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Drought is one of the main abiotic stresses that seriously influences cotton production.
Many indicators can be used to evaluate cotton drought tolerance, but the key indicators
remain to be determined. The objective of this study was to identify effective cotton
drought tolerance indicators from 19 indices, including morphology, photosynthesis,
physiology, and yield-related indices, and to evaluate the yield potential of 104 cotton
varieties under both normal and drought-stress field conditions. Combined with principal
component analysis (PCA) and a regression analysis method, the results showed that
the top five PCs among the 19, with eigenvalues > 1, contributed 65.52, 63.59, and
65.90% of the total variability during 2016 to 2018, respectively, which included plant
height (PH), effective fruit branch number (EFBN), single boll weight (SBW), transpiration
rate (Tr) and chlorophyll (Chl). Therefore, the indicator dimension decreased from 19 to
5. A comparison of the 19 indicators with the 5 identified indicators through PCA and
a combined regression analysis found that the results of the final cluster of drought
tolerance on 104 cotton varieties were basically consistent. The results indicated that
these five traits could be used in combination to screen cotton varieties or lines for
drought tolerance in cotton breeding programs, and Zhong R2016 and Xin lu zao 45
exhibited high drought tolerance and can be selected as superior parents for good yield
performance under drought stress.

Keywords: cotton, drought resistance indices, membership function value, principal component analysis, drought
resistance

INTRODUCTION

Xinjiang is located in Northwest China and belongs to arid and semiarid areas with high
evaporation and a general shortage of freshwater resources. The average annual precipitation is
only 58 mm and is exceeded by the potential evapotranspiration (Wang et al., 2010). Cotton is the
main economic crop in Xinjiang and accounts for more than one-third of the total agricultural
area in the region (Wang et al., 2004; Kang et al., 2012). At present, the cotton planting area in
Xinjiang accounts for 70% of the national planting area, and the total output accounts for 84% of
the national total (source: National Bureau of Statistics). Drought has a wide range of effects on
cotton, and related reports indicate that cotton is affected by drought, resulting in a 34% reduction
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in cotton production (Ullah et al., 2017). Hence, obtaining
and breeding new varieties with high yield and strong
drought resistance are currently the main breeding targets
(Cattivelli et al., 2008).

Drought tolerance is genetically related to various
morphological and physiological characteristics of crops.
Among abiotic stresses, drought has the greatest impact on
cotton growth and development, which severely limits cotton
yield and fiber quality (Wiggins et al., 2013). The decrease in boll
quantity and weight is the main reason for the decline in seed
cotton yield (Sarwar et al., 2012). Soomroo et al. (2011) showed
that stomatal conductance is reduced under water stress, and
photosynthetic phenotypic values vary greatly among plants,
reflecting potential differences in stress responses or regulatory
processes such as stomatal conductance, photosynthetic rate,
and storage of photosynthetic products (Kramer and Evans,
2011; Soomroo et al., 2011). Zhang et al. (2010) showed that
wilting movement leaves of cotton plants can reduce the degree
of photosynthesis decline when they are under water stress.
Water deficiency affects photosynthesis and affecting chlorophyll
(Chl) content by changing the internal structure of chloroplasts
(Huseynova et al., 2016).

At present, 30 traits have been proposed as important
indicators of the drought tolerance of cotton (Loka et al., 2011).
These traits mainly have three types, including morphological
and physiological indicators (Zhang et al., 2010; Song et al.,
2017), photosynthetic indicators (Lawlor and Cornic, 2002;
Flexas et al., 2006), and yield indicators (Hussein et al., 2011;
Sarwar et al., 2012). These indicators have been widely used in
drought resistance studies of wheat, cotton, and maize (Kramer
and Evans, 2011; Soomroo et al., 2011; Wiggins et al., 2013).
Scientists have combined the comprehensive drought resistance
coefficient, stress sensitivity index, membership function,
principal component analysis (PCA) and other methods to
evaluate drought resistance from cotton yield (Li et al., 2011;
Liu T. P. et al., 2014; Huseynova et al., 2016; Lv et al., 2019).

Drought stress reduces yield because it affects crop growth
and physiological metabolism (Nagy et al., 2013; Liu et al.,
2015), which includes many drought resistance indicators,
and it is difficult to consider all indicators when analyzing
macropopulations. However, PCA can be used to determine the
weight of each indicator and finds some principal components
that can control all variables (Ali et al., 2014; Chen et al., 2014;
Wijewardana et al., 2016; Bo et al., 2017; Füzy et al., 2019). It
can reduce the number of measurement indicators and improve
measurement efficiency. Additionally, joint application PCA,
membership function, cluster analysis and other methods will
make the assessment of crop stress performance more reliable
and practical. Recently, Munir et al. (2020) combined PCA
to screen out other morphological parameters associated with
increasing seed cotton yield and screened out two varieties with
higher yields. The drought tolerance of maize inbred lines was
evaluated using methods such as PCA and fuzzy clustering,
avoiding the one-sidedness of a single indicator and revealing the
relationship between drought tolerance traits and crop drought
tolerance (Huseynova et al., 2016). This method is also used
to screen drought-tolerant varieties of wheat and bread wheat

(Farshadfar et al., 2011; Khalili et al., 2012). Therefore, the
objective of this study was to screen the key drought tolerance
indicators of cotton through PCA and regression analysis and
evaluate the drought tolerance ability of 104 cotton varieties.

MATERIALS AND METHODS

Plant Material Drought Treatment
This study was conducted at the Experimental Farm of the
Cotton Breeding Laboratory of Xinjiang Agricultural University
Experimental Station (43◦20′∼45◦20′E, 84◦45′∼86◦40′N) from
2016 to 2018. The average altitude of the area is 300∼500 m,
which is a temperate continental climate. The annual average
temperature is 7.5∼8.2◦C, the sunshine duration is 2318∼2732 h,
the frost-free period is 147∼191 d, the annual precipitation is
125.0∼207.7 mm, the annual evaporation is 1000∼1500 mm, and
the monthly average precipitation is 13.0∼20.0 mm. The annual
average humidity in 2016–2018 was 72, 71, and 69%, respectively.
The soil is mainly sandy loam, which contains 0.23 g/kg available
phosphorus, 0.29 g/kg available potassium and 0.33 g/kg total
nitrogen, with a pH of 8.3.

Before planting, the plots were divided into two parts in
the test area, one for normal watering (CK) and another for
drought stress (DS). Each germplasm was planted in two rows
300 cm in length, 25 cm apart and 10 cm between plants for
each plot. Drought stress conditions were achieved by manual
water control throughout the growing season (stress-treated stop
irrigation). In the flowering and boll-forming stage (early July),
the control group was watered normally, and the stress group
was not treated with water twice. All materials were sampled
after two controlled water treatments. A completely randomized
block experimental design was used, with three replications
for each treatment, each separated by a protective row. One
hundred and four cotton varieties were used for this experiment
(Appendix Table 1).

Physiological and Biochemical Traits
In the flowering and boll-forming stage, drought stress conditions
were achieved by manual water control (when the soil moisture
content dropped by 40%, as shown in Table 1). A portable
photosynthesis system (CIRAS-3, United Kingdom) was used
to measure photosynthetic indicators (between 10:30 and 12:30
Beijing time in the morning, this time period is the best
time for local measurement, avoiding the "photosynthetic lunch
break" phenomenon). The functional leaf of each material
was used for measurement (the cotton inverted trefoil). The
measured indicators include net photosynthetic rate (Pn),
stomatal conductance (gs), transpiration rate (Tr), water
use efficiency (WUE, WUE = Pn/Tr), intercellular carbon
dioxide concentration (Ci), and water vapor pressure deficit
(VPD). Three replicates of each species under each treatment
condition were used for measurement of the photosynthesis
indicators. At the same time, the leaves of the plants used for
measuring photosynthetic indicators were used to determine
physiological indicators, including malondialdehyde (MDA), Chl
and superoxide dismutase (SOD). The test was repeated in

Frontiers in Plant Science | www.frontiersin.org 2 July 2021 | Volume 12 | Article 619926

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-619926 July 7, 2021 Time: 12:41 # 3

Sun et al. Screening of Key Drought Resistance Indices

TABLE 1 | Soil water contents during 2016∼2018.

Water contents 2016 2017 2018

Before stress (%) In the stress (%) Before stress (%) In the stress (%) Before stress (%) In the stress (%)

0–20 cm 23.116 13.862 28.801 12.489 21.970 12.170

20–40 cm 24.070 14.901 29.098 12.862 22.980 12.820

40–60 cm 25.137 15.243 29.562 14.725 26.000 14.770

Average 24.108 14.669 29.154 13.359 23.650 13.250

triplicate. The MDA content was measured according to the
method of Yin et al. (2010). Chl was extracted from leaves
using 80% acetone (Lichtenthaler, 1987; Yang et al., 2014).
SOD activity was measured by the nitroblue tetrazolium (NBT)
method (Zhang et al., 2007). Refer to Appendix 1 for specific
methods. The determination of each biochemical index was
repeated three times.

Morphological and Yield Traits
After maturing in late September, 5 uniformly continuous
cotton plants for each variety in each treatment were selected
to investigate 8 traits, including plant height (PH), fruit
branch number (FBN), effective fruit branch number (EFBN),
boll number (BN), effective boll number (EBN), cotton seed
yield (CSY), cotton lint yield (CLY), and single boll weight
(SBW). The investigation method refers to the "Description
Specifications and Data Standards for Cotton Germplasm
Resources" (Du and Zhou, 2005).

Drought Adaptability Analysis
The drought tolerance coefficient of each genotype was calculated
by the formula proposed by Blum and Jordan (1985) and
Szira et al. (2008). The membership function value of drought
resistance (MFVD) was calculated according to the relevant
formulas proposed by Chen et al. (2012); Zadeh (1965). The
drought tolerant coefficient (DC) was calculated as the ratio of the
data derived from the drought stress (DS) and normal watering
(CK) treatments of the same accession for each trait using the
following equations, and according to DC, MFVD was calculated
as:

DC = XDS

XCK
(1)

U =
DC − DCi min

DCi max−DCi min
(2)

MFVD =
1
n

n∑
i=1

U (3)

XDS and XCK are the values of the trait for the genotype
evaluated under DS and CK treatments, respectively, where U is
the membership function value of the trait for the genotype for
drought tolerance and DCimax and DCimin are the maximum and
minimum values of the drought tolerance coefficient for the trait
of all the varieties, respectively.

High-yield classification is the best indicator for assessing
drought resistance (Ramirez and Kelly, 1998). Therefore, high

yield and high drought resistance were evaluated by the yield
reduction value (Yd) under water stress. Control species can
reduce environmental factors other than water stress (Golestani-
Araghi and Assad, 1998), and the yield reduction value (Yd) was
calculated as:

Yd = Yp−Ys (4)

Ys is the yield under water stress, and Yp is the yield under
normal irrigation conditions.

Data Analysis
Nineteen indicators were used for analysis. The data were
summarized and calculated using Excel 2010, and each measure
of each trait corresponds to the mean of three separate replicates.
SPSS software (IBM Inc., Armonk, NY, United States) was used
to perform analysis of variance (ANOVA) to test the effects of
variety, treatment method and their interaction. Means were
compared using the sample t-test. PCA (Stackpole et al., 2011;
Chen et al., 2014) was performed using a SPSS 21.0. The
hierarchical clustering analysis of MFVD was completed using R
(cluster package, version 3.6).

RESULTS

Responses of Cotton Various Traits to
Drought Stress
To analyze the drought effects of different cotton materials,
we investigated 19 drought tolerance-related indicators of
morphology, photosynthesis, physiology and yield characteristics
under cotton drought stress conditions in three consecutive
planting cycles. The results showed that under drought stress,
the averages of all 19 traits decreased (Table 2). However, the
degree of decline is different under different conditions and in
different planting cycles. The coefficient of variation (CV) of the
19 traits was 0.11 to 0.68 under drought conditions and 0.08
to 0.63 under sufficient water conditions. The results indicated
that the cotton varieties used in this study had greater variation
under drought stress. According to the results of the three-factor
analysis of variance, the interaction between different breeds,
different treatments, different breeds and different treatments
had significant or extremely significant effects on the 19 traits
in 3 years (P < 0.05 or P < 0.01) (Appendix Tables 5–7). And
all indicators are extremely significant differences under the two
treatment conditions (P > 0.01) (Table 2).
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TABLE 2 | Statistics of various traits investigated under two conditions in 3 years.

Year 2016 2017 2018

Treatment CK DS CK DS CK DS

Statistical parameter Mean ± SD CV Mean ± SD CV Mean ± SD CV Mean ± SD CV Mean ± SD CV Mean ± SD CV

PH 60.61 ± 7.90a 0.13 45.24 ± 5.54b 0.12 66.05 ± 6.36a 0.10 58.30 ± 6.85b 0.12 72.62 ± 9.82a 0.14 56.77 ± 7.34b 0.13

FBN 7.36 ± 0.90a 0.12 5.07 ± 0.85b 0.17 7.57 ± 0.85a 0.11 6.28 ± 0.81b 0.13 7.96 ± 1.08a 0.14 6.70 ± 1.04b 0.16

EFBN 5.86 ± 0.87a 0.15 4.02 ± 0.73b 0.18 6.23 ± 0.84a 0.13 5.14 ± 0.77b 0.15 5.51 ± 1.12a 0.20 3.07 ± 0.98b 0.32

BN 8.39 ± 3.24a 0.39 4.68 ± 1.17b 0.25 8.20 ± 1.44a 0.18 6.31 ± 1.26b 0.20 5.96 ± 1.40a 0.23 3.26 ± 1.18b 0.36

EBN 6.58 ± 1.65a 0.25 4.31 ± 0.99b 0.23 7.81 ± 1.40a 0.18 5.89 ± 1.21b 0.21 4.77 ± 1.47a 0.31 2.61 ± 0.98b 0.38

CSY 121.79 ± 14.21a 0.12 100.03 ± 13.23b 0.13 112.97 ± 14.89a 0.13 95.04 ± 12.15b 0.13 107.64 ± 12.22a 0.11 94.60 ± 13.17b 0.14

CLY 51.61 ± 6.34a 0.12 31.87 ± 6.04b 0.19 48.52 ± 6.87a 0.14 29.53 ± 5.37b 0.18 39.49 ± 5.57a 0.14 36.72 ± 6.57b 0.18

SBW 6.09 ± 0.71a 0.12 4.96 ± 0.74b 0.15 5.65 ± 0.74a 0.13 4.75 ± 0.61b 0.13 5.40 ± 0.57a 0.11 4.73 ± 0.66b 0.14

Ci 228.71 ± 18.45a 0.08 200.49 ± 22.44b 0.11 261.67 ± 46.40a 0.18 199.27 ± 45.33b 0.23 227.66 ± 44.99a 0.20 158.23 ± 52.24b 0.33

gs 550.39 ± 201.89a 0.37 323.22 ± 163.29b 0.51 166.55 ± 105.16a 0.63 88.75 ± 44.42b 0.50 378.14 ± 212.05a 0.56 130.10 ± 75.99b 0.58

VPD 2.42 ± 1.16a 0.48 1.51 ± 0.46b 0.30 1.77 ± 1.00a 0.56 1.02 ± 0.32b 0.31 3.69 ± 0.92a 0.25 2.18 ± 0.59b 0.27

Pn 26.23 ± 6.91a 0.26 19.94 ± 5.63b 0.28 8.01 ± 4.15a 0.52 4.58 ± 1.75b 0.38 25.39 ± 6.85a 0.27 11.82 ± 4.86b 0.41

Tr 6.42 ± 1.15a 0.18 4.43 ± 1.27b 0.29 1.77 ± 1.09a 0.62 1.12 ± 0.28b 0.25 6.15 ± 1.22a 0.20 3.93 ± 0.98b 0.25

WUE 4.94 ± 1.17a 0.24 3.60 ± 0.68b 0.19 14.11 ± 35.63a 2.53 3.85 ± 1.29b 0.34 4.91 ± 2.88a 0.59 2.87 ± 0.9b 0.31

MDA 99.99 ± 31.56a 0.32 60.08 ± 22.78b 0.38 161.25 ± 36.16a 0.22 110.04 ± 32.28b 0.29 117.16 ± 29.92a 0.26 77.66 ± 22.07b 0.28

a 2.98 ± 1.14a 0.38 1.86 ± 0.90b 0.48 2.36 ± 0.57a 0.24 1.52 ± 0.60b 0.39 7.73 ± 1.54a 0.20 5.85 ± 1.36b 0.23

b 1.30 ± 0.48a 0.37 0.74 ± 0.35b 0.47 1.60 ± 0.52a 0.33 0.74 ± 0.41b 0.55 5.13 ± 1.05a 0.20 3.88 ± 0.93b 0.24

Chl 4.06 ± 1.47a 0.36 2.60 ± 1.11b 0.43 3.90 ± 0.96a 0.25 2.54 ± 1.11b 0.44 12.83 ± 2.59a 0.20 9.73 ± 2.22b 0.23

SOD 5.26 ± 1.32a 0.25 4.68 ± 1.24b 0.26 19.66 ± 7.00a 0.36 10.71 ± 7.28b 0.68 0.78 ± 0.20a 0.26 0.52 ± 0.16b 0.31

Plant height (PH), fruit branch number (FBN), effective fruit branch number (EFBN), boll number (BN), effective boll number (EBN), cotton seed yield (CSY), cotton lint yield (CLY), single boll weight (SBW), photosynthetic
rate (Pn), stomatal conductance (gs), transpiration rate (Tr), water use efficiency (WUE), intercellular carbon dioxide concentration (Ci), water vapor pressure deficit (VPD), malondialdehyde (MDA), chlorophyll (Chl),
chlorophyll a (a), chlorophyll b (b), and superoxide dismutase (SOD), drought stress (DS), normal watering (CK), Coefficient of Variation (CV), different letters between control and treatment significant differences at
P < 0.001 levels through paired sample t-test.
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TABLE 3 | MFVD values, MFVD1 value and classification of some cotton varieties during 2016∼ 2018.

Varieties 2016 2016 2017 2017 2018 2018

MFVD Group MFVD1 Group MFVD Group MFVD1 Group MFVD Group MFVD1 Group

10599 0.43 III 0.52 II 0.53 III 0.52 III 0.35 III 0.42 III

108 Fu 0.70 II 0.70 II 0.57 III 0.66 II 0.51 II 0.60 II

2 Hao 0.38 IV 0.36 III 0.49 III 0.53 III 0.41 III 0.41 III

5917-N10-1 0.64 II 0.61 II 0.63 II 0.73 II 0.58 I 0.64 II

Xin lu Zao45 0.73 I 0.75 I 0.73 I 0.70 II 0.53 II 0.59 II

CQJ-5 0.64 II 0.54 II 0.66 II 0.68 II 0.63 I 0.66 II

KK1543 0.81 I 0.86 I 0.68 II 0.67 II 0.51 II 0.51 III

MSCO-12 0.76 I 0.84 I 0.71 I 0.88 I 0.51 II 0.61 II

ND359-5 0.77 I 0.78 I 0.68 II 0.89 I 0.58 I 0.56 II

TM-1 0.77 I 0.71 II 0.65 II 0.77 I 0.51 II 0.62 II

Bellsno 0.63 II 0.58 II 0.82 I 0.89 I 0.55 II 0.59 II

Xin hai 20 0.46 III 0.42 III 0.39 IV 0.32 IV 0.42 III 0.47 III

Shi yuan 321 0.57 III 0.53 II 0.61 II 0.68 II 0.50 II 0.63 II

Tai yuan 112 0.74 I 0.71 II 0.65 II 0.73 II 0.51 II 0.49 III

Tiao he 2013 0.72 II 0.64 II 0.76 I 0.85 I 0.67 I 0.75 I

Tian yun 10 0.64 II 0.56 II 0.61 II 0.66 II 0.56 II 0.53 III

Xi bu 50 0.56 III 0.48 II 0.44 IV 0.39 IV 0.46 III 0.48 III

Kui 85-174 0.49 III 0.34 III 0.46 IV 0.52 III 0.39 III 0.42 III

Xin lu zao 26 0.46 III 0.41 III 0.41 IV 0.40 IV 0.47 III 0.50 III

Xin lu zao 38 0.70 II 0.68 II 0.67 II 0.73 II 0.52 II 0.58 II

Xin lu zao 3 0.45 III 0.42 III 0.61 II 0.56 III 0.39 III 0.37 III

Xin pao 1 hao 0.46 III 0.42 III 0.66 II 0.68 II 0.44 III 0.47 III

Xin shi K7 0.48 III 0.19 IV 0.50 III 0.53 III 0.35 III 0.39 III

Xin lu Zao 13 0.73 I 0.82 I 0.79 I 0.87 I 0.65 I 0.64 II

Xin lu Zao 19 0.61 II 0.50 II 0.70 I 0.78 I 0.48 II 0.58 II

Xin lu Zao 32 0.44 III 0.35 III 0.43 IV 0.53 III 0.44 III 0.53 III

Xin lu Zao 7 0.59 II 0.56 II 0.73 I 0.75 II 0.49 II 0.62 II

Zhong R 2067 0.47 III 0.36 III 0.55 III 0.54 III 0.46 III 0.55 II

Zhong R 2016 0.75 I 0.59 II 0.64 II 0.68 II 0.44 III 0.46 III

Zhong R 773 0.60 II 0.58 II 0.68 II 0.69 II 0.57 II 0.63 II

Drought Tolerance Is Explained by the
Membership Function Value of Drought
Resistance
Previous studies have shown that after water-limited treatment,
the appropriate index is significantly correlated with yield. To
discover a suitable water resistance index of varieties under
drought conditions, the yield of 104 cotton varieties was
measured under well-watered and water-limited conditions.
MFVD is the average membership function value of drought
resistance of all the target traits. The Yd value reflects the change
in yield of cotton material under water stress. A lower Yd value
corresponds to less yield reduction caused by drought stress and
thus corresponds to stronger drought tolerance, while a higher
Yd value indicates more yield reduction and weaker drought
tolerance. Our statistics showed that after water stress in 2017, the
yield reduction values of Xin lu zao 45, Xin lu zao 19, and Zhong R
2016 were the lowest (0.13 g/plant, 0.86 g/plant, and 0.06 g/plant;
Appendix Table 4), respectively, while the MFVD values of Xin
lu zao 45, Xin lu zao 19, and Zhong R 2016 were relatively
large (0.73, 0.70, and 0.64, respectively; Table 3). Additionally

in 2017, after cotton material resources were subjected to water
stress, the yields of Xin lu zao 26, Xin hai 20 and Xin nong mian
3 decreased by 29.99 g/plant, 35.10 g/plant and 43.55 g/plant
(Appendix Table 4), respectively, while the MFVD values were
relatively lower (0.41, 0.39, and 0.46, respectively; Table 3). The
same results were shown in 2016 and 2018 (a large Yd value
means a lower MFVD value). The results showed that Yd has
a linear relationship with MFVD and is significantly correlated
in 3 years. The results showed that the MFVD can indicate the
strength of drought tolerance (Figure 1).

Identification of Key Drought Tolerance
Indicators Through PCA and Stepwise
Regression Analysis
PCA avoids repeated information interference without losing
the original information by converting multiple indicators into
new comprehensive and independent indicators. It can clearly
display the changes in these indicators after stress. In our study,
five top principal components were extracted, marked as PC1
to PC5, which together explained 65.52, 63.59, and 65.90% of
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FIGURE 1 | Linear regression analysis of the average value of MFVD and Yd
in 3 years (MFVD, membership function value of drought resistance; Yd, yield
reduction value).

the total variation after drought stress in 2016, 2017, and 2018,
respectively (Table 4).

As shown in Table 5, the first principal component is mainly
related to EFNB, BN and EBN, and these are morphological
characteristics that can be defined as a comprehensive
morphological index. The second principal component is
related to photosynthetic traits such as Tr and Pn, and it can be
defined as a comprehensive evaluation index of photosynthesis.
The third main component is related to yield traits such as SBW,
which can be defined as a comprehensive evaluation index of
yield. The fourth main component is related to physiological
traits such as Chl, and it can be defined as a comprehensive
evaluation index of physiological traits. Additionally, PC5 is
mainly Tr, indicating that it has a greater response to drought
in photosynthetic indicators. In contrast to the results of 2016
and 2018, they are basically consistent with 2017 (Appendix
Tables 2, 3). This finding indicates that we can use these five
principal components to comprehensively evaluate cotton
drought tolerance.

At present, relevant literature has reported a large
number of drought tolerance indicators in crops. Thus, it
is necessary and urgent to screen out important indicators
to accurately and rapidly select drought-tolerance varieties.
In this study, stepwise regression analysis was performed
to select appropriate indicators to comprehensively assess
the drought tolerance of the cotton varieties based on the
MFVD and the 19 trait indices. The MFVD value and 19

trait indicators were set as the dependent and independent
variables, respectively. In 2017, the best regression equation
y = (−0.307+0.142X1+0.419X2+0.355X3+0.091X4+0.120X5) was
obtained through stepwise regression analysis. In the equation,
X1, X2, X3, X4, and X5 represent five traits, namely, PH, EFBN,
SBW, Tr, and Chl, whose coefficients were 0.142, 0.419, 0.355,
0.091, and 0.120, respectively, and the determination coefficient
R2 of the equation was 0.73. The results suggested that those 5
independent variables can determine 73% of the total variation,
and the equation is significant. In the regression equations
established in 2016 and 2018, R2 is 0.82 and 0.71, respectively
(Table 6). It can be seen from the regression equation that
these 5 trait indices have significant effects on the drought
tolerance of cotton materials and can be used as key indicators
for comprehensive evaluation.

Evaluation of Drought Tolerance in
Cotton by MFVD
Cluster analysis results of 104 cotton varieties based on 19 indices
show that the highest MFVD was observed in Zhong R 2016
(0.64) and Xin lu zao 45 (0.73) in 2017, which confirmed that
the yields of Zhong R 2016 and Xin lu zao 45 decreased the
least and were highly tolerant to drought stress. Furthermore,
Xin lu zao 26 (0.41) and Xin hai 20 (0.39) had the lowest
MFVD, indicating that the yield of these two cotton varieties
exhibited the greatest decrease and highest sensitivity to drought
stress. The same situation was also observed in 2016 and
2018 (Table 3).

Interestingly, in 2017 calculating the MFVD1 value based on
these 5 indicators suggested that among 104 cotton varieties, Xin
lu zao 45 and Zhong R 2016 still had high MFVD1 values of 0.70
and 0.68, respectively. Xin lu zao 26 and Xin hai 20 also have
very low MFVD1 values of 0.40 and 0.32, respectively (Table 3).
The analysis results from 2016 and 2018 are the same. High
MFVD1 values have characteristics of strong drought tolerance,
and low MFVD1 values are sensitive to drought tolerance. These
results signify that these 5 traits are key drought tolerance indices
in cotton.

DISCUSSION

Drought stress has a significant effect on morphology, and
water stress reduces plant performance in all aspects, such
as morphology, physiological characteristics, and yield

TABLE 4 | Eigenvalues and contribution rate of principal components in 2016∼2018.

Principal components 2016 2017 2018

Eigenvalues Cumulative
contribution rate (%)

Eigenvalues Cumulative
contribution rate (%)

Eigenvalues Cumulative
contribution rate (%)

PC1 5.148 27.094 3.994 21.020 3.738 19.676

PC2 2.353 39.476 2.807 35.794 3.127 36.132

PC3 2.137 50.722 2.297 47.884 2.699 50.336

PC4 1.631 59.307 1.793 57.322 1.593 58.721

PC5 1.181 65.524 1.191 63.593 1.362 65.889
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TABLE 5 | Eigenvector matrix of principal component analysis.

Principal component

PC1 PC2 PC3 PC4 PC5

PH 0.559 0.051 −0.329 −0.065 −0.040

FBN 0.493 0.190 −0.329 0.099 0.250

EFBN 0.814 −0.014 −0.403 0.158 0.115

BN 0.809 −0.099 −0.393 0.187 −0.128

EBN 0.804 −0.126 −0.387 0.176 −0.124

CSY 0.625 −0.320 0.534 −0.373 0.012

CLY 0.566 −0.266 0.421 −0.360 −0.052

SWB 0.625 −0.320 0.534 −0.373 0.012

CI 0.332 0.515 0.252 0.111 −0.182

gs 0.334 0.667 0.129 0.104 −0.119

VPD 0.141 0.671 0.063 0.059 −0.318

Pn 0.197 0.502 0.366 0.186 0.229

Tr 0.223 0.404 0.231 −0.071 0.591

WUE 0.079 0.693 0.391 0.004 −0.009

MDA −0.064 0.064 −0.136 −0.221 −0.250

a 0.122 −0.498 0.317 0.439 0.230

b 0.026 −0.081 0.365 0.578 −0.387

Chl 0.095 −0.375 0.417 0.764 −0.017

SOD −0.080 0.104 −0.132 0.237 0.514

(Claeys and Inze’D, 2013). Many scholars have conducted
drought resistance identification from one or two aspects of
morphology, photosynthesis and physiology because yield
is affected by growth and development processes, and plant
growth is a measure of drought adaptability; thus, the measured
indicators must include yield and morphological indicators
(Blum, 1979; Dolferus, 2014). Most studies have evaluated the
drought resistance of cotton materials through morphological
indicators and yield indicators (Liu et al., 2016; Li et al.,
2017). Moreover, these indicators are only partial indicators
and ignore the effects of photosynthesis, physiology and
biochemistry on crop drought resistance. Osmotic adjustment
is considered an important part of drought resistance (such as
MDA and proline content; Wei et al., 2009; Fang and Xiong,
2015; Chen et al., 2016), and there is a positive correlation
with the indicators of photosynthesis (Hura et al., 2007). At
the same time, drought stress will cause the decomposition
of Chl, which in turn affects crop photosynthesis (Efeoglu
et al., 2009; Ying et al., 2015). Therefore, it is necessary to
combine multiple traits such as morphology, physiology,

biochemical and yield traits when conducting drought resistance
evaluation and analysis. In our experiment, a total of 104
materials and 19 indices closely related to drought tolerance,
including PH, FBN, EFBN, BN, EBN, CSY, CLY, SBW, Pn,
gs, Tr, WUE, Ci, VPD, MDA, Chl, a, b, and SOD, and these
data were used to screen the key indicators for evaluating
drought tolerance in cotton. We found that their drought
tolerance was different and distributed in different drought
tolerance categories. The results of the 3-year analysis of variance
showed that all traits had extremely significant differences
after water treatment. Simultaneously, most of the CV values
under drought stress were higher than that of the control,
indicating that the cotton varieties types selected in this study
are abundant, the treatment effect is obvious, and the results
are representative.

The drought tolerance mechanism of plants is very
complicated, and a single indicator cannot fully and accurately
evaluate drought tolerance. Therefore, it is necessary to evaluate
the drought tolerance of plants’ comprehensive character index
by using a multivariate analysis method. PCA can simplify
multiple variables by transforming the number of associated
traits into a smaller number of representative variables as
principal components (PCs). In rice, corn and wheat, PCA is
used for drought resistance analysis and evaluation, and relevant
drought resistance indicators have been determined. PCA
can explain and describe the important indicators of drought
resistance and salt tolerance in germplasm (Bo et al., 2017;
Negrão et al., 2017; Kakar et al., 2019). Ayalew et al. (2011)
identified three principal components through PCA, which
accounted for 70% of the total variation in 14 agronomic traits.
The main component PC1 shows that grain yield, biological
yield and harvest indicators are closely related. This shows that
the yield traits of crops are sensitive to drought stress, and there
are large differences among varieties. Bedane et al. (2015) found
that 73% of the 11 traits can be explained by two dimensions
(PC1 and PC2). He found that PC1 is mainly the three indicators
of plant height, ear length and biomass, and PC2 is mainly
the number of tillers per plant and grain yield. In this study,
similar results were obtained for cotton boll weight and yield
traits per plant (with extremely significant differences among
varieties after water treatment). In the abovementioned studies,
the indicators for PCA analysis are all morphological indicators,
which pay too much attention to morphological aspects while
ignoring other aspects. PCA screened out important relevant
indicators unilaterally in physiological indicators. Two important
indicators of PF parameters have been determined through 18

TABLE 6 | Regression equation during 2016∼2018.

Year Regression equation R2 Sig.

2016 y = −0.294+0.229X1+0.368X2+0.308X3+0.184X4+0.133X5 0.82 0.000**

2017 y = −0.307+0.142X1+0.419X2+0.355X3+0.091X4+0.120X5 0.73 0.000**

2018 y = −0.166+0.135X1+0.197X2+0.151X3+0.211X4+0.229X5 0.71 0.000**

**Indicate significance at P < 0.01 level.
X1:PH,X2:EFBN,X3:SBW,X4:Tr,X5:Chl.
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indicators of chlorophyll fluorescence, which can screen many
samples for large-scale surveys in a short time (Filippo et al.,
2020). However, these indicators are based only on physiological
indicators. In research on the drought resistance of irises, PCA
is combined with regression analysis to screen out the water
loss rate, and the activity of MDA and peroxidase can be used
as important indicators for drought resistance evaluation (Bo
et al., 2017). Although regression analysis is combined in the
process of iris drought resistance research, only physiological
indicators are analyzed, and other indicators are not analyzed.
There are also a large number of drought tolerance evaluation
indicators in cotton (including some of the indicators employed
in the above research), which can also be effectively selected by
these two methods. During the 3 years of this study, combined
with PCA (five principal components were identified), through
stepwise regression analysis, it was determined that the five
traits (PH, EFBN, SBW, Tr, and Chl) had significant effects
on the drought tolerance of cotton materials and could be
used as the main indicators for screening drought-tolerance
materials. With the development of remote sensing technology,
new research methods have been provided for field research on
large groups of crops. In agriculture, remote sensing technology
is currently mainly used in research on crop diseases and insect
pests (Calderon et al., 2013; Jan et al., 2015; Ballester et al.,
2017), vegetation coverage (Li et al., 2012; Liu F. et al., 2014),
and crop yield estimation (Tamouridou et al., 2017; Zhou et al.,
2017). Combining remote sensing technology has been used in
the detection and evaluation of potato late blight (Rodríguez
et al., 2021), the monitoring of wheat yellow rust (Guo et al.,
2021), and the estimation of tomato yield (Chang et al., 2021).
But the application of remote sensing in cotton is less (but it
has begun to develop in recent years). When remote sensing
is used for large-scale and rapid measurements, some clear
indicators are needed for analysis, such as the yield indicators
and disease resistance indicators mentioned above. In this study,
through the screening of cotton drought tolerance indicators, five
key indicators reflecting cotton drought tolerance were initially
determined, which provided preliminary target traits for the
application of remote sensing in cotton, and these target traits
can be used as reference parameters. This will provide an effective
method and index for the large-scale assessment of drought
tolerance in cotton varieties.

A single index can only reflect the sensitivity of a certain
trait to drought during stress but cannot effectively reflect
the comprehensive performance of crops under drought stress.
MFVD is a multivariate index in which multiple traits are
used to calculate its value. The MFVD value integrates drought
resistance coefficients of different traits (Nouri-Ganbalani et al.,
2009; Liu et al., 2015). It can effectively reflect the comprehensive
performance of crops under drought stress. In wheat, the
membership function is used for the identification and evaluation
of drought resistance. Wheat materials with strong drought
resistance, which are useful for drought resistance breeding,
have been screened using MFVD (Chen et al., 2012; Liu et al.,
2015; Song et al., 2017). However, none of the tested varieties
exceeded 90, and the measured indicators were all morphological
indicators such as PH, FLA (area of flag leaf), etc., and no

comprehensive consideration was given to the selection of
relevant indicators. In this study, the drought tolerance of
cotton materials was evaluated by membership function. The
MFVD values of the nineteen indicators classify the tested
cotton materials into four types, and the MFVD1 of the five
indicators screened by PCA are also divided into four categories.
In 3 years, MFVD and MFVD1 showed a very significant positive
correlation, with correlation coefficients of 0.889, 0.829, and
0.841, respectively (p < 0.01). Three-year analysis results show
that this method can increase the accuracy of drought tolerance
evaluation in cotton fields. The five indicators screened by PCA
can be used for the identification of cotton drought tolerance and
the screening of drought-resistant materials.

CONCLUSION

In this experiment, 19 drought-related indicators such as
morphology, photosynthesis, physiology and yield were
measured after water stress, and five main components were
identified through PCA to effectively explain the drought
tolerance of cotton. These five indices, including PH, EFBN,
SBW, Tr and Chl, were selected in combination with stepwise
regression analysis. The MFVD values of 19 indicators are
basically consistent with the evaluation results of the MFVD1
values obtained from the five indicators. Eventually, these
five indicators were selected as the key indicators to evaluate
the drought tolerance of cotton. These findings will help us
evaluate drought tolerance rapidly and subsequently and then
screen drought-tolerance materials.
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