate gene models were searched within 50 kb on either side
of significant SNPs (Zhang H. Y. et al., 2016) and retrieved from
the reference annotation of the common bean genome reference
Pvulgaris v1.0_218 (https://genome.jgi.doe.gov/portal/pages/
dynamicOrganismDownload.jsf?organism=Phytozome) because
the SNP information was based on this reference sequence
(Gepts et al., 2019).

Genomic Prediction of SCN Resistance
In this study, the ridge regression best linear unbiased
prediction (RR-BLUP) was used to predict GEBV in GP and
performed in the rrBLUP package (Endelman, 2011), with the
R software Version 4 (https://cran.r-project.org/bin/windows/
base/rtest.html). The RR-BLUP is an effective and accurate
prediction method as demonstrated in a wide range of traits and
crops (Jarquin et al., 2014; Zhang J. P. et al., 2016). In additions,
GP was performed with the genomic best linear unbiased
prediction (gBLUP) (Wang and Zhang, 2020; https://zzlab.net/
GAPIT/index.html; https://github.com/jiabowang/GAPIT3) and
also performed using Bayesian models: Bayes A, Bayes B, Bayes
LASSO (BL), and Bayes ridge regression (BRR) (Legarra et al.,
2011; Barili et al., 2018), random forest (RF) (Ogutu et al., 2011),
and support vector machines (SVM) (Maenhout et al., 2007).
The “Bayesian Generalized Linear Regression (BGLR),” “RF,” and
“kernlab” were used and run in the R package to perform the GP

models for Bayes A, Bayes B, BL, BRR, RF, and SVM (Bao et al.,
2014; Ravelombola et al., 2019, 2020, 2021).

In this study, we conducted four groups of GP analyses (Bao
et al., 2014; Tan et al., 2017; Ravelombola et al., 2019, 2020, 2021).
(1) GP was performed with six different ratios of a training set: a
testing set with 19:1, 9:1, 4:1, 2:1, and 1:1; or as 5, 10, 20, 30, 40,
and 50% of a testing set in the panel of 315 common accessions.
Each training population subset was randomly selected from the
association panel, and the remainder was used as a testing set.
(2) Nine different SNP number sets from 20 SNPs to all 4,654
SNPs were used in cross-predictions of resistance to three HG
Types, using five GP models: rrBLUP, Bayes A, Bayes B, BL, and
BRR. (3) Six different testing set sizes (percentages) from 5 to
50% were used in cross-prediction for resistance to three HG
Types in three common bean populations (all tested accessions,
Q1 population, and Q2 population), using a rrBLUP model. (4)
Three SNP sets (all 4,654 SNPs, 20 SNP markers, and 20 random
SNPs) were used in cross-prediction of resistance to three HG
Types, using eight GP models (rrBLUP, gBLUP, Bayes A, Bayes B,
BL, BRR, RF, and SVM). The PA was estimated using the average
Pearson’s correlation coefficient (r) between the GEBVs and
observed phenotypic values for SCN resistance in the validation
set (testing set) (Zhang J. P. et al., 2016; Shikha et al., 2017). The
r-value indicates PA and the selection efficiency of GP; the higher
the r-value, the more PA and the better the selection efficiency
in GS. The training and testing sets were randomly created 100
times, and the r-value was estimated each time. The average r-
value of 100 times was calculated for each trait (here for SCN HG
Type 0, 2.5.7, or 1.2.3.5.6.7). The distribution charts were drawn
by Microsoft Excel 2016 and R package ggplot2.

RESULTS

Soybean Cyst Nematode Resistance
Evaluation
The reactions of SCN HG Type indicator lines and race
differential lines to the SCN population are presented in
Supplementary Table 2. In the HG Type test, the susceptible
control Williams 82 soybean yielded 289 averaged SCN females
per plant, indicating there was adequate SCN reproduction for
this study. All of the seven HG Type indicators were resistant
with FI < 10, confirming that the SCN used in this study was
the HG Type 0 (Supplementary Table 2). In the race test, the
susceptible control Williams 82 soybean yielded 426 averaged
females per plant, indicating there was adequate reproduction
for this study. The lines PI 548982 (Pickett 71) and PI 548988
(Pickett) were moderately resistant to the SCN population with
FI 19.3 and 25.6, respectively; and other indicator lines were
resistant with FI < 10, confirming the population was race 6
(Supplementary Table 2).

The FI of the HG Type 0 (race 6) on the common bean core
accessions had a large range (145.5) from 4.8 on PI 313733 to
150.3 on PI 313671 (Supplementary Tables 1, 3, Figure 1), with
an average of 49.9, SD of 25.45, SE of 1.43, and CV of 51.0%;
and a near-normal distribution (Figure 1A), indicating a large
variation of resistance reactions to the SCN HG Type 0. Fifteen
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FIGURE 1 | Distribution of female index (FI) of soybean cyst nematode (SCN)

HG Type 0 (race 6) (A), HG Type 2.5.7 (B), and HG Type 1.2.3.5.6.7 (C) on

315 USDA common bean germplasm core collection.

accessions were resistant to the HG Type 0 with FI < 10. The top
seven accessions with the highest resistance to HG Type 0 were
PI313733, PI201329, PI319684, PI313440, PI325614, PI417616,
and PI313445, with FI ranging from 4.8 to 6.7, and the two most
susceptible accessions were PI313671 with FI 150.3 and PI182004
with FI 124.5 (Supplementary Tables 1, 3). The H was 65.7%,
indicating the HG Type 0 resistance was highly inheritable.

The FI of HG Type 2.5.7 ranged (199.1) from 0.4 on PI 313445
to 199.6 on PI 313671 (Supplementary Tables 1, 3, Figure 1),
with an average of 62.9, SD of 36.4, SE of 2.19, and CV of 50.1%;
a skewed near-normal distribution (Figure 1, middle) indicated
a large variation of resistance reactions to this SCN HG Type.
Twelve accessions were resistant to the HG Type 2.5.7 with FI
< 10. The top seven accessions with the highest resistance were
PI313445, PI417754, PI430210, PI201354, PI415913, PI417616,
and PI325653, with FI ranged from 0.4 to 4.0; the two most
susceptible accessions were PI313671, with FI 199.6 and PI
307820, with FI 158.6 (Supplementary Tables 1, 3).

The FI of HG Type 1.2.3.5.6.7 had a large range
(146.1) from 0 for five accessions to 146.2 for PI 207148
(Supplementary Tables 1, 3, Figure 1), with an average of 15.9;
SD of 17.0; a skewed distribution (Figure 1, bottom) indicated

there was a large variation of resistance reactions to this SCNHG
Type. Fifty-nine out of the 276 accessions (21.4%) had FI < 5.0,
and 115 out of 276 accessions (41.7%) had FI < 10, indicating
there was a high percentage for the accessions resistant to the HG
Type 1.2.3.5.6.7 (Supplementary Table 1). Many accessions were
classified as resistant or highly resistant to HG Type 1.2.3.5.6.7,
and only eight were susceptible (FI > 65). The two highest
susceptible entries were PI207148 with FI 111.4 and PI313671
with FI 146.2.

Combining analysis of resistance to the three HG Types,
only one accession, PI 313671, was susceptible with high FI
> 100 for the three HG Types, indicating this accession
can serve as a susceptible control. Four accessions, namely,
PI201354, PI 313445, PI417616, and PI313733, had FI < 10
for resistance to the three HG Types, suggesting they have
high and broad resistance to the three HG Types 0, 2.5.7, and
1.2.3.5.6.7 (Supplementary Table 1). There were 37 accessions
with resistance to the three HG Types (FI < 20: Table 1); their
genetic diversity will be analyzed in the following section of
this report.

There were weak correlations (r = 0.31 to 0.33) of SCN
resistance to HG Types, 0, 2.5.7, and 1.2.3.5.6.7 resistance among
the 315 common bean accessions (Supplementary Table 4),
suggesting that they had different genetic resistance to the three
HG types.

From the 86 common bean accessions reported by Jain et al.
(2019), 59 accessions were also screened for their resistance to
HG Type 0 in this study. Six out of the 59 lines, PI201354,
PI201329, PI430206, PI319684, PI343950, and PI269209, showed
HG Type 0 resistance with FI < 10 in both studies, indicating
the six lines had more durable or stable resistance. However,
the correlation of the SCN HG Type resistance in the 59
lines between the two studies was very low, with r = 0.057,
indicating that the SCN pathogens used in the two studies might
have different pathogenicity. It is possible that the HG Type 0
population used in Jain et al. (2019) and the population we used
belonged to different races because HG Type 0 can be race 3 or 6,
and the race of the former was not reported.

Genetic Diversity and Population Structure
Analysis
The population structure of the 315 USDA germplasm accessions
was initially inferred, using STRUCTURE 2.3.4 (Pritchard et al.,
2000). The peak delta K was observed at K = 2, indicating the
presence of two main population clusters, Q1 and Q2, in the
common bean germplasm panel (Supplementary Figures 3A,B).
The classification of accessions into populations or clusters based
on the model-based structure from STRUCTURE 2.3.4 is shown
in Supplementary Figure 3B and Supplementary Table 1. The
315 accessions were assigned to one of the two populations or
clusters, defined as Q1 and Q2 groups (populations). Q1 and Q2
consisted of 248 (78.7%) and 67 (21.3%) accessions, respectively
(Supplementary Table 1). Seven accessions were classified as
Q1(2) because their probability belonging to Q1 was >0.5 but
<0.7 (Supplementary Table 1, bottom). A graphical plot of the
PCA of the 315 common bean accessions showed two clusters
(Supplementary Figure 3C) based on data from TASSEL 5 with
two subpopulations.
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TABLE 1 | Accession ID, origin (country), population clusters and groups, and their SCN Female Index (FI) of top 37 SCN-resistant common bean accessions in reaction

to HG Types 0, 2.5.7 and 1.2.3.5.6.7.

Line_IDa Line Country 2Q_cluster 2_group HG_Type 0_FI HG_Type

2.5.7_FI

HG_Type

1.2.3.5.6.7_FI

PI313615b_Colombia_Q1_0.987_0.013a PI313615 Colombia Q1 I 14.80

PI313630b_Colombia_Q1_1_0 PI313630 Colombia Q1 I 9.15

PI309845_Costa Rica_Q1_1_0 PI309845 Costa Rica Q1 I 11.66 28.19 4.49

PI343950_Guatemala_Q1_1_0 PI343950 Guatemala Q1 I 8.10

PI449410_Mexico_Q1_1_0 PI449410 Mexico Q1 I 14.54

PI313328b_Mexico_Q1_1_0 PI313328 Mexico Q1 I 7.02

PI201329_Mexico_Q1_1_0 PI201329 Mexico Q1 I 5.06 10.57 2.24

PI201354_Mexico_Q1_1_0 PI201354 Mexico Q1 I 7.19 3.08 0.37

PI417667_Mexico_Q1_1_0 PI417667 Mexico Q1 I 11.71 24.23 16.82

PI313440_Mexico_Q1_1_0 PI313440 Mexico Q1 I 5.92 8.81 17.2

PI313445_Mexico_Q1_1_0 PI313445 Mexico Q1 I 6.74 0.44 0.1

PI313444_Mexico_Q1_1_0 PI313444 Mexico Q1 I 7.08 16.74 10.28

PI325630_Mexico_Q1_1_0 PI325630 Mexico Q1 I 15.73 9.25 3.36

PI417616_Mexico_Q1_1_0 PI417616 Mexico Q1 I 6.46 3.96 7.29

PI313473_Mexico_Q1_1_0 PI313473 Mexico Q1 I 10.38

PI203920_Mexico_Q1_1_0 PI203920 Mexico Q1 I 19.41 25.55 12.71

PI313501_Mexico_Q1_1_0 PI313501 Mexico Q1 I 8.33 23.79 0.56

PI325642_Mexico_Q1_1_0 PI325642 Mexico Q1 I 11.22 10.13 3.74

PI313512_Mexico_Q1_1_0 PI313512 Mexico Q1 I 12.95 14.1 7.48

PI201296_Mexico_Q1_1_0 PI201296 Mexico Q1 I 14.11 12.78 1.87

PI313490_Mexico_Q1_1_0 PI313490 Mexico Q1 I 19.25 27.75 2.24

PI325653_Mexico_Q1_1_0 PI325653 Mexico Q1 I 16.21 3.96 1.5

PI417739_Mexico_Q1_1_0 PI417739 Mexico Q1 I 19.76 13.22 1.12

PI430206_Mexico_Q1_1_0 PI430206 Mexico Q1 I 9.40 12.33 0.1

PI313820_Mexico_Q1_0.989_0.011 PI313820 Mexico Q1 I 11.08

PI313425_Mexico_Q1_1_0 PI313425 Mexico Q1 I 15.09

PI417657_Mexico_Q1_0.89_0.11 PI417657 Mexico I 14.56 22.03 3.93

PI430204_Mexico_Q1_0.692_0.308 PI430204 Mexico II(I) 13.89 14.1 4.49

PI346960_Mexico_Q1_0.661_0.339 PI346960 Mexico Q1(2) II(I) 14.30 12.33 12.9

PI345576_Costa Rica_Q1_0.672_0.328 PI345576 Costa Rica Q1(2) II(I) 11.06 15.86 0.56

PI241794_Ecuador_Q2_0.119_0.881 PI241794 Ecuador Q2 II 14.55 20.7 15.89

PI415936_Ecuador_Q2_0.027_0.973 PI415936 Ecuador Q2 II 10.73 13.66 12.34

PI209498_Costa Rica_Q2_0.019_0.981 PI209498 Costa Rica Q2 II 11.47 28.19 17.01

PI313733_Mexico_Q2_0_1 PI313733 Mexico Q2 II 4.78 5.73 4.49

PI325731_Mexico_Q2_0_1 PI325731 Mexico Q2 II 17.58

PI316030b_Peru_Q2_0_1 PI316030 Peru Q2 II 13.51

PI293355_Peru_Q2_0_1 PI293355 Peru Q2 II 18.04 27.31 10.09

aLine_ID consists of PI accession, original country, one of the two clusters Q1 or Q2, the Q1 probability, and Q2 probability. For example, PI313615b_Colombia_Q1_0.987_0.013, where

the PI accession is PI313615b, which is grouped into Q1 cluster with probabilty of 0.987 and has 0.013 probability to Q2.

The genetic diversity among the 315 accessions was also
assessed, using the ML method in MEGA 7 (Kumar et al.,
2016), with phylogenetic trees are drawn based on the results.
All accessions were assigned into one of the two clusters
(populations), further indicating there were two distinct genetic
populations in the common bean core set.

The second highest peak of delta K in STRUCTURE 2.3.4
was observed for K = 3, using Structure Harvester, indicating
the 315 common bean germplasm accessions can be divided
into three clusters (G1 to G3) (Figure 2A). Figure 2B shows

the bar plot drawn in STRUCTURE 2.3.4 to visualize the
three-clustered populations. The classification of the germplasm
accessions into populations based on the model-based structure
developed in STRUCTURE 2.3.4 was shown in Figure 2B,
Supplementary Table 1. Each common bean accession also was
assigned to one of the three populations based on probabilities
calculated in STRUCTURE 2.3.4 (Supplementary Table 1). A
Q value = 0.5 was used to divide the three populations
(clusters) and the admixture. In total, 301 out of 315 accessions
(95.6%) were assigned to one of the three populations. G1
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FIGURE 2 | Model-based populations in the association panel consisted of 315 USDA common bean germplasm accessions. (A) Delta K values for different numbers

of populations (K) assumed in the analysis completed with the STRUCTURE Version 2.3.4 software. (B) Classification of 315 common bean accessions into three

populations using the STRUCTURE Version 2.3.4, where the numbers on the y-axis show the subgroup membership and the x-axis shows the different accessions.

The distribution of accessions in different populations is indicated by the color coding (Cluster 1, G1, is red; Cluster 2, G2, is green; and Cluster 3, G3, is blue). (C)

Graphical plot of the principal component analysis (PCA) of the 315 common bean accessions. The horizontal and vertical axes are the first and second principal

components, and the variances explained by each component are noted. (D) Maximum Likelihood (ML) tree of the 315 common bean accessions drawn in MEGA 7.

The color code for each population is consistent in the (B–D).

to G3 consisted of 97 (30.8%), 138 (43.8%), and 66 (21.0%)
accessions, respectively. The remaining 14 accessions (4.4%) were
categorized as having admixed ancestry between G1 and G3
(Supplementary Table 1). A PCA plot was shown in Figure 2C

based on data from TASSEL 5.
The genetic diversity of the 315 common bean accessions was

also analyzed, using the ML method in MEGA 7 by combining
the three populations G1 to G3, identified by STRUCTURE.
The results shown in Figure 2D indicate there may be three
differentiated genetic populations and admixtures among the
315 accessions.

Combining (1) the two subpopulations (Q1 and Q2) and
(2) the three clusters (G1 to G3) from STRUCTURE 2.3.4,
a rectangular phylogenetic tree was drawn, using the ML
method fromMEGA 7 (Supplementary Figure 4). The common
bean accession number, the original country of the accession,
and the two populations (clusters) were merged into one
taxon name for each branch in the combined tree drawn by
MEGA 7 (Supplementary Figure 4). The resulting tree shows
there were three main groups: (1) Q1G1, (2) Q1G2, and
(3) Q2G3 in the 315 accessions (Supplementary Figure 4).
Q1G1 included 96 accessions (30.5%), Q1G2 138 accessions
(43.8%), Q1G (admixture) 8 (2.5%), Q2G3 66 (21.0%), Q2G31
(admixture) 1 (0.3%), and Q1(2) Gx (admixture) 7 (2.2%),
indicating that the Q1 population was further divided into
two groups and some admixture. The entire Q2 group (except

one) was not subdivided into the K = 3 analysis and became
group G2 (G2∼ = Q2∼ = Q2G2), with only one exception
(Supplementary Table 1), suggesting the Q2 population has a
well-defined genetic background with stable boundaries.

Association Analysis
In this study, we performed GLM, MLM, SUPER, MLMM,
FarmCPU, and BLINK analyses in GAPIT3 by setting PCA
= 3, and SMR, GLM (Q), and MLM (Q+K) analyses in
TASSEL 5, where Q = 3. We also conducted a t-test for each
SNP. If an SNP had a LOD [−log (P-value)] greater than the
significance threshold value LOD [−log (0.05/SNP number)]
in one of the six MLM models (gapit.mlm, gapit.mlmm,
gapit.super, gapit.farmCPU, gapit.blink, or tassel.mlm), the SNP
was selected as a candidate-associated SNP marker and listed in
Supplementary Tables 5–7 for resistance to SCN HG Types 0,
2.5.7, and 1.2.3.5.6.7, respectively. After combining the output
from GAPIT3 and Tassel 5 for the three association panels (all
tested accessions (all.set), Q1 and Q2 populations), the SNP
markers, which were significant for resistance to the three HG
Types, are listed in Table 2.

Genome-Wide Association Study for
Resistance to SCN HG Type 0
The distributions of the QQ plots between the observed vs.
expected LOD [−log10 (p)] showed a large divergence from
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TABLE 2 | SNP markers associated with three SCN HG Types, 0, 2.5.7, and 1.2.3.5.6.7 in three sets of common bean genotypes, based on six models, BLINK, FarmCPU, MLM, MLMM, SUPER, and GLM in GAPIT 3

and three models, MLM, GLM, and SMR in Tassel 5, and T-test.

SNP Chr Position –log(P-value) using GAPIT 3 –Log(P-value) in Tassel T-test Rsq in Tassel R-allele S-allele MAF (%) Set Associated_HG_Type

Blink FarmCPU MLM MLMM SUPER GLM SMR GLM MLM –LOG(P) SMR GLM MLM

ss715640464 4 33307678 10.31 4.31 4.90 1.08 0.79 6.27 0.03 5.74 4.16 0.38 0.05 7.47 6.33 T C 22.6 all.315 HG Type 0

ss715650114 6 10550456 5.68 5.11 2.60 2.70 2.36 2.91 3.04 2.32 1.97 3.38 4.39 3.09 2.94 T G 26.6

ss715647158 7 7343812 6.78 3.31 4.24 3.31 1.19 5.07 7.15 5.56 4.40 5.72 10.01 7.20 6.70 C A 8.7

ss715649511 7 7759866 5.76 3.36 2.43 2.75 5.26 4.27 1.69 3.53 1.74 2.44 2.47 4.64 2.64 G A 46.2

ss715639339 9 12175377 1.84 0.48 2.07 2.82 5.26 4.75 0.33 4.50 1.46 0.79 0.49 5.89 2.20 T C 33.2

ss715647549 11 44651807 7.42 2.67 3.37 3.89 5.40 4.64 1.13 3.74 2.33 1.34 1.83 5.41 4.00 C T 37.3

ss715639339 9 12175377 3.62 0.89 2.98 2.10 5.09 0.89 9.20 6.04 2.40 11.28 16.30 10.03 4.75 T C 11.8 Q1

ss715647549 11 44651807 7.26 0.83 4.25 5.46 5.36 0.83 7.16 3.71 2.72 9.61 14.47 6.96 5.98 C T 19.5

ss715641893 2 10113375 0.82 1.26 1.72 1.74 5.28 5.52 5.90 1.01 1.35 6.54 8.26 0.92 1.49 T C 43.7 all.315 HG Type 2.5.7

ss715639285 2 33312585 5.92 4.29 2.58 2.65 4.08 6.64 6.42 1.86 1.64 8.14 10.26 2.86 2.80 T G 38.4

ss715645573 3 50143102 3.39 5.67 2.86 2.94 3.97 5.67 5.64 2.21 2.52 6.07 9.10 3.39 4.34 C T 41.1

ss715645642 9 33052539 0.15 0.05 1.25 1.26 5.32 5.62 6.05 1.19 0.97 6.41 8.45 1.14 0.96 G T 48.6

ss715650604 1 41625385 1.11 0.02 1.59 1.62 8.91 5.44 5.21 2.79 1.08 7.58 11.16 5.69 2.46 G A 39.8 Q1

ss715651021 1 41732173 1.34 2.48 2.05 2.10 9.10 5.73 5.56 3.32 1.50 8.09 11.84 6.72 3.44 T C 37.4

ss715647960 1 41789504 1.12 0.04 1.49 1.51 8.45 5.26 4.96 2.29 0.88 7.29 10.60 4.68 2.01 G A 38.1

ss715639285 2 33312585 1.58 0.47 2.47 2.55 5.73 5.68 5.44 2.24 1.67 7.48 11.56 4.56 3.84 T G 49.5

ss715640488 7 35740746 6.07 6.17 3.62 3.82 10.35 8.86 9.67 6.09 2.63 18.50 19.60 11.88 6.10 T C 22.8

ss715640389 9 12154448 0.68 1.00 3.05 3.18 7.66 8.31 9.83 6.84 2.73 30.85 18.19 11.70 4.86 A C 11.2

ss715639339 9 12175377 4.88 2.20 2.98 3.10 8.42 8.40 9.03 6.18 2.05 26.01 18.45 12.06 4.74 T C 11.9

ss715641522 11 13037340 0.31 0.06 1.06 1.07 7.20 4.34 4.60 2.18 0.94 5.55 8.39 3.31 1.23 T C 31.1

ss715647636 3 3963582 9.29 5.65 2.55 4.38 2.73 2.56 8.18 2.61 2.54 2.78 11.57 2.97 3.12 C T 11.2 all.315 HG Type 1.2.3.5.6.7

ss715647109 6 27257765 10.60 8.32 3.43 2.92 3.79 3.43 8.55 3.29 3.14 2.76 13.44 4.84 5.14 C T 9.4

ss715640509 10 2792311 10.60 5.95 6.19 6.80 1.44 6.19 0.12 7.32 6.76 0.43 0.04 9.40 9.98 T C 13.0

ss715639563 11 46491205 6.09 4.15 1.92 2.37 3.33 1.92 7.27 2.62 2.58 4.02 13.38 4.56 4.76 A G 27.0

ss715639563 11 46491205 4.11 4.11 4.03 4.30 1.78 4.35 6.06 6.55 5.64 1.52 14.98 15.60 16.27 A G 9.7 Q1

ss715639339 9 12175377 1.84 0.48 2.07 2.82 5.26 4.75 0.33 4.50 1.46 0.79 0.49 5.89 2.20 T C 33.2 all HG Type 0

3.62 0.89 2.98 2.10 5.09 0.89 9.20 6.04 2.40 11.28 16.30 10.03 4.75 T C 11.8 Q1

0.33 0.54 2.14 2.18 1.36 0.31 0.33 4.15 1.65 0.56 0.57 6.26 2.83 T C 33.2 all HG Type 2.5.7

4.88 2.20 2.98 3.10 8.42 8.40 9.03 6.18 2.05 26.01 18.45 12.06 4.74 T C 11.9 Q1
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the expected distribution (Supplementary Figure 5), indicating
there were SNPs associated with the resistance to SCN HG Type
0 in the three association panels. The Manhattan plot showed
there were a dozen SNPs with LOD value >4.97 in all.set and Q1
(Supplementary Figure 5), and associated with SCN resistance
to HG Type 0. Based on MLMmodels, a total of 18 SNPs, located
on Pv 03, 04, 05, 06, 07, 08, 09, and 11 had LOD > 4.79 in all.set
or > 4.84 in Q1 (Supplementary Table 5), associated with the
resistance to SCN HG Type 0 (Supplementary Table 5). Among
the six models, BLINK had the highest LOD values, and several
SNP markers were observed in all.set and Q1 but not in Q2
(Figure 3).

There were several SNPs with LOD > 4.97 in all.set and
> 4.84 in the Q1 population in the SMR and GLM models
but not in the MLM model (Supplementary Table 5), indicating
that there were significant SNP markers, but they were not
strongly associated with SCN resistance based on the Tassel
tool. However, there were several SNPs with a LOD score >

4.0 or 3.0, indicating there were small-effect QTLs for SCN
resistance (Supplementary Table 5). Based on t-tests, all 18 SNPs
had LOD values > 2.0 (P < 0.01) either in all.set, Q1, or Q2
(Supplementary Table 5).

After combining, six SNPmarkers, ss715640464, ss715650114,
ss715647158, ss715649511, ss715639339, and ss715647549,
located on chromosomes Pv04, 06, 07, 07, 09, and 11, were
associated with resistance to SCN HG Type 0 in all.set (Table 2).
The two SNPs, ss715647158 and ss715649511, were located
at 7,343,812 bp and 7,759,866 bp, respectively, on Pv07 based
on the Pvulgaris v1.0_218 whole-genome reference sequences
(Table 2), suggesting that there was a QTL on Pv07 for HG Type
0 resistance. The ss715639339 SNP at 12,175,377 bp on Pv09 and
ss715647549 at 44,651,807 bp on Pv11 were observed in both
all.set and Q1 for HG Type 0 resistance (Table 2), suggesting the
presence of a QTL on each of the two chromosomes.

Genome-Wide Association Study for
Resistance to SCN HG Type 2.5.7
The distributions of the QQ plots between the observed
vs. expected LOD [-log10 (p)] showed a large divergence
from the expected distribution (Supplementary Figure 6),
suggesting there were SNPs associated with resistance to
SCN HG Type 2.5.7 in the three association panels. The
Manhattan plot showed there were a dozen SNPs with a LOD
value >4.97 in all.set (Supplementary Figures 6A,B) and Q1
(Supplementary Figures 6C,D) for resistance to HG Type
2.5.7. A total of 15 SNPs, located on chromosomes Pv01, 02,
03, 07, 09, and 11 had LOD > 4.79 in all.set, or > 4.84 in Q1
(Supplementary Table 6). Among the six models, SUPER had
the highest LOD values, and several SNP markers had LOD
values greater than the 4.97 significance threshold in all.set, and
> 4.84 in Q1, but not in Q2 (Figure 4, Supplementary Table 6).

The TASSEL 5 analysis showed that there were several
significant SNPs with a LOD score > 4.97 in all.set and >

4.84 in the Q1 population in the SMR and GLM models but
not in the MLM model (Supplementary Table 6). Nevertheless,
these markers were not strongly associated with SCN resistance.

However, there were several SNPs with a LOD score > 3.0 or 2.5,
suggesting there were QTLs for HG Type 2.5.7 resistance with
a small effect (Supplementary Table 6). Based on t-tests, 14 of
the 15 SNPs had a LOD value > 2.0 (P < 0.01) either in all.set,
Q1, or Q2, (Supplementary Table 6), indicating that the 14 SNPs
were associated with resistance to HG Type 2.5.7 at the P = 0.01
significance level.

After combining, four SNPs were associated with resistance
to the HG Type 2.5.7 in all.set, eight SNPs in Q1, and none
in Q2 (Table 2). Among the eight SNPs in Q1, the three SNPs,
ss715650604, ss715651021, and ss715647960, were located in
the same region of chromosome Pv01, from 41,625,385 bp to
41,789,504 bp, indicating that there was a QTL on Pv01 for
HG Type 2.5.7 resistance. The ss715639285 was identified in
both all.set and Q1, suggesting that there was a QTL in the
33.3 Mbp region on Pv02 for HG Type 2.5.7 resistance. The
two SNPs, ss715640389 and ss715639339, were located in the
same region, from 12,154,448 bp to 12,175,377 bp on Pv09, and
the two SNPs had very high LOD values (>26) in the t-test
(Table 2). In addition, a SNP, ss715640488 at 35,740,746 bp on
Pv07 and another SNP, ss715641522, at 13,037,340 bp on Pv11
were associated with HG Type 2.5.7 resistance.

Genome-Wide Association Study for
Resistance to SCN HG Type 1.2.3.5.6.7
The distributions of the QQ plots between the observed vs.
expected LOD [–log10 (p)] showed a large divergence from
the expected distribution (Supplementary Figure 6), indicating
there were SNPs associated with resistance to SCN HG Type
1.2.3.5.6.7 in the three association panels. The Manhattan plot
showed there were several SNPs with LOD values >4.97 in
all.set (Supplementary Figures 7A,B), suggesting there were
SNPs associated with SCN resistance to HG Type 1.2.3.5.6.7.
Six SNPs, ss715647636, ss715647109, ss715647614, ss715649401,
ss715640509, and ss715639563, located on chromosomes Pv
03, 06, 09, 09, 10, and 11, respectively had LOD > 4.79 in
all.set (Supplementary Table 7). Among the six models, BLINK
had the highest LOD values, and several SNP markers were
observed with a significant LOD value > 4.97 in all.set but not
in Q1 or Q2 (Figure 5), indicating there were significant SNPs
associated with SCN resistance to HG Type 1.2.3.5.6.7 based on
the association panel of all.set of 276 accessions. Two additional
SNPs, ss715646397 and ss715648134, located on Pv03 and 04,
also had LOD values greater than four and were selected as
markers for HG Type 1.2.3.5.6.7 resistance in the Q1 population
(Supplementary Table 7).

There were only three SNPs that had a LOD score > 4.97
in all.set and one SNP with LOD > 4.84 in the Q1 population,
either in SMR, GLM, or MLMmodels (Supplementary Table 7).
However, seven out of the eight listed SNPs had LOD> 3.0 or 2.5
in all.set or Q1, suggesting there were QTLs for SCN resistance
with small effects (Supplementary Table 7). The t-tests indicated
that the eight SNPs had a LOD value > 2.0 (P < 0.01) either in
all.set, Q1, or Q2 (Supplementary Table 7).

After combining, four SNPs were associated with resistance to
SCN HG Type 1.2.3.5.6.7 in all.set, one SNP in Q1, and none in
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FIGURE 3 | Distributions of Manhattan plot (left side) and QQ-plot (right side) of genome-wide association study (GWAS) for common bean resistance to SCN HG

Type 0 (race 6) in all 315 accessions (top), 241 accessions of Q1 population (middle), and 67 accessions of Q2 population (bottom) based on BLINK, where x-axis

represents the common bean 11 chromosomes and y-axis represents LOD [–log(P-value)] value of each SNP in Manhattan plot, and x-axis represents the Expected

LOD [–log(P-value] and y-axis represents Observed LOD [–log(P-value)] value of each SNP in QQ-plot.

Q2 (Table 2). The four SNP markers in all.set were ss715647636,
ss715647109, ss715640509, and ss715639563, located at 3,963,582
bp, 27,257,765 bp, 2,792,311 bp, and 46,491,205 bp on Pv 03, 06,
10, and 11, respectively (Table 2). SNP marker ss715639563 was
also identified in Q1 population, increasing the confidence in this
SNP as a marker for HG Type 1.2.3.5.6.7 resistance.

Combining GWAS for Resistance to the
Three SCN HG Types
In this study, a total of 40 SNPs were identified as
potential SNP markers associated with SCN resistance
(Supplementary Tables 5–7) based on the LOD values from
the MLM models in GAPIT3 and Tassel 5, after Bonferroni

correction. Combining results from the six models (GLM, MLM,
SUPER, MLMM, FarmCPU, and BLINK) in GAPIT3, three
models (SMR, GLM, and MLM) in TASSEL 5, and t-tests among
the three association panels (all.set, Q1, and Q2), 6, 11, and 4
SNPs were significantly associated with resistance to HG Type 0,
2.5.7, and 1.2.3.5.6.7, respectively (Table 2). Among them, one
SNP, ss715639339, at 12,175,377 bp on Pv09 was associated with
the resistance to both SCN HG Types 0 and 2.5.7 (Table 2).

We did not conduct LD analysis for all SNPs in this study.
However, the LD heatmaps were drawn, using Haploview for
seven genome regions with the eight SNP markers significantly
associated with resistance to either SCN HG Type 0, 2.5.7, or
1.2.3.5.6.7 (Supplementary Figure 8), where two LLR genes were
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FIGURE 4 | Distributions of Manhattan plot (left side) and QQ-plot (right side) of GWAS for common bean resistance to SCN HG Type 2.5.7 in all 276 accessions

(top), 207 accessions of Q1 population (middle), and 62 accessions of Q2 population (bottom) based on SUPER, where x-axis represents the common bean 11

chromosomes and y-axis represents LOD [–log(P-value)] value of each SNP in Manhattan plot, and x-axis represents the Expected LOD [–log(P-value] and y-axis

represents Observed LOD [–log(P-value)] value of each SNP in QQ-plot.

also included: Phvul.006G104700 and Phvul.010G018300. The
Phvul.006G104700 gene is located on Pv04 in the same LD block
as an SNP marker SS715640464 at a distance of only 8.98 Kbp
(Supplementary Figure 8A) for HG Type 0 resistance. The gene
Phvul.010G018300 is located on Pv10 at a distance of 39.9 Kbp
from ss715640509 associated with HG Type 1.2.3.5.6.7 resistance
(Supplementary Figure 8E, bottom left).

Candidate Genes for SCN Resistance
A total of 20 significant GWAS-derived SNPs were selected
as markers associated with the resistance to the three SCN
HG Types, 0, 2.5.7, and 1.2.3.5.6.7 (Table 2). Candidate gene

models were searched within 10, 30, and 50 kb, flanking each of
these SNPs. A total of 125, 83, 33, 19, and 8 genes were found
at a distance of 50, 30, 10, 5, and 1Kb, respectively, from the
20 SNPs (Supplementary Table 8) based on the annotations
of the common bean genome reference Pvulgaris v1.0_218.
Among the 125 genes, five gene models, Phvul.001G158800,
Phvul.002G072100, Phvul.006G160700, Phvul.007G080900, and
Phvul.009G223200, contained an SNP marker, ss715647960,
ss715641893, ss715647109, ss715649511, and ss715645642,
respectively, on chromosomes Pv01, Pv02, Pv06, Pv07, and Pv09
(Table 3). Whether these five gene models are related to SCN
resistance needs further study.
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FIGURE 5 | Distributions of Manhattan plot (left side) and QQ-plot (right side) of GWAS for common bean resistance to SCN HG Type 1.2.3.5.6.7 in all 276

accessions (top), 207 accessions of Q1 population (middle), and 62 accessions of Q2 population (bottom) based on BLINK, where the x-axis represents the common

bean 11 chromosomes and the y-axis represents LOD [–log(P-value)] value of each SNP in Manhattan plot, and x-axis represents the Expected LOD [–log(P-value)]

and the y-axis represents Observed LOD [–log(P-value)] value of each SNP in QQ-plot.

The Leucine-Rich Repeat (LRR) gene model
Phvul.004G099300 (disease resistance family protein/LRR
family protein), located at 33,316,658–33,320,257 bp on Pv04,
based on the common bean genome reference Pvulgaris
v1.0_218, is located near the SNP marker ss715640464 (distance
of 8.98 Kbp), associated with SCN HG Type 0 resistance.
Another LRR gene, Phvul.010G018300 (LRR protein kinase
family protein) at 2,832,211–2,839,756 bp on Pv10 is close to the
SNP marker ss715640509 (distance of 39.9 Kbp). In addition,
one NAC-domain gene, Phvul.006G023100 (NAC-domain

containing protein 42), is located at 10,522,343–10,526,782 bp
on Pv06 was close (∼24 Kbp) to the SNP marker ss715650114
(Table 3). Whether the two LRR genes and the NAC-domain
gene are related to SCN resistance needs further evaluation.

Genomic Prediction of SCN Resistance
Genomic Prediction With Different Ratios of a

Training Set to a Testing Set
In this study, GP was performed using six different ratios of
training/testing sets, 19:1, 9:1, 4:1, 7:3, and 1:1, expressed as 5,
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10, 20, 30, 40, and 50% of a testing set in all.set, containing
the 315 common bean accessions for HG Type 0 resistance or
276 accessions for HG Types 2.5.7 and 1.2.3.5.6.7 resistance.
The actual sizes of the [training set/testing set] were 299/16,
283/32, 252/63, 220/95, 189/126, and 158/157 for HG Type 0,
and 262/14, 248/28, 221/55, 193/83, 166/110, and 138/138 for HG
Types 2.5.7 and 1.2.3.5.6.7. The GEBVs and r- values between
GEBVs and observed values in the testing set were estimated
by six GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, and
BRR) in cross-prediction for resistance to the three HG Types,
0, 2.5.7, and 1.2.3.5.6.7, using (1) all 4,654 SNPs and (2) 20
associated SNPmarkers (20 GWAS-derived SNPmarkers). There
were six ratios between training and testing sets, six models,
two SNP sets, and three SCN HG types to make a total of
216 combinations. Each combination was run 100 times to
calculate GP statistical parameters and r-values. The average r-
value (rȲ 100) and its SE from the 100 runs for each combination
are listed in Supplementary Table 9 and the 216 averaged r-
values (rȲ 100) displayed in charts drawn in MS Excel 2016,
grouped by the six sets (5, 10, 20, 30, 40, and 50%) of testing set
percentages (Supplementary Figure 9). The r-distribution charts
were created by an R-package for the 216 combinations grouped
by percentages of a testing set; the r-distributions of the 36
combinations estimated by rrBLUP model are listed in Figure 6.
The 108 averaged r-values (rȲ 100) (half of all 216 combinations)
for the all.set are listed in Table 4.

The six sets of 5, 10, 20, 30, 40, and 50% of testing set
percentages had similar, although not identical averaged
r-values across five models except gBLUP with slightly
lower r-values (Table 4, Figure 4, Supplementary Figure 9,
Supplementary Table 9). The r-value, averaged over six models,
was 0.39 for HG Type 0, 0.33 for HG Type 2.5.7, and 0.27 for
HG Type 1.2.3.5.6.7. They were 0.40 for HG Type 0,0.35 for HG
Type 2.5.7, and 0.31 for HG Type 1.2.3.5.6.7 when averaged from
five models, except gBLUP, when using all 4,654 SNPs (Table 4,
Supplementary Table 9). This observation suggested that it may
be feasible to do GS for SCN resistance in common bean with
one of the six sets. The r-value increased to 0.46,0.38, and 0.41,
averaged over the six models, and 0.51,0.41, and 0.46, averaged
over the five models (except gBLUP) when using only the 20 SNP
markers (Supplementary Table 9, Supplementary Figure 9),
suggesting that GWAS-derived SNP markers can be used in GS.
From Figure 6, the 5% test set had the largest variance, and the
50% test set had the smallest. The PA decreased when the size of
the testing set increased. Likewise, the SE values decreased when
the test sets increased from 5 to 50% (Supplementary Table 9),
indicating that the larger the testing set, the less variable the
r-values. However, a small decrease of the r-value was observed
as well in most cases when the training/test ratio was 40%
or higher.

Genomic Prediction With Different SNP Numbers
Genomic prediction was performed with nine different SNP
number sets (20, 50, 100, 200, 400, 800, 1,600, and all 4,654
SNPs, plus the 20 GWAS-derived SNP markers) in cross-
predictions for resistance to three HG Types, using five GP
models: rrBLUP, Bayes A, Bayes B, BL, and BRR. There were 135
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combinations for GP analysis, consisting of nine SNP sets, five
GP models, and three SCN HG Types. Each combination was
run 100 times to calculate GP statistical parameters and r-values.
The average r-value (rȲ 100) and its SE from the 100 runs for
each combination are presented in the Supplementary Table 10,
Supplementary Figure 10. The 27 averaged r-values (rȲ 100)
estimated by rrBLUP are presented in Table 5. The 54 r-
distribution charts created by ggplots in R-package for r-values,
estimated by Bayes A and rrBLUPmodels, are shown in Figure 7.

FIGURE 6 | Genomic prediction of six different testing set percentages from 5

to 50% in cross-prediction for resistance to three SCN HG Types, 0,

1.2.3.5,6,7, and 2.5.7 using all 4,654 SNPs (left three groups as all.HG0,

all.HG123567, and all.HG257), and 20 associated SNP markers (m.HG0,

m.HG123567, and m.HG257) estimated by rrBLUP model.

The nine SNP sets had an averaged r-value 0.38 for HG Type
0,0.31 for HG Type 2.5.7, and 0.33 for HG Type 1.2.3.5.6.7
(Table 5, Figure 7, Supplementary Figure 10). The r-values were
somewhat decreased a little when 100 or less SNPs were used for
HG Type 0 resistance, 200 or less SNPs were used for HG Type
2.5.7 resistance, but did not decrease for HG Type 1.2.3.5.6.7
resistance, indicating that sets of more than 200 SNPs can be used
for GS. The set of the 20 SNP markers had the highest averaged
r-values in all five models for the three HG Type resistances
(Figure 7), indicating that the 20 associated SNP markers can be
used to do GS for SCN resistance selection as well.

Genomic Selection in Three Association Panels
Genomic prediction was performed in the three association
panels (all.set, Q1, andQ2) with six different testing set sizes from
5 to 50% in cross-prediction for resistance to the three HG Types,
using the rrBLUP model (54 combinations). Each combination
was run 100 times to estimate GEBVs and r-values. The average
r-value (rȲ 100) and its SE from the 100 runs for each combination
are listed in Supplementary Table 11, and the r-charts are shown
in Supplementary Figure 11.

For the HG Type 0 resistance, all r-values are similar
among the three sets (all.set, Q1, and Q2) across six
testing sets with averaged 0.41, 0.41, and 0.38, respectively
(Supplementary Table 11, top). For HG Type 2.5.7 and
1.2.3.5.6.7 resistance, all.set and Q1 had similar r-values, but Q2
had much lower r-values (Supplementary Figure 11). The 5%
of the “Testing set” had the largest variability, and the 50% had
the lowest SE value, and PA decreased when the “Testing set”
percentage increased (Supplementary Table 11).

Genomic Prediction Comparisons Among All SNPs,

SNP Markers, and the Random SNP Set
Genomic prediction was performed for three SNP sets (all 4,654
SNPs, 20 GWAS-derived SNP markers, and 20 random SNPs)
in cross-prediction for resistance to three HG Types, using eight
GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR, RF, and
SVM) (72 combinations). Each combination was run 100 times
to estimate GEBVs and r-values. The average r-value (rȲ 100) and
SE from the 100 runs for each combination are presented in
Supplementary Table 12, and the r-charts are also showed in
Supplementary Figure 12.

TABLE 4 | Prediction accuracy (PA) for SCN resistance to three HG Types with six different testing sets (percentages) using all 4,654 SNPs with six genomic prediction

models.

GP model r-value in HG Type 0 r-value in HG Type 2.5.7 r-value in HG Type 1.2.3.5.6.7

5% 10% 20% 30% 40% 50% Average 5% 10% 20% 30% 40% 50% Average 5% 10% 20% 30% 40% 50% Average

rrBLUP 0.44 0.41 0.41 0.41 0.40 0.37 0.41 0.33 0.36 0.35 0.32 0.33 0.32 0.34 0.30 0.36 0.34 0.33 0.33 0.33 0.33

gBLUP 0.38 0.31 0.30 0.29 0.28 0.27 0.31 0.25 0.31 0.27 0.26 0.24 0.23 0.26 0.11 0.11 0.12 0.10 0.08 0.08 0.10

Bayes A 0.41 0.39 0.39 0.42 0.39 0.39 0.40 0.33 0.40 0.37 0.36 0.35 0.34 0.36 0.31 0.31 0.30 0.30 0.29 0.29 0.30

Bayes B 0.40 0.40 0.38 0.40 0.37 0.36 0.39 0.34 0.35 0.33 0.35 0.33 0.31 0.33 0.32 0.30 0.30 0.31 0.29 0.28 0.30

BL 0.43 0.43 0.43 0.40 0.38 0.38 0.41 0.37 0.33 0.35 0.37 0.35 0.34 0.35 0.27 0.34 0.28 0.29 0.27 0.28 0.29

BRR 0.44 0.41 0.40 0.41 0.39 0.38 0.41 0.38 0.36 0.38 0.35 0.34 0.32 0.36 0.31 0.35 0.34 0.34 0.31 0.31 0.33

Average 0.42 0.39 0.39 0.39 0.37 0.36 0.39 0.33 0.35 0.34 0.34 0.32 0.31 0.33 0.27 0.30 0.28 0.28 0.26 0.26 0.27
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TABLE 5 | Genomic prediction of nine different SNP number sets from 20 SNPs to all 4,654 SNPs in cross-prediction for resistance to SCN HG Types 0, HG Type 2.5.7,

and HG Type 1.2.3.5.6.7 using rrBLUP.

HG Type 4654SNP 1600SNP 800SNP 400SNP 200SNP 100SNP 50SNP 20SNP 20SNP.marker Average

HG Type 0 0.41 0.38 0.44 0.42 0.45 0.33 0.22 0.27 0.52 0.38

HG Type 257 0.35 0.34 0.32 0.34 0.30 0.28 0.22 0.21 0.40 0.31

HG Type 123567 0.34 0.34 0.30 0.34 0.33 0.32 0.31 0.34 0.39 0.33

FIGURE 7 | Genomic prediction of nine different SNP numbers from 20 SNPs to all 4,654 SNPs in cross-prediction for resistance to three SCN HG Types, 0, 2.5.7,

and 1.2.3.5.6.7 using Bayes A model (left three groups) and rrBLUP model (right three groups).

The set of 20 GWAS-derived SNP markers had the highest r-
values across the eight models for resistance to either HG Type
0, 2.5.6, or 1.2.3.5.6.7, suggesting that the GWAS-derived SNP
markers will be more effective for GS than the random 20-SNP
sets (Supplementary Table 12, Supplementary Figure 12). The
set of “random 20 SNPs” had the lowest r-values, suggesting that
usingmore SNPs would increase the selection effectiveness in GS.

Genomic Prediction Using Different Models
Eight GPmodels (rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR, RF,

and SVM)were used to conduct GP for resistance to the threeHG
Types. The five GP models (rrBLUP, Bayes A, Bayes B, BL, and

BRR) had similar r-values, but the gBLUP model had the lowest

r-values for resistance to either HG Type 0, 2.5.7, or 1.2.3.5.6.7
(Supplementary Figure 13C).

Based on the results from six different testing sets
(percentages) in 315 common bean accessions (Table 4,
Supplementary Table 9), the six GP models (rrBLUP, gBLUP,

Bayes A, Bayes B, BL, and BRR) had similar averaged PA (0.41,
0.31, 0.40, 0.39, 0.41, and 0.41) for resistance to HG Type 0;
lower but similar PA (0.34, 0.26, 0.36, 0.33, 0.35, and 0.36) for
HG Type 2.5.7 resistance; and the lowest PA (0.33, 0.10, 0.30,
0.30, 0.29, and 0.33) for HG Type 1.2.3.5.6.7 resistance. When
the set of 20 significant SNP markers was used, the averaged PA
of the six models increased for resistance to all of the three HG
Types (Supplementary Table 9, bottom half).

Based on the results from the nine different SNP number
sets from 20 SNPs to all 4,654 SNPs in cross-prediction for
resistance to the three HG Types (Supplementary Table 10,
Supplementary Figure 11), the five GP models (rrBLUP, Bayes
A, Bayes B, BL, and BRR) had averaged PA, 0.38, 0.38, 0.36, 0.38,
and 0.38, respectively, for resistance toHGType 0;0.31, 0.35, 0.31,
0.34, and 0.35 for HG Type 2.5.7 resistance; and 0.33, 0.34, 0.30,
0.34, and 0.34 for HG Type 1.2.3.5.6.7 resistance.

Based on the three SNP sets (all 4,654 SNPs, 20 significant
SNP markers, and 20 random SNPs) used in cross-prediction,
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the eight GP models, rrBLUP, gBLUP, Bayes A, Bayes B, BL, BRR,
RF, and SVM, had averaged PA values of 0.38, 0.20, 0.41, 0.35,
0.42, 0.40, 0.35, and 0.39, respectively, for resistance to HG Type
0;0.31, 0.20, 0.34, 0.28, 0.34, 0.34, 0.29, and 0.32 for HGType 2.5.7
resistance; and 0.36, 0.11, 0.37, 0.32, 0.38, 0.39, 0.33, and 0.30
for HG Type 1.2.3.5.6.7 resistance (Supplementary Table 12,
Supplementary Figure 12).

Overall, sets of 400 SNPs or more for GP had similar GS
efficiency (r-value) for resistance to either HG Type 0, 2.5.7, or
1.2.3.5.6.7. The set of 20 significant SNP markers for GP had
the highest r-value for GP (Supplementary Figure 13A). The
six sets of different sizes from 5 to 50% had similar r-values
(Supplementary Figure 13B). Except for the gBLUP model,
which had a lower r-value for GP, all other seven models had
similar PA (Supplementary Figure 13C). The averaged r-values
were 0.40 for HG Type 0 resistance, 0.34 for HG Type 2.5.7,
and 0.32 for HG Type 1.2.3.5.6.7 (Supplementary Figure 13D),
indicating that we can use one of the seven GP models to
conduct GS. Each model provided similar selection efficiency for
SCN resistance.

Genomic Heritability (GH)
In this study, the GH was estimated by the rrBLUP model for
resistance to the three SCN HG Types, 0, 2.5.7, and 1.2.3.5.6.7
(Supplementary Table 13, Supplementary Figure 14). As we
did for GP estimations, the GH was estimated, using six different
ratios of the training set: the testing set 19:1, 9:1, 4:1, 7:3, and 1:1,
as 5, 10, 20, 30, 40, and 50% of the testing set in the GWAS panel
with (1) all 4,654 SNPs (top in both Supplementary Table 13,
Supplementary Figure 14), (2) 20 GWAS-derived SNP markers
(middle), and (3) nine different SNP number sets from 20 SNPs
to all 4,654 SNPs (bottom) in cross-prediction. The averaged
GH was 22.4, 12.1, and 5.4% for three HG Types, respectively,
in all 4,654 SNPs; 28.1, 22.1, and 6.1% in 20 SNP markers;
and 13.7, 10.5, and 3.2% in the nine different SNP number
sets from 20 SNPs to all 4,654 SNPs in cross-prediction. The
results showed that GH was highest for resistance to HG Type 0,
middle for HG Type 2.5.7, and lowest for HG Type 1.2.3.5.6.7,
and the GWAS-derived 20 SNP marker set had higher GH
(Supplementary Table 13).

Genetic Diversity Analysis for the
SCN-Resistant Germplasm Accessions
There were 47 resistant accessions with FI< 20.0 for resistance to
HG Type 0 (Supplementary Table 1). Among the 47 accessions,
10 had FI > 30.0 for resistance to HG Type 2.5.7, although
they had FI values <20.0 for resistance to both HG Type 0 and
1.2.3.5.6.7. These 10 accessions were not recognized as broadly
resistant lines and were dropped from further genetic diversity
analysis. Among the 37 accessions, 27 accessions were originally
collected from Mexico, two from Colombia, three from Costa
Rica, two from Ecuador, one from Guatemala, and two from
Peru (Table 1) indicating that the SCN resistance was mainly
distributed among Mesoamerican accessions in this study.

The 37 accessions formed two clusters as I and II (Figure 8,
Table 1). Group I consisted of 27 accessions, which were mainly
from Mexico, plus two from Colombia, one from Costa Rica,

and one from Guatemala. All of the 27 accessions also belonged
to Cluster Q1, based on the population structure and genetic
analyses of all 315 accessions. Group II had 10 accessions,
including four from Mexico, two from Costa Rica, two from
Ecuador, and two from Peru (Figure 8, Table 1). Among the
10 accessions in II, seven belonged to Q2, with a membership
coefficient >70%, and three to Q1 or Q1(2) with a membership
coefficient of 30%. The latter three accessions, PI430204,
PI346960, and PI345576, had Q1 membership coefficients >

66% based on the population structure and genetic analysis
in all 315 accessions. In this phylogenetic tree of the 37
accessions (Figure 8), the three accessions, PI430204, PI346960,
and PI345576, were clustered to group II but diverged from the
cluster. The three accessions plus PI417657 more likely belonged
to a subpopulation between clusters I and II, indicating the four
accessions combined genetic backgrounds of both clusters (I
and II) and the two subpopulations of common bean based on
STRUCTURE 2.3.4 analysis.

DISCUSSION

Genetic Diversity and Population Structure
In this study, the common bean population structure was
examined among 315 common bean germplasm accessions
belonging to the USDA P. vulgaris core collection, using
the Markov Chain Monte Carlo iterations in STRUCTURE
2.3.4. The 315 accessions can be divided into two larger
populations (Q1 and Q2 clusters) or into three subpopulations
(G1 to G3 plus admixture) (Figure 2, Supplementary Figure 3,
Supplementary Table 1).

Based on the two broader populations (Q1 and Q2) in the
core collection, Q1 was the larger cluster with 77% (241/315)
of accessions and consisted of germplasm mainly from Mexico
(145), Guatemala (25), Colombia (20), Costa Rica (13), Nicaragua
(12), El Salvador (11), and Honduras (7), with 60, 10, 8, 5, 5,
5, and 3%, respectively (Supplementary Table 14). Q2 consisted
of germplasm mainly from Mexico (15), Colombia (15), Peru
(14), and Ecuador (11), with 22, 22, 21, and 16%, respectively
(Supplementary Table 14). Most of the germplasm accessions
from Central America, including Nicaragua (92.3%), Mexico
(89.0%), Guatemala (83.3%), El Salvador (84.6%), Costa Rica
(76.5%), and Honduras (77.8%) belonged to Q1; most accessions
from South America, including Bolivia (only one accession), Peru
(82.4%), and Ecuador (68.8%) belonged to Q2; and Colombia
accessions belonged to both Q1 and Q2 with 57.1% to Q1 and
42.9% to Q2 (Supplementary Table 13).

Common bean consists of two geographic, diverged gene
pools, namely the Andean and Middle American pools (Gepts
and Bliss, 1985; Gepts et al., 1986, 2019; Koenig and Gepts,
1989; Koinange and Gepts, 1992; Beebe et al., 1997, 2000;
Blair et al., 2009, 2012; Kwak and Gepts, 2009; Bitocchi
et al., 2012, 2013; McClean et al., 2012; Schmutz et al.,
2014; Campa et al., 2018; Kuzay et al., 2020). The analysis
confirmed the presence of two populations (two clusters) among
these 315 accessions but notes that the germplasm accessions
from Nicaragua, Mexico, Guatemala, El Salvador, Costa Rica,
Honduras, Colombia, Ecuador, and Peru include the members
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FIGURE 8 | The phylogenetic tree created by the Maximum Likelihood (ML) method from MEGA 7 in 37 common bean germplasm accessions that were resistant to

all three SCN HG Types 0, 2.5.7, and 1.2.3.5.6.7.

of both clusters (populations), indicating that both gene pools
existed in these countries.

Based on the three clusters (populations G1 to G3) in
the 315 accessions, G1 had accessions mainly from Mexico
(32 accessions), Colombia (13), Costa Rica (12), Nicaragua
(11), and El Salvador (8), with 33, 13, 12, 11, 10, and 8%,
respectively (Supplementary Table 13). G2 consisted of the
accessions mainly from Mexico (111) and Guatemala (10), with
80 and 7%, respectively (Supplementary Table 13). G3 came
from Mexico (15), Columbia (15), Peru (13), and Ecuador (11),
with 23, 22, 20, and 17%, respectively (Supplementary Table 13).
Besides, 14 accessions (4%) of the panel were admixed
(Supplementary Table 13). For each country, most of the
germplasm accessions from the United States (only one
accession), Nicaragua (84.6%), Costa Rica (70.6%), El Salvador
(61.5%), and Honduras (55.6%) belonged to G1. Most Mexico
accessions (68%) belonged to G2; and most accessions from Peru
(77%), Ecuador (69%), and Bolivia (only one accession) belonged
to G3. The accessions from Guatemala and Colombia belonged

to three populations (Q1, Q2, and Q3); 23% of accessions from
Guatemala were admixed (Supplementary Table 13). The three
Q populations matched those in the report by Kuzay et al. (2020)
when K = 3 (Supplementary Table 1). Furthermore, nearly half
of the resistant accessions in this core collection belonged to the
Middle American gene pool and the Durango ecogeographic race
within this gene pool, although some resistant accessions were
also identified in race Mesoamerica of the Middle American gene
pool and races Nueva Granada and Peru of the Andean gene
pool (Supplementary Table 15). Based on these results, we used
the three Q-matrices for GWAS in all.set of the 315 accessions
to identify SNP markers associated with SCN resistance in
this study.

Genome-Wide Association Study and SNP
Marker Identification for SCN Resistance
In this GWAS study, six, 11, and four SNPs were identified to be
associated with resistance to HG Types, 0, 2.5.7, and 1.2.3.5.6.7,
respectively (Table 2). The six SNPs for HG Type 0 resistance
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were newly identified markers for resistance to HG Type 0
(race 6) based on their location on chromosomes (Table 2).
However, in the region of the two markers, ss715647158 and
ss715649511 on Pv07, Jain et al. (2019) also reported an SNP
marker ss715648793 (Supplementary Table 16) in the region,
further validating a QTL in this region for HG Type 0 resistance.
The SNP marker, ss715647549, was significantly associated with
HG Type 0 resistance in two association panels, all.set, and Q1
(Table 2), and Jain et al. (2019) also reported six SNPs nearby
(Supplementary Table 16), suggesting that there is a QTL on
Pv11 for resistance to HG Type 0.Near ss715640464on Pv04
(distance of 8.98 Kbp), a gene model Phvul.004G104700 of
the disease resistance family protein/LRR family protein was
found (Table 3) in the same LD region (Figure 8), suggesting
that Phvul.004G104700 may be associated with the HG Type 0
resistance, but this observation needs to be validated.

For the 11 SNPs with resistance to HG Type 2.5.7, three are
located on Pv01, two on Pv02, one on Pv03, one on Pv07, three
on Pv09, and one on Pv11 (Table 2). The 11 SNPs are newly
identified markers for resistance to HG Type 2.5.7. However,
at the ss715639285 region on Pv02 and the ss715645642 region
on Pv09, Jain et al. (2019) reported associated SNP markers for
HG Type 0 resistance (Supplementary Table 16) and Wen et al.
(2019) reported a close SNPmarker on Pv09 for resistance to HG
Type 2.5.7 resistance (Supplementary Table 16), suggesting that
there are QTLs in the regions for SCN resistance. Further studies
are needed to validate the broad resistance to multiple HG Types
associated with these SNP markers.

The four SNPs with resistance to HG Type 1.2.3.5.6.7 were
located on Pv03, 06, 10, and 11 (Table 2), and they are newly
identified in this study. However, close to the ss715647109 region
on Pv06, Jain et al. (2019) reported an SNP marker, ss715645673,
associated with HGType 0 resistance (Supplementary Table 16),
indicating theremay be aQTL in the region, but whether theQTL
is associated with resistance to the two different HG Types needs
to be further validated. Another SNP, ss715639563 at 46,491,205
bp on Pv11 for HG Type 1.2.3.5.6.7 resistance (Table 2), was
close (distance ∼1.84 Mbp) to ss715647549 at 44,651,807 bp,
suggesting a QTL existed in the region, but whether this QTL is
associated with resistance to both HG Types needs further study.
However, based on the LD analysis (Supplementary Figure 8F,
bottom right), the two SNPs, ss715647109 and ss715647549, are
located in two different LD regions, suggesting that there are
different genes or alleles for resistance to HG Type 0 and 2.5.7.

One SNP, ss715639339 at 12,175,377 bp on Pv09 was
associated with both HG Type 0 and HG Type 2.5.7 resistance
in two association panels, all.set, and Q1 (Table 2). Another
SNP, ss715640389, at 12,154,448 bp on Pv09 was associated with
resistance to HG Type 2.5.7 (Table 2). The two SNPs are very
close to each other (within 20.929 Kbp) and located in the
same LD region (Supplementary Figure 8C), suggesting that a
QTL exists for SCN resistance, but further studies are needed to
determine whether the QTL is associated with resistance to the
two different HG Types.

So far, there are only two GWAS reports for SCN resistance
in common beans (Jain et al., 2019; Wen et al., 2019). Wen
et al. (2019) conducted GWAS in 363 accessions of the USDA

common bean core set for resistance to SCN HG types 2.5.7 and
1.2.3.5.6.7, using 84,416 SNPs obtained with GBS. They found
five SNPs on Pv01 and one on Pv09, associated with resistance to
HG Type 2.5.7, and only one SNP on Pv07, associated with HG
Type 1.2.3.5.6.7 resistance. The five SNP markers with resistance
to HG Type 2.5.7 were located at 10,061,925 bp, 18,388,378 bp,
18,388,392 bp, 18,388,403 bp, and 18,388,408 bp on Pv01 of the
P. vulgaris G19833 Pvulgaris v1.0 reference sequence (Schmutz
et al., 2014), with P-value from 1.02 × 10−6 to 4.94 × 10−6, and
another one on Pv09 at 35,068,146 bp with P-value 1.80 × 10−6.
The SNPmarker for resistance to HGType 1.2.3.5.6.7 was located
at 44,761,605bp on Pv07.We used the SCN phenotypic data from
the report by Wen et al. (2019), but a different set of SNPs in
BARCBean6K_3 BeadChips (Song et al., 2015) to redo the GWAS
analysis.We did not identify the same SNPmarkers but identified
the SNP markers in the same regions for resistance to SCN HG
Type 2.5.7, but not for HG Type 1.2.3.5.6.7 resistance (Table 2,
Supplementary Tables 6, 7). The two SNPs, ss715640034 and
ss715639810, located at 18,874,808 bp and 20,450,707 bp on
Pv01 and two SNPs, ss715645642 and SS71549401 located at
33,052,539 bp and 33,956,905 bp on Pv09 (Table 6) were located
in similar regions reported by Wen et al. (2019), suggesting that
there are QTLs for HG Type 2.5.7 resistance in these regions.

Jain et al. (2019) conducted GWAS in 317 accessions of USDA
common bean core collection with SCN HG Type 0 and found
14 significant SNP markers on Pv 04, 05, 06, 07, 08, 10, and 11
in the Middle American subpopulation (179 accessions) and 23
SNP markers on Pv 01, 02, 07, 08, 09, and 11 for the Andean
subpopulation (138 accessions). However, we could not find any
of the 37 SNPs with LOD values greater than the significant
threshold values of 4.97 in all.set, 4.84 in Q1, and 4.52 in Q2
for the resistance to HG Type 0, 2.5.7, or 1.2.3.5.6.7, respectively
(Supplementary Table 16). Nevertheless, 11 of the 37 SNPs had
at least one LOD value >3.0 from GAPIT3 or TASSEL 5 and,
also, a LOD score > 3.0 in t-tests for resistance to the population
of HG Type 0 (Supplementary Table 17a). We did not retain
them as significant associated SNP markers because each of the
11 SNPs did not have LOD values greater than the significant
threshold, even <3.0 in any MLM model, although they may
be associated with the resistance to HG Type 0 with a minor
effect (Supplementary Table 17a). In addition, we observed nine
and 10 SNPs with LOD values >3.0 in one or more models and
t-tests as well (Supplementary Tables 17b,c), suggesting these
SNPs have minor effects for resistance to either HG Type 2.5.7
or 1.2.3.5.6.7.

Candidate Gene Model
Wen et al. (2019) reported three gene models,
PHAVU_001G248000g (amino acid transporter),
PHAVU_001G247900g (α-SNAP protein), and
PHAVU_001G247700g (wound inducible protein 12), located
at 50,653,407–50,655,828 bp, 50,646,068–50,650,097 bp, and
50,629,261–50,630,123 bp respectively, on Pv01 of common
beans to be associated with resistance to HG Type 2.5.7, which
corresponded to three gene models in the rhg1 region of soybean
chr18 with 91%, 94%, and 88% identities. However, Wen et al.
(2019) did not report any associated SNP marker in a 50 Mbp
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region of chromosome Pv01; the closest gene model was located
at 18,388,408 bp, which was 32 Mbp distance away from the
three genes. The data of resistance to SCN HG Type 2.5.7
from Wen et al. (2019) did not confirm the rhg1 in soybean
existed in common beans for their study. Jain et al. (2019)
also reported several candidate genes on Pvulgaris v1.0 Pv01
and Pv08, which had high similarity to the three genes of rhg1
of soybean for SCN resistance, but they did not report any
significant SNP marker located in the candidate gene regions,
which were associated with the resistance to HG Type 0. Thus,
their study could not confirm either that there is rhg1 or Rhg4
resistance in common beans. From the study, an SNP marker,
ss715645939, was associated with HG Type 2.5.7, which was
located at 48,772,176 bp on Pvulgaris v1.0 Pv01, at a distance of
around 1.9 Mbp from the three rhg1 paralog genes in common
beans (Supplementary Table 6). The low LOD values of the
SNP marker (LOD < 4 in all six MLM models and 5.0 in GLM
and 5.12 in SMR, Supplementary Table 6) cast doubt about
resistance to SCN HG Types at this location.

From this study, two LRR gene models, Phvul.004G099300
and Phvul.010G018300 were identified as candidates for
SCN resistance. Phvul.004G099300 (disease resistance family
protein/LRR family protein) at 33,316,658–33,320,257 bp
on Pv04 was associated with HG Type 0 resistance, and
Phvul.010G018300 (LRR protein kinase family protein) at
2,832,211–2,839,756 on Pv10 was associated with resistance to
HG Type 1.2.3.5.6.7 (Table 3). However, the LRR gene in the
rhg1 region on chr 18 in soybean was not involved in SCN
resistance (Mitchum, 2016). Further studies are needed to
validate whether the two genes are responsible for the SCN
resistance in common beans.

Genomic Prediction
Genomic prediction accuracy, using the Pearson’s correlation
coefficient (r) between the GEBV and the observed values, has
been the main parameter to measure the performance of GS
(Jarquin et al., 2014, 2016; Zhang J. P. et al., 2016; Qin et al.,
2019; Ravelombola et al., 2019, 2020, 2021; Wen et al., 2019; Ali
et al., 2020; Keller et al., 2020). The PA is affected by several
factors, such as the trait itself with its heritability, marker number,
and the marker associated with the trait, and is also affected by
GS models, marker density, the level of LD, QTL number, the
population size, and the relationship between training population
and testing population (Jarquin et al., 2016; Ali et al., 2020;
Keller et al., 2020). In this study, five scenarios were tested
for genomic PA: (1) different ratios of the training set and the
testing set (validation set), (2) different SNP numbers, (3) three
association panels, (4) the use of GWAS-derived significant SNP
markers, and (5) different GP models for resistance to three SCN
HG Types.

In this study, GP was performed, using six different ratios of
the training set: the testing set 19:1, 9:1, 4:1, 7:3, and 1:1, as 5,
10, 20, 30, 40, and 50% of the testing set in the panel. The six
tests showed similar PA (averaged r-values). A small decrease
of the r-value was observed in most cases with testing sets of
40% or higher. But the 5% “Testing set” (19:1 in the training
set: the testing set) had the largest variance, and 50% had the

smallest. The averaged r-values decreased from 5 to 50% (Table 4,
Supplementary Tables 9, 11, and Supplementary Figures 6, 9).
The study showed that 10, 20, and 30% of the testing set size (as
the same 9:1, 4:1, and 7:3 of the training set: the testing set) are
good to be used in GS for HG Type resistance in common beans.
Keller et al. (2020) reported that the training set of <30% could
reduce PA due to an insufficiently sized training set that resulted
in overfitting of the model; they also reported that a training set
> 80% can lead to large variation between cross-validations due
to an excessively small validation set. The results showed similar
trends but 10% of the testing set size (i.e., training set size =

90%) was acceptable to GS. Ravelombola et al. (2021) reported
that the average GS accuracy was similarly based on the r-values
at 2-fold [training set: testing set (validation set) = 1:1], 3-
fold, 4-fold, 5-fold, 6-fold, 7-fold, and 8-fold cross-validation for
growth habit, flowering time, and a grain yield in a multi-parent
advanced generation intercross (MAGIC) cowpea population
under drought condition, but a slightly higher averaged r-value
was observed in 7-fold cross-validation for 100-seed weight,
perhaps associated with the higher heritability of seed weight
(Nienhuis and Singh, 1988).

In this study, GP was also performed with nine different SNP
number sets from 20 to all 4,654 SNPs in cross-prediction for
resistance to three HG Types, using five GP models: rrBLUP,
Bayes A, Bayes B, BL, and BRR (Table 5). PA decreased when
100 or less SNPs were used for HG Type 0 resistance and when
200 or less SNPs were used for HG Type 2.5.7 resistance, but
PA did not decrease for HG Type 1.2.3.5.6.7 resistance (Table 5,
Figure 7, Supplementary Table 10, Supplementary Figure 10).
Overall, the results suggest that > 200 SNPs should be used for
GS.Wen et al. (2019) reported the average PA estimated by cross-
validationwas 0.52 and 0.41 for SCNHGType 2.5.7 andHGType
1.2.3.5.6.7, respectively, when 5,000 SNPs or more were used and
showed a decrease when 1,000 SNPs were used. In most of the
reports, the smaller the number of SNPs used, the lower the PA
was (Jarquin et al., 2014, 2016; Zhang J. P. et al., 2016; Wen et al.,
2019; Ali et al., 2020). Zhang J. P. et al. (2016) estimated PA (r-
value) of seed size based on 309 soybean accessions and reported
r= 0.85 when 2,000 SNPs or 31,045 SNPs were included; r = 0.8
when 1,000 SNPs or 500 SNPs were used.

In this study, using GWAS-derived SNP markers led to
the highest GP accuracy for resistance to all three SCN HG
Types (Supplementary Tables 9, 12, Supplementary Figure 12).
Ali et al. (2020) estimated the prediction accuracy of various GS
models on yield and yield-related traits in wheat; they reported
that the GWAS-derived markers improved PA in most cases.
Zhang J. P. et al. (2016) conducted GWAS and identified 48 SNPs
on 12 chromosomes associated with soybean seed size. Based on
GWAS, they reported that the r-values ranged from 0.64 to 0.74
when 5, 10, and 15 of the 48 SNP markers were used, which
were 25% higher than those calculated from the same number
of randomly selected SNPs. Qin et al. (2019) reported that the
average correlation coefficient (r) among 15 amino acids between
the observed values (each amino acid content) and the GEBVs
predicted ranged from 0.18 to 0.61 when all 23,279 SNPs were
used, from 0.45 to 0.68 when 231 SNP markers, associated with
one or more amino acid from GWAS were used; and 0.33 to 0.54
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when only the associated SNP markers with the specific amino
acid content were used, using RR-BLUP in rrBLUP software.
Spindel et al. (2016) developed a GS model (GS + de novo
GWAS) that combines RR-BLUP with GWAS-derived-markers,
which were fitted as fixed effects on the RR-BLUP training data
and found that this new model outperformed other models,
RR-BLUP, Bayesian LASSO (BL), Reproducing Kernel Hilbert
Spaces (RKHS) and RF, and multiple linear regression (MLR)
for a variety of traits in multiple environments. Thus, using
GWAS-derived SNP markers to perform GS is an approach
combining MAS and GS that can be used in the real-world
breeding program, although the predictive ability may be biased,
using SNP markers from GWAS to predict the GEBVs in the
same GWAS panel. The real GP will be lower if conducting
predictions in other panels with different individuals. We have
tested many traits in several crops and find it is a practical
approach to do genome breeding, using GWAS-derived SNP
markers (Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021).
Therefore, an approach combiningMAS andGS throughGEBVs,
using associated SNP markers (Spindel et al., 2016; Zhang J. P.
et al., 2016; Qin et al., 2019; Ravelombola et al., 2019, 2020, 2021;
Ali et al., 2020) will be a good choice to domolecular breeding for
SCN resistance in common beans and, also, for other quantitative
traits in other plant species.

In addition, GA is affected by the trait self, such as heritability.
The GH has been estimated and reported in animals and plants
such as heifers (Nawaz et al., 2018), soybean (Xavier and Rainey,
2020), and safflower (Zhao et al., 2021). de los Campos et al.
(2015) developed whole-genome regression methods to estimate
the GH, which was defined as the proportion of variance of
a trait that can be explained (in the population) by linear
regression on a set of markers. In this study, the GH was also
estimated by the rrBLUP model for resistance to the three SCN
HG Types, 0, 2.5.7, and 1.2.3.5.6.7 (Supplementary Table 13,
Supplementary Figure 14), as we did for GP estimations. The
results indicated that the higher GH, the higher GP, similar as
reported by Xavier and Rainey (2020) for yield and related traits
in soybeans.

Utility of Common Bean Resistance
Accessions
From this study, 15 out of 315 (4.8%) common bean accessions
were resistant to SCN, with FI ranging from 4.8 to 10; 62 (19.7%)
accessions were moderately resistant (10< FI< 30) for HG Type
0 (race 6). The 15 resistant accessions were PI343950, PI313630,
PI313328, PI201329, PI201354, PI313445, PI313440, PI313444,
PI319684, PI417616, PI313501, PI325614, PI430206, PI313733,
and PI269209, which will be preferred sources for resistance to
HG Type 0 (race 6).

To select common bean accessions with resistance to multiple
SCN HG Types, we combined the data of the SCN resistance
to HG Types, 2.5.7 and 1.2.3.5.6.7 from the Wen et al. (2019)
report and the data. We then selected 37 accessions, having broad
resistance with FI < 20 to both HG Types, 0 and 1.2.3.5.6.7, and
FI < 30 to HG Type 2.5.7 (Table 1). The genetic diversity of the
37 accessions showed similar to the genetic organization of the

entire 315 accession collections (Figure 8, Table 1). Most of the
resistant accessions belonged to the ecogeographic race Durango
of the Middle American gene pool, although other gene pools
or races also contained SCN resistance. The accessions with the
highest resistance to multiple HG Types (with FI < 12 to the
three HG Types) were PI201329, PI201354, PI313445, PI325642
(all race Durango), PI313733 (Andean admixed), and PI417616
(admixed) (Table 1, Supplementary Table 1).

These resistant accessions can be used in common bean
breeding programs as parents to develop new cultivars with
resistance to multiple SCN HG Types. In this study, we observed
that the SCN resistance commonly existed in common bean
accessions. There were 15 out of 315 (4.8%) common bean
accessions resistant to HG Type 0 (race 6) with FI < 10
(Supplementary Table 1). Based on the report by Wen et al.
(2019), 19 out of 363 accessions (5.2%) were resistant to HG Type
2.5.7, and 160 out of 363 (44.1%) resistant to HG Type 1.2.3.5.6.7
with FI < 10.

Interestingly, there were much more common bean lines
resistant to HG Type 1.2.3.5.6.7 than HG Type 2.5.7 and HG
Type 0. This contrasts to the SCN resistance in soybean, which
has fewer lines resistant to HG 1.2.3.5.6.7 as compared with HG
Type 2.5.7, and much fewer lines as compared with HG Type
0 because a population of HG Type 1.2.3.5.6.7 generally has
broader virulence than a population of HG Type 2.5.7 or HG
Type 0. Although the FI on theHGType indicator lines of the two
SCN populations used byWen et al. (2019) was not reported, it is
possible that the mechanisms of SCN resistance differed between
soybeans and common beans. If this is true, the different and
broad-spectrum SCN resistance in common beans potentially
provides excellent sources of SCN resistance to soybeans. SCN
has been the most damaging pest in soybeans. Only a few sources
available for resistance to multiple HG Types, particularly for
resistance to HG Type 2.5.7 and 1.2.3.5.6.7, but none of them
has been successfully deployed in commercial soybean cultivars.
After the discovery of the SCN resistance genes in common
beans, it will be possible to transfer the genes from common
beans to soybeans through a transgenic approach.

CONCLUSION

In this study, 15 accessions of the USDA common bean core
collection were observed for the resistance to SCN HG Type 0
with FI at 4.8 to 9.4; six SNP markers, located on chromosomes
Pv 04, 06, 07, 07, 09, and 11, respectively, were significantly
associated with the resistance to this SCN HG Type 0. GWAS
was also conducted for resistance to HG Type 2.5.7 and HG Type
1.2.3.5.6.7 based on published phenotypic data and the genotypic
data from the BARCBean6K_3 chip. Eleven SNPs were associated
with HG Type 2.5.7 resistance on chromosomes Pv01, 02, 03, 07,
09, and 11, and four SNPs with HG Type 1.2.3.5.6.7 resistance on
chromosomes Pv 03, 06, 10, and 11. A gene model of the disease
resistance family protein/LRR protein family, Phvul.004G104700,
was close to the SNP marker ss715640464 at a distance of 8.98
Kbp in the same LD region of chromosome Pv04, suggesting that
Phvul.004G104700 may be a candidate gene for the HG Type 0
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resistance. GP was performed for resistance to three HG Types,
using eight GP models (rrBLUP, gBLUP, Bayes A, Bayes B, BL,
BRR, RF, and SVM), with BL showing the most promising results
in terms of PA. The results showed that 400 SNPs or more had
similar GS efficiency for resistance to either HG Type 0, 2.5.7,
or 1.2.3.5.6.7, and the set of 20 significant SNP markers had the
highest PA for GP. The six sets of different testing set sizes from
5 to 50% had similar r-values. Except for gBLUP (lower PA), all
other seven models had similar PA. The averaged r-values were
0.40 for HG Type 0 resistance, 0.34 for HG Type 2.5.7, and 0.32
for HG Type 1.2.3.5.6.7. This study provides basic information
for breeders to develop SCN-resistant common bean cultivars,
using the USDA core germplasm accessions through MAS and
GS in common beans.
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