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Arbuscular mycorrhiza fungi (AMFs) are a group of soil-dwelling fungi that form symbiotic
associations with plants, to mediate the secondary metabolism and production of
active ingredients in aromatic and medicinal plants. Currently, there is little research
on Salvia miltiorrhiza Bge. inoculation with native AMFs and the concomitant effects
on growth and secondary metabolites. In this study, S. miltiorrhiza was treated with
eight AMFs, i.e., Glomus formosanum; Gl. tenebrosum; Septoglomus constrictum;
Funneliformis geosporum; Rhizophagus manihotis; Ambispora gerdemanii; Acaulospora
laevis; Ac. tuberculata, to investigate the influence of AMF inoculation on biomass
and secondary production under greenhouse conditions in S. miltiorrhiza roots. The
results showed that mycorrhiza formation rates were between 54.83 and 86.10%.
Apart from Ac. laevis and Gl. tenebrosum treatment, the roots biomass of the other
treatment groups was effectively increased, and the fresh and dry weight of the plant
inoculated with Fu. geosporum were increased by 86.76 and 86.95%, respectively.
Specifically, AMF treatments also impacted on phenolic acids production; inoculation
with both Fu. geosporum or Ac. laevis significantly reduced total phenolic acids, whereas
the other treatments effectively increased these levels, of which Gl. formosanum
generated significant levels. Most AMF-plant symbiotic experiments facilitated phenolic
acid accumulation in the secondary metabolites of S. miltiorrhiza (except Ac. laevis). This
study showed that most native AMFs inoculation with S. miltiorrhiza promoted roots
growth and increased secondary metabolites production (especially phenolic acids).
Going forward, inoculation of native AMF is a promising method to improve the quality
and yield of S. miltiorrhiza and should be considered during production.

Keywords: Salvia miltiorrhiza, arbuscular mycorrhizal fungi, biomass, phenolic acids, tanshinones, quality

Abbreviations: AMF, arbuscular mycorrhiza fungi; Sal B, salvianolic acid B; TS-IIA, tanshinone IIA; DT-I,
dihydrotanshinone I; DS, danshensu; CA, caffeic acid; RA, rosmarinic acid; Sal A, salvianolic acid A; CT, cryptotanshinone;
TS-I, Tanshinone I; MD, mycorrhizal dependency; FW, fresh weight; DW, dry weight; TP, total phenolic acids; TTS, total
tanshinones; PCA, principal component analysis; HCA, hierarchical cluster analysis; IF, isolation frequency.
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INTRODUCTION

As a kind of quite important medicinal plant in China, and,
to a lesser extent, in Japan and the United States, Salvia
miltiorrhiza Bge. (Danshen or Red sage, Lamiaceae,) was
extensively used to treat menstrual disorders, and cardiovascular,
and cerebrovascular disease for many years (Chun-Yan et al.,
2015; Wang et al., 2017; Ren et al., 2019; Wu et al., 2020).
These therapeutic effects are attributed to intrinsic water-soluble
phenolic acids and lipophilic diterpenoid quinones (Wang et al.,
2018). Previous studies have shown that there were 27 species
of arbuscular mycorrhiza fungi (AMF) in eight genera existed
in the rhizosphere soil of S.miltiorrhiza in China (Liu et al.,
2017). S. miltiorrhiza was easily colonized with AMF species,
such as Glomus, Acaulospora, Scutellospora, and Entrophospora,
to generate good colonization rates (Wang and He, 2009; He
et al., 2010). AMFs affected the content and composition of
secondary metabolites, e.g., polyphenols, flavonoids, carotenoids,
and phytoestrogens, both in crop and medicinal plants (Zeng
et al., 2013; Sbrana et al., 2014; Pedone-Bonfim et al., 2015;
Bruisson et al., 2016). However, the effects of these native
AMFs on the yield and quality of S. miltiorrhiza have not been
systematically understood.

AMFs are essential elements of the agricultural ecosystem
(Thirkell et al., 2017) and form mutualistic symbioses with
approximately 80% of land plant species (Smith et al., 2010).
The extensive AMFs mycelium facilitates nutrient mobility
in soils (Bücking et al., 2015); thus, AMF biotechnology
in low-input planting systems such as organic cultivation is
important in maintaining or improving the long-term soil
fertility (Johansson et al., 2004). In recent years, the novel
application of AMFs as biological fertilizers has improved
the yield and quality of medicinal plants and stabilized the
efficacy of these plants (Cheruth et al., 2009; Gianinazzi et al.,
2010; Zeng et al., 2013). AMF was the most important factor
affecting plant secondary pathways and metabolic (Spatafora
et al., 2016). S. miltiorrhiza inoculation with AMFs promoted
plant growth and increased contents of phenolic acid B (Sal
B), tanshinone IIA (TS-IIA), and dihydrotanshinone I (DT-
I) in S. miltiorrhiza roots (Wang et al., 2014; Li et al., 2016;
Qi et al., 2016). Most studies have focused on commercial
species, i.e., Rhizophagus intraradices, Funneliformis mosseae,
and Rh. irregularis. while ignoring the rich diversity of native
AMFs (Berruti et al., 2015). However, few studies have
explored the effects of S. miltiorrhiza inoculation with native
AMFs on the biomass, secondary metabolite content, and
accumulation of roots.

In this study, eight native AMFs were isolated from the
rhizosphere of semi-wild and farmland S. miltiorrhiza. As
AMFs improved the yield and quality of medicinal plants, we
evaluated whether these microorganisms affected S. miltiorrhiza
roots in terms of biomass and active compound levels
using physiological and phytochemical methods. The levels
of the following metabolites were investigated: danshensu
sodium (DS), caffeic acid (CA), rosmarinic acid (RA), Sal
B, salvianolic acid A (Sal A), DT-I, cryptotanshinone (CT),
tanshinone I (TS-I), and TS-IIA. We hypothesized that

both biomass and active component levels in S. miltiorrhiza
roots would respond positively to native AMF inoculation,
to identify an ideal S. miltiorrhiza inoculum for Chinese
medicine agriculture. Also, in considering the selectivity and
functional diversity existing in AMF symbiosis (Helgason
et al., 2002), we investigated the different responses of
S. miltiorrhiza root to inoculants. Our results lay the foundation
for screening symbiotic AMFs to improve the practical
application of S. miltiorrhiza.

MATERIALS AND METHODS

Experimental Setup and Design
The soil in this study was collected from “The base of
S. miltiorrhiza in Meishan village” in Zhongjiang county,
Sichuan province, Southwest China (30◦57′6′′N, 104◦33′17′′E).
The sieved soil (pore size, 5 mm) was hermetically sterilized
with 250 g·M3 dazomet for 1 week. A sterility test was negative
before use. The soil was loam, with the following characteristics:
pH 7.46; alkali-hydrolyzable nitrogen 128.93 mg·kg−1; available
potassium (K) 43.50 mg·kg−1; available phosphorus (P)
34.71 mg·kg−1; and organic matter 35.1 mg·kg−1.

Test-tube seedlings were cultivated in vitro, whereas explants
used the young leaves of S. miltiorrhiza Bge. cv. sativa. The
medium for inducing proliferating plant was MS+2.0 mg·L−1

6-BA+1.0 mg·L−1 NAA. Bud differentiation media was
MS+1.0 mg·L−1 6-BA+0.1 mg·L−1 NAA; the optimal rooting
medium was 1/2 MS+0.2 mg·L−1 NAA+0.5 mg·L−1 IBA. The
rooting rate was 94%. Rooted shoots (5 cm in length) were the
source of pot culture plants for experiments.

Experiments were conducted in the greenhouse of the
Chengdu University of Traditional Chinese Medicine, Chengdu,
China. Pots (20 cm in diameter, and 30 cm in height)
were autoclaved (121◦C for 20 min) and filled with 3 kg
sterilized soil. For each experimental pot, 400 spores of AMF
species (20 g) were distributed around the roots of test-tube
seedlings. Sterile water (121◦C for 30 min) was then poured
over plants. Plants used as non-mycorrhizal controls were not
inoculated with AMF (hereafter referred to as NM). Plants
were grown for 22 weeks in a glasshouse at 25∼30◦C and
relative humidity of 80% during the day and night. For the
rest of the culture period, plants had natural temperature
and humidity. Plants were watered 1/2 MS nutrient solution
(without agar and sugar) once every 2 weeks during the
greenhouse period.

Pot experiments were generated as comparisons between the
following nine treatments, as independent treatments arranged
in a complete randomized design (Table 1). Each treatment had
three independent replicates, equalling 27 pots in total. There
were two S. miltiorrhiza plants in each pot (Figure 1).

Mycorrhizal Inoculants
Eight species of AMFs were used: Glomus formosanum (GLF),
Gl. tenebrosum (GLT), Septoglomus constrictum (SEC),
Funneliformis geosporum (FUG), Rhizophagus manihotis
(RHM), Ambispora gerdemanii (AMG), Acaulospora laevis
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TABLE 1 | Effect of native AMFs inoculation on plant growth.

AMF species FW (g) DW (g) Colonization (%) MD (%)

GLF 41.53 ± 8.92 9.33 ± 2.96 73.30 ± 10.71 30.23

GLT 34.50 ± 8.63 6.10 ± 2.88 86.10 ± 1.68 −6.72

SEC 44.37 ± 3.43* 10.77 ± 2.56 60.52 ± 4.10 39.55

FUG 52.97 ± 17.51** 12.17 ± 3.44* 84.99 ± 2.76 46.51

RHM 36.43 ± 2.05 9.78 ± 0.15 54.83 ± 3.21 33.44

AMG 35.03 ± 3.49 9.85 ± 1.92 80.37 ± 2.83 33.91

ACL 21.77 ± 6.36 3.54 ± 1.56 69.77 ± 2.48 −83.90

ACT 39.67 ± 8.08 10.51 ± 2.17 79.75 ± 6.50 38.06

NM 28.67 ± 11.98 6.51 ± 3.17 – −

*Means that there was a significant difference (p < 0.05) between the group
compared with NM.
**Means that there was a highly significant difference (p < 0.01) between the group
compared with NM. Data are mean ± SD (n = 6).

(ACL), Ac. tuberculata (ACT), isolated and preserved from
rhizosphere soil samples of S. miltiorrhiza across 20 producing
areas in China (Table 1; Liu et al., 2017). Spores from eight AMFs
were isolated and propagated with Trifolium repens in pots

containing sterilized soil and sand (1:1, v/v) (He et al., 2010).
During the growth stage, each pot was watered with sterile water
similar to field capacity, and pots received a 200 mL (pH = 6.0)
nutrient solution (Hoagland and Arnon, 1938) every other week.
The inoculum contained sand, soil, spores, external mycelium,
and infected root fragments.

Determination of Plant Growth and
Mycorrhizal Colonization
After a growth period of 22 weeks, plants were harvested and
divided into roots and shoots. The roots were separated, and
weighed, and 2 g red roots were immersed in liquid nitrogen,
and stored at−80◦C for analyzed active ingredient investigations.
Some roots were chopped into 1 cm long pieces and fixed in a
formalin/acetic acid/ethanol (FAA, 13:5:200, v/v/v) solution for
24 h. The remaining roots were dried at 60◦C and weighed to
dry weight (DW) after constant weight at 105◦C. The roots in
the FAA were clarified and stained, using an acid fuchsin staining
method (Dalpé and Séguin, 2013). Mycorrhizal colonization
was estimated using an optical microscope (OLYMPUS CH20
BIMF200, Japan), by the presence or absence of fungal structures

FIGURE 1 | The growth of S. miltiorrhiza was is in good condition during the period of test-tube seedlings and potted. (a–c) The growth of rooted shoots (5 cm in
length) which could be transplanted. (d–f) The growth of transplanted S. miltiorrhiza after 70 days. (g–i) The growth of S. miltiorrhiza after 150 days.
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in the roots. The AMF infection rate was estimated using the
following formula:

Percentage of root colonization

=
Total number of infected segments × 100
Total number of examined root segments

Mycorrhizal dependency (MD) was taken from the literature
(Plenchette et al., 1983; Smith et al., 2003);

MD (%) =

(dry weight of mycorrhizal plant − average dry
weight of non−mycorrhizalplant)× 100

dry weight of non−mycorrhizal plant

UPLC Analysis
Sample Preparation
Frozen ground root tissue (0.5 g) was weighed and thawed in
10 mL 90% methanol, ultrasonic extracted for 45 min at 40◦C,
with the weight of the extracting solution made up by methanol.
The sample was then centrifuged at 10,000 rpm for 10 min.
The resulting supernatant was filtered through a 0.22 µm nylon
membrane filter before injection into an ultra performance liquid
chromatography (UPLC) system.

Active Ingredient Content Determination
Analyses were analyzed on an Agilent UPLC system (Agilent
1290, Agilent Corp.), including a binary solvent manager,
sampler manager, column compartment, and photodiode array
detector, connected to Agilent Infinity 2 software. The UPLC
was fitted with an Agilent ZORBAX Eclipse Plus C18 column
(2.1× 50 mm, 1.8 µm). The column temperature was maintained
at 35◦C. Analyte separation was performed by using a gradient
mobile phase consisting of 0.02% (v/v) phosphoric acid in
water (A) and acetonitrile (B), modified from Li et al. (2014).
Gradient condition was 0∼0.5 min, 95% A; 0.5∼2.0 min,
95∼87% A; 2.0∼6.5 min, 87∼78% A; 6.5∼10.0 min, 78∼72%
A; 10.0∼11.5 min, 72∼40% A; 11.5∼15.0 min, 40∼10% A, and
finally column reconditioning with 5% B isocratic for 2 min,
after which the column was washed in 100% B for 3 min at
a flow rate of 0.5 mL·min−1. The injection volume being 2
µL. The sample manager temperature was 10◦C. The detection
wavelength was 280 nm. Active ingredients identification was
performed by comparing the retention times of samples with
those of standards. Analytes above were quantified using the
external standard method. The linear range, linear regression
equations, and correlation coefficients of the standards curves are
shown in Figure 2 and Table 2.

Data Calculation and Analysis
Mann-Whitney U tests were performed on treatment
comparisons. Significant differences between treatments
were confirmed by multiple comparisons by the Mann-Whitney
U method at a 5% significance level. Statistical analyses were
performed using IBM SPSS 21.0 for Windows (IBM Corp,
Armonk, NY, United States).

Similarities in sample chromatographic patterns were
evaluated using “Chromatogram Analysis and Data Management

System for Traditional Chinese medicine” (ver. 2012). Principal
component analysis (PCA) and hierarchical cluster analysis
(HCA) were conducted with origin 2019 for Windows
(OriginLab, Hampton, Massachusetts, United States). All
dates were normalized into Z-scores before analysis.

RESULTS

AM Colonization
Percentage of colonization indices were used for AMF activities
(Smith and Smith, 2011). All eight AMFs showed full
colonization in inoculated plants after 22 weeks of growth, with
a colonization rate of more than 54.83 ± 3.21%, of which GLT
colonization rate was the highest (86.10 ± 1.68%) (Table 1).
The percentage of hyphae colonization varied among species
(GLT > FUG > AMG > ACT > GLF > ACL > SEC > RHM).

Root Biomass Measurements
S. miltiorrhiza root weights were greatly affected by symbiosis
(Table 1). However, the fresh root weight (FW) of S. miltiorrhiza
colonized by ACL was decreased, and so did dry weight
of GLF-plant and ACL-plant, whereas the rest of the plants
were increased. Of these, plants inoculated with FUG or SEC
significantly increased the FW and DW of roots to 55, 85, 65,
and 87%, respectively. S. miltiorrhiza plants exhibited different
mycorrhizal dependencies (MDs) for different AMFs, with large
differences (range, i.e.,−83.9–46.51%).

Active Ingredients Content and
Composition
The contents of nine secondary metabolites (DS, CA, RA, Sal B,
Sal A, DT-I, CT, TS-I, and TS-IIA) in each sample were calculated
from standard curves (Tables 2, 3). When compared with NM,
most AMF-plants exhibited promoting effects on the content of
nine compounds, especially phenolic acids. Total phenolic acids
(TP) were reduced by FUG (p < 0.05) and ALC treatments,
whereas the others showed a promotion range, i.e., 8.02–
44.07%. Plants inoculated with GLF significantly increased the
contents of TP (p < 0.01). When compared with phenolic acids,
inoculation treatment had limited effects on total tanshinones
(TTS). S. miltiorrhiza inoculation with GLT, SEC, FUG, and ACT
variably increased TTS levels, but the remaining groups had no
positive effects.

To explore compositional changes in S. miltiorrhiza active
ingredients, we explored the active ingredient molar content
(which is equal to the content of each active ingredient divided
by the respective molar mass; Table 4). The results showed that
different strains had different effects on active ingredients molar
contents in S. miltiorrhiza. But overall, the impact was greatest
on phenolic acids, especially Sal B. The molar content of Sal B was
increased when inoculated with GLF (p < 0.01), GLT, SEC, RHM,
and AMG (p < 0.05), but upon FUG inoculation, a significant
reduction (p < 0.01). In contrast to FUG colonization, GLF,
AMG, and ACL colonization increased TP molar content. Thus,
most treatment groups increased TP molar content, whereas
FUG and ACT reduced this level.
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FIGURE 2 | Typical UPLC chromatograms of (A) mixed standards and (B) sample. (1) Sodium danshensu, DS; (2) Protocatechuic aldehyde; (3) Caffeic acid, CA; (4)
Rosmarinic acid, RA; (5) Salvianolic acid B, Sal B; (6) Salvianolic acid A, Sal A; (7) Dihydrotanshinone I, DT-I; (8) Tanshinone I, TS-I; (9) Cryptotanshinone, CT; (10)
Tanshinone IA, TS-IIA.

In brief, the composition and content of the nine compounds
in S. miltiorrhiza roots were variably affected by the eight
AMFs, especially phenolic acids. However, FUG treatment
significantly reduced TP content, whereas other treatments
increased these levels.

TABLE 2 | The calibration curve data of reference substance in S. miltiorrhiza root
(n = 6).

Linear range (ng) Regression equation r2

DS 0.560∼8.960 y = 11.32557x−0.98662 0.99991

CA 0.168∼4.480 y = 56.20537x−6.85365 0.99996

RA 3.420∼68.400 y = 20.96961x−22.24801 0.99985

Sal B 91.60∼732.80 y = 6.62872x−44.93137 0.99997

Sal A 0.384∼10.240 y = 22.17195x−6.96602 0.99992

DT-I 0.204∼10.880 y = 58.09684x−10.34958 0.99984

TS-I 0.020∼0.672/ y = 72.97334x+1.66830 0.99990

CT 1.470∼78.400 y = 38.68225x−27.81167 0.99999

TS-IIA 0.730∼24.400 y = 63.73954x−29.18675 0.99997

Active Ingredient Accumulation
The accumulation of active ingredients (content × DW) per
plant was used as the most common index for medical plant
productivity (Zhao et al., 2015). Most AMF treatments promoted
the accumulation of active ingredients from S. miltiorrhiza
individual roots, especially phenolic acid (Table 5). GLF
treatment promoted TP accumulation in plants, which reached
the maximum accumulation of 227.85 mg/plant (p < 0.01).
Equally, SEC, RHM and AMG treatments significantly promoted
Sal B accumulation, which increased by 81.24∼91.93% (p < 0.05).
Although inoculation with GLT or FUG also exerted promotional
effects on TP, the effect was small (p > 0.05). Additionally, we
observed that ACL-treated plants exerted some inhibitory effects
on both TP and TTS components.

The chromatographic patterns from 54 samples of
S. miltiorrhiza root samples were evaluated systematically
using “Chromatogram Analysis and Data Management System
for Traditional Chinese Medicine” (ver. 2012). The correlation
coefficient of each chromatogram to the simulative mean
chromatogram was 0.974 ± 0.06 (mean ± SD). However,
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TABLE 3 | Active ingredients concentration (values are expressed on a dry weight basis) rate in S. miltiorrhiza root (mg·g−1 DW).

Sp. DS CA RA Sal B Sal A DT-1 TS-1 CT TS-IIA TP TTS

GLF 0.14 ± 0.03 0.06 ± 0.03 4.15 ± 0.50* 45.01 ± 3.90** 0.44 ± 0.03** 0.05 ± 0.03 0.009 ± 0.002 0.88 ± 0.62 0.59 ± 0.33 49.79 ± 4.32** 1.52 ± 0.98

GLT 0.11 ± 0.02 0.09 ± 0.03 3.07 ± 1.08 33.70 ± 6.91 0.37 ± 0.07 0.12 ± 0.04 0.007 ± 0.003 1.74 ± 0.84 0.76 ± 0.31 37.33 ± 7.89 2.63 ± 1.18

SEC 0.13 ± 0.03 0.04 ± 0.00 3.22 ± 1.01 36.40 ± 4.81 0.33 ± 0.04 0.04 ± 0.02 0.008 ± 0.006 1.04 ± 1.05 0.59 ± 0.47 40.12 ± 5.76 1.67 ± 1.55

FUG 0.05 ± 0.00** 0.06 ± 0.02 1.03 ± 0.55** 18.41 ± 6.35* 0.13 ± 0.07* 0.06 ± 0.02 0.011 ± 0.001 1.33 ± 0.30 0.95 ± 0.18 19.68 ± 6.92* 2.36 ± 0.28

RHM 0.08 ± 0.02* 0.04 ± 0.00 3.31 ± 0.68 38.90 ± 5.86 0.33 ± 0.07 0.03 ± 0.01 0.008 ± 0.001 0.52 ± 0.12 0.41 ± 0.09 42.66 ± 6.61 0.97 ± 0.2

AMG 0.11 ± 0.05 0.04 ± 0.01 2.44 ± 0.54 36.64 ± 2.01* 0.30 ± 0.05 0.03 ± 0.00 0.007 ± 0.003 0.77 ± 0.24 0.53 ± 0.18 39.52 ± 1.92 1.33 ± 0.41

ACL 0.15 ± 0.05 0.07 ± 0.03 4.76 ± 0.42** 41.23 ± 8.27 0.45 ± 0.12 0.06 ± 0.01 0.013 ± 0.002* 0.71 ± 0.14 0.43 ± 0.13 46.66 ± 8.72 1.21 ± 0.28

ACT 0.09 ± 0.01 0.02 ± 0.01 2.73 ± 0.19 30.23 ± 2.35 0.36 ± 0.04 0.06 ± 0.02 0.011 ± 0.003 1.17 ± 0.31 0.64 ± 0.19 33.43 ± 2.49 1.88 ± 0.49

NM 0.12 ± 0.02 0.04 ± 0.02 3.34 ± 0.75 30.75 ± 3.00 0.31 ± 0.03 0.05 ± 0.02 0.007 ± 0.003 0.94 ± 0.59 0.53 ± 0.47 34.56 ± 3.77 1.53 ± 1.04

*Means that there was a significant difference (p < 0.05) between the group compared with NM.
**Means that there was highly significant difference (p < 0.01) between the group compared with NM. Data are mean ± SD (n = 6).

TABLE 4 | Active ingredients molar content (values are expressed on a dry weight basis) in S. miltiorrhiza root (mol·g−1 DW).

Sp. DS CA RA Sal B Sal A DT-1 TS-1 CT TS-IIA TP TTS

GLF 0.63 ± 0.15 0.32 ± 0.16 11.52 ± 1.38 62.68 ± 5.43** 0.88 ± 0.06** 0.17 ± 0.09 0.03 ± 0.01 2.96 ± 2.1 2.01 ± 1.12 76.04 ± 6.74** 5.17 ± 3.31

GLT 0.5 ± 0.1 0.48 ± 0.18* 8.53 ± 3 46.93 ± 9.62 0.75 ± 0.15 0.42 ± 0.14** 0.03 ± 0.01 5.89 ± 2.82 2.6 ± 1.07 57.17 ± 12.37 8.93 ± 4.02

SEC 0.6 ± 0.12 0.23 ± 0.01 8.94 ± 2.84 50.68 ± 6.7 0.67 ± 0.08 0.13 ± 0.06 0.03 ± 0.02 3.51 ± 3.58 2 ± 1.62 61.13 ± 9.33 5.67 ± 5.24

FUG 0.22 ± 0.01** 0.34 ± 0.08 2.85 ± 1.51** 25.64 ± 8.84** 0.27 ± 0.14** 0.22 ± 0.08 0.04 ± 0.01** 4.5 ± 1.02 3.24 ± 0.6 29.32 ± 10.35** 8 ± 0.96

RHM 0.34 ± 0.08* 0.22 ± 0.02 9.2 ± 1.9 54.17 ± 8.16* 0.67 ± 0.14 0.12 ± 0.03 0.03 ± 0 1.75 ± 0.4 1.4 ± 0.3 64.6 ± 10.24 3.3 ± 0.67

AMG 0.48 ± 0.23 0.22 ± 0.06 6.77 ± 1.51* 51.02 ± 2.79** 0.6 ± 0.1 0.11 ± 0.01 0.02 ± 0.01 2.58 ± 0.81 1.8 ± 0.62 59.09 ± 2.82 4.52 ± 1.39

ACL 0.67 ± 0.23 0.41 ± 0.14* 13.23 ± 1.18* 57.41 ± 11.52* 0.9 ± 0.24* 0.21 ± 0.03 0.05 ± 0.01** 2.39 ± 0.49 1.45 ± 0.45 72.62 ± 12.79* 4.1 ± 0.94

ACT 0.39 ± 0.06** 0.13 ± 0.03 7.58 ± 0.53 42.09 ± 3.27 0.72 ± 0.08 0.21 ± 0.08 0.04 ± 0.01** 3.95 ± 1.05 2.17 ± 0.64 50.92 ± 3.68 6.36 ± 1.67

NM 0.56 ± 0.1 0.21 ± 0.09 9.28 ± 2.07 42.82 ± 4.17 0.62 ± 0.06 0.17 ± 0.07 0.02 ± 0.01 3.18 ± 2.01 1.8 ± 1.6 53.49 ± 6.4 5.18 ± 3.53

*Means that there was a significant difference (p < 0.05) between the group compared with NM.
**Means that there was highly significant difference (p < 0.01) between the group compared with NM. Data are mean ± SD (n = 6).
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differences in the chemical characteristics were identified in
S. miltiorrhiza plants inoculated with eight AMF species, when
compared with those in NM plants. These chromatograms
are shown (Figure 3). The correlation coefficients of eight
chromatograms of AMF-plant samples of the NM plants
were 0.998 (ACL), 0.998 (AMG), 0.996 (RHM), 0.992 (GLF),
0.989 (ACT), 0.972 (SEC), 0.954 (GLT), and 0.758 (FUG),
respectively. The correlation coefficient of FUG group was
different from other groups, which was in line with the results
above (Tables 1, 3).

From our quantitative data on phenolic acid content, we
observed differences. PCA was used to analyze differences
between plant roots to explore the relationship between
compounds and sample clustering. The results in Figure 4
showed that samples relating to the first two principal
components (PCs) had a good tendency to separate (91.52% of
the total variance). As shown (Figure 5), samples were divided
into three groups: (1) FUG-plants exerted significant inhibitory
effects on phenolic acid content. (2) Plant inoculation with GLF
and ACL significantly promote phenolic acid content. (3) The
remaining groups had variable promotional promotion effects on
phenolic acid levels, consistent with Table 3. As shown (Figure 5),
HCA analysis also generated similar results.

DISCUSSION

In this study, we determined the effects of eight native AMFs
colonization on growth and secondary metabolite production
of S. miltiorrhiza roots. As a traditional and celebrated Chinese
root medicine, S. miltiorrhiza was paid more attention to the
changes in the biomass and secondary metabolites of its roots.
The premise of this research on the influence of AMF symbiosis
on S. miltiorrhiza was mainly the application of genetically
homogeneous sterile test tube vaccines. Most research studies
currently mainly used seeds, while seeds usually carried bacteria,
callus was selected to generate sterile test tube seedlings to control
experiments and observe symbiosis between plants and AMFs.
A high degree of functional diversity exists among AMF species,
which affects plants’ response (Kapoor et al., 2007). Therefore,
we sought to explore S. miltiorrhiza response to colonization of
different native AMFs. We also explored the influence of AMF
colonization on biomass and secondary metabolite production of
the plant roots.

Influence of Mycorrhizal Formation
Mycorrhiza is a mutually beneficial symbiosis formed between
soil fungi (AMFs) and plant roots. AMFs help plants capture
water and mineral nutrients (especially P) from the soil,
and in return, approximately 20% of plant-fixed carbon was
transferred to fungi (Smith et al., 2003). According to soil nutrient
classification standard from the second national soil census,
the tested soils were slightly enriched in organic matter (grade
II, 30–40 g·kg−1), alkalic nitrogen (grade II, 120–150 g·kg−1),
and available P (grade II, 20–40 mg·kg−1). In our study, the
1/2MS culture solution (no sugar and agar) was facilitated
plant growth without visible deficiencies. It is assumed that
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FIGURE 3 | UPLC for partial samples of S. miltiorrhiza root and the simulative mean chromatogram (R).

FIGURE 4 | Score chart of PCA of different AMF treatment groups (phenolic
acids).

the nutrient content such as nitrogen and P in cultivation test
soils is sufficient and satisfying plant growth (Jiang and Wei,
2004; Qi et al., 2016). As a mycotrophic plant, S. miltiorrhiza
is easily colonized by AMFs in nature or experiment study
to form good colonization rates (Yang et al., 2017). Equally,
when compared with commercial species, native species tend
to be more infectious and quickly colonize host plants roots
(Chenchouni et al., 2020). In our study, the colonization rate was
more than 54.83 ± 3.21%, indicating AMFs had high affinities

with the host S. miltiorrhiza (Table 1). Our study also showed that
AMF colonization intensities depended on the species, and varied
from 54.83 to 86.10%; these percentages were influenced by
fungal characteristics, reproduction density, soil properties, plant
genes, and P supply (Smith and Smith, 2012; Zubek et al., 2012b).

Influence of Plant Biomass
Our study only evaluated the underground medicinal parts
(roots) of S. miltiorrhiza, because the above ground parts (shoots)
of some plants had withered at the time of harvest. The results
showed that the eight native AMFs exerted different effects on
S. miltiorrhiza growth under greenhouse conditions (Table 1).
In general, AMF inoculation induced increased biomass of
S. miltiorrhiza roots, consistent with previous studies (Hoeksema
et al., 2010; Shi et al., 2016; Tarraf et al., 2017; Chenchouni
et al., 2020). Another study showed that plant biomass after
AMF colonization was 3.1 times higher than that of unvaccinated
plants on average (Hoeksema et al., 2010). These increased
biomass data, induced by mycorrhizal symbiosis, may be
generated by large numbers of fungal hyphae, increasing the root
absorption surface areas, thereby promoting the plant’s ability
to absorb and assimilate nutrients (Bowles et al., 2016). Positive
growth responses to AMF colonization were usually attributed to
attributable to increased P uptake by fungi, thereby alleviating
P deficiency and promoting growth. The migration rate of P
in the soil is generally low, thus, direct absorption by plants
via root hairs forms depletion zones around roots (Schachtman
et al., 1998), potentially limiting further absorption. The extra-
root hyphae from AMFs could enter soil pores undetected by the
root system and potentially extended to the soil space by 25 cm
from the root system to drive nutrients (Jansa et al., 2003). This
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FIGURE 5 | Diagram of HCA of different AMF treatment groups (phenolic acids).

greatly improves the nutrient absorption, and utilization, and
translocation capabilities (Bowles et al., 2016), and leads to an
increase in photosynthetic product yields and plant biomass.

Previous research that AMF had high functional diversity
during S. miltiorrhiza colonization, even the same AMF genus
exerted highly variable effects on plant growth (Kapoor et al.,
2007; Thonar et al., 2011). In agreement, when our study
plants were inoculated with ACL and ACT, respectively; the
FW (21.77 ± 6.36) and DW (3.54 ± 1.5) of ACL-plants were
significantly lower than those of the NM group, while ACT-plants
was significantly higher than the NM group, i.e., 39.67 ± 8.08
and 10.51 ± 2.17, respectively. Plant productivity depends
on photosynthesis, and this process depends on P-containing
compounds. The measurement of P content and utilization
efficiency in plant organs or branches biomass could more
intuitively explain this high variability. Therefore, in view of
AMF functional heterogeneity, screening suitable host AMF
strains is crucial for improving S. miltiorrhiza productivity. In
some cases, fungal symbiosis may also be detrimental to plant
growth. For example, root FW and DW of plants inoculated
with ACL or GLT were decreased (Table 1). One reason could
be that when plants and fungi compete for limited nutrients,
fungi sometimes isolate nutrients in their tissues, fail to pass
these onto plants, while consuming the photosynthetic products
of plants (Lerat et al., 2003). Equally, internal changes in
plants caused by AMF colonization may reduce plant nutrients
via systemic changes in phytochemistry or gene expression
(Hodge et al., 2010).

As an index to measure the influence of AMF inoculation
on plant growth and development, MD could characterize

plant growth and development (Tawaraya, 2003). ACL-plants
inhibited plant growth and had the lowest MD value (−83.9%),
while FUG-plant significantly promoted plant growth and had
the highest MD (46.51%). Therefore, these data indicated
that most AMF inoculations with S. miltiorrhiza had variable
growth and development effect, thus, selecting optimized AMF
treated with S. miltiorrhiza could improve symbiosis and growth
(Rengel, 2002).

Effects of Secondary Metabolites
Plant secondary metabolites are compounds that are not
required for basic metabolism, but they are essential for the
plant interactions with the environment. The composition and
content of secondary metabolites are affected by biological,
non-biological, and agronomic management factors. AMFs play
important roles in these processes; they improve plant nutrition
and health, induce changes in metabolic levels, and promote
metabolite synthesis (Sbrana et al., 2014).

Mycorrhization not only affects plant growth but also affected
plant secondary metabolism, sometimes eliciting positive changes
medicinal compounds (Rapparini et al., 2007; Chaudhary
et al., 2008). Many studies have explored the impact of AMF
colonization on secondary metabolites in host medicinal plants,
e.g., Artemisia annua L. (Domokos et al., 2018), Valeriana
officinalis L. (Nell et al., 2010), Anadenanthera colubrina (Vell.)
Brenan (Kapoor et al., 2007), Cynara cardunculus L. var.
scolymus (Ceccarelli et al., 2010), yam (Dioscorea spp.) (Lu
et al., 2015), Angelica archangelica L. (Zitterl-Eglseer et al.,
2015), Ocimum basilicum (Toussaint et al., 2007), Panax
quinquefolius L. (Smith et al., 2010). In terms of AMF-plant
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symbiosis, secondary metabolites have been shown to undergo
quantitative changes, usually responded to the host plant to AMF
inoculation (Pozo and Azcón-Aguilar, 2007). Generally speaking,
compounds such as phenols and terpenoids, are usually produced
by host plants to resist infection by foreign microorganisms
(Zhang et al., 2015).

In our study, AMF inoculations of S. miltiorrhiza had a
greater impact on phenolic acids, when compared to tanshinones.
S. miltiorrhiza inoculation with GLF, AMG, and ACL significantly
increased phenolic acid levels (p < 0.05). Previous studies have
shown that Phenolic acids are the most studied components
affected by mycorrhizal colonization (Schaarschmidt et al., 2007;
López-Ráez et al., 2010), and they are also important plant
secondary metabolites for plant defense (Yao et al., 2007). AMF
increased the phenolic synthesis in roots probably via signaling
pathways of hydrogen peroxide, salicylic acid, and nitric oxide in
a signaling cascade (Zhang et al., 2013).

Although plant inoculation with FUG significantly inhibited
salvianolic acid production, it exerted strong promoting effects
on tanshinones components. Equally, we observed that FW
(52.97 ± 17.51) and DW (12.17 ± 3.44) of FUG-plant were
significantly higher than those of the NM group, which
resulting in the accumulation of tanshinone components
of FUG-plant particularly prominent. Welling et al. (2016)
observed that terpenoids accumulation in plants colonized by
AMFs might be related to changes in plant morphology, P
utilization, and gene transcription in terpenoid biosynthesis
pathways. In addition, terpenoids are defensive mechanisms
against herbivores and pathogens, but act as signal and
reward molecules to beneficial organisms (e.g., mycorrhiza)
(Pichersky and Raguso, 2016).

In S. miltiorrhiza plants inoculated with AMFs, changes in
the accumulation of active ingredient levels were inconsistent,
but some differences were significant. TP contents of GLF
and ACL plants were significantly higher than those in NM-
plant, but TTS levels were slightly lower than those in
NM-plants. However, GLT- and ACT plants, which had the
same genus, showed variable promotional effects toward TP
and TTS, but no significant differences were observed. In
summary, our results indicated that secondary metabolites
contents differed between different AMF treatments. Therefore,
it was important to select effective AMF species to improve
S. miltiorrhiza quality.

At present, the production of higher concentrations of
secondary metabolites had higher practical application value,
such as in the physical therapy (Zubek et al., 2012a) and the
food industries (Eftekhari et al., 2012). Hundreds of secondary
metabolites are contained in S. miltiorrhiza roots; the main
active ingredients are DS, CA, RA, Sal B, Sal A, DT-I, CT,
TS-I, and TS-IIA (Wan et al., 2020). These are some of the
main components extracted by the pharmaceutical industry. Our
study showed that AMFs affected bioaccumulation yields of
the effective components of S. miltiorrhiza roots. We observed
significant differences in active ingredients accumulation in S.
miltiorrhiza roots with different native AMF treatments. Apart
from ACL, AMFs inoculation showed consistent promotional
effects on active ingredients accumulation in S. miltiorrhiza

roots. Similarly, accumulation of phenolic acid and tanshinones
were increased by 102.92 and 131.35%, respectively. Similar
to secondary metabolite contents, the amount of accumulation
varied significantly among the same genus, e.g., ACL and ACT
plants. The accumulation of active ingredients is economically
significant for effective AMF selection.

The Relationship Between AMF Isolation
Frequencies and Host Growth, and
Secondary Metabolism
The AMF isolation frequency [IF = (the number of soil samples
in AMF/total soil samples) × 100%] reveals the distribution
probability of native AMFs (Liu and Chen, 2007). In this
study, eight native AMF species collected from 20 rice planting
bases in China were selected (Liu et al., 2017). The IF at
each base was ACL (90%), RHM (80%), ACT (75%), AMG
(40%), FUG (35%), GLF (10%), GLT (5%), and SEC (5%).
We generally believed that widely distributed species increased
plant growth and biomass. For example, Fu. mosseae and Rh.
intraradices were most widely distributed in the root system
of Olea europaea L. (Kong et al., 2019), and significantly
increased the number of lateral branches and leaves, total
phenolic chlorophyll, and carotenoids content in the leaves
of seedlings (Seifi et al., 2014). Cassava (Manihot esculenta
Crantz) inoculation with Ac. colombiana, the most abundant
of a native AMF, significantly increased crop yields (Séry
et al., 2016). Our study showed that widely distributed species
(IF > 70%, ACT and RHM) promoted the accumulation of
plant biomass (>27%), whereas ACL, as the most widely
distributed species (IF > 90%), decreased plant biomass. Spices
with lower distribution frequencies (IF < 10%) had variable
effects on plant biomass; when compared with that of NM-
plants, the DW of SEC-plants increased by 65%, while that
of GLT-plants decreased by 6%. Equally, we also observed
that inoculation of S. miltiorrhiza with middle distribution
frequency species, i.e., GLF, FUG, and AMG, promoted plant
biomass accumulation.

Similar to plant biomass effects, AMFs with different
IFs altered plant secondary metabolites. Species with high
distribution frequencies, RHM and ACL increased phenolic
acid contents and decreased tanshinones. In contrast, ACT
increased tanshinones contents and decreased phenolic acids.
The medium distribution frequency fungi groups, i.e., GLF,
FUG, and AMG, also showed similar patterns. GLF and
AMG promoted TP, whereas FUG significantly inhibited TP.
Although the distribution frequency of GLT and SEC was low
(IF < 10%), both increased phenolic acids and tanshinones.
This is a bit different from the studies on the synthesis
and accumulation of secondary metabolites of Gl. mosseae
inoculated with medicinal plants (Wang et al., 2020), such as
Atractylodes macrocephala Koidz. (Wang et al., 2010), Astragalus
membranaceus var. mongholicus, and Artemisia annua L. (Tan
et al., 2013). So, considering the accumulation of biomass and
metabolites in S. miltiorrhiza plants, we believe AMFs with
a low IF is more beneficial to plant growth and secondary
metabolites accumulation.
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Application Prospects of AMF in
S. miltiorrhiza
The symbiotic relationship between AMFs and plants was
practically ubiquitous across terrestrial ecosystems (Finlay, 2008).
AMFs are considered to be natural biological fertilizers with
high ecological significance. They provide water, nutrients,
and pathogen protection for the hosts while they exchange
photosynthetic products, and improve the host productivity and
resistance to nutritional stress (Feddermann et al., 2010; Begum
et al., 2019). It is generally believed that AMFs could act as
substitutes for inorganic fertilizers because the application of
biological fertilizers could effectively reduce the quantitative use
of chemical fertilizer inputs in the near future, especially the
amount of P (Ortas, 2012). Although AMFs have great potential,
they have not been fully adopted by farmers (Ryan and Graham,
2018). However, to achieve sustainable ecological agriculture
of traditional Chinese medicines, it is important to establish a
natural level of AMF richness, and it was an effective alternative
to using traditional fertilization to improve the quality and yield
of S. miltiorrhiza.

The study showed that AMFs and S. miltiorrhiza formed
good symbiotic relationships, but different symbiotic affinity
performance was observed. Medicinal material yields and active
ingredient contents were important for evaluating the beneficial
effects of AMFs on medicinal plants. We observed different AMFs
exerted different effects on the biomass and secondary metabolite
levels in plants. Therefore, our comprehensive evaluation of
AMF treatments could influence the future ecological planting of
S. miltiorrhiza.

S. miltiorrhiza inoculation with GLF promoted roots biomass
accumulation and significantly increased the content and
accumulation of TP, 44.07 and 102.92%, respectively. However,
TTS content and accumulation in GLF-plants generated limited
changes. Therefore, we believe GLF inoculation was effective in
generating phenolic acid compounds in S. miltiorrhiza.

When compared with that of the NM group, the inoculation
of S. miltiorrhiza with FUG significantly increased the yield of
roots by 84.76% (FW, p < 0.01) and 86.95% (DW, p < 0.05),
respectively. Although the TP levels of FUG-plant roots
were significantly reduced, the content and accumulation
of TTS were increased by 54.25 and 131.35%, respectively.
Therefore, we believe that SEC colonization of S. miltiorrhiza
effectively generated high levels of TTS compounds in
S. miltiorrhiza.

Not only was beneficial to plant growth, but also effectively
increased TTS and TP content and accumulation, which
was agreed with our comprehensive evaluation of medicinal
materials. Therefore, we propose a reliable method for improving
the yield and quality of S. miltiorrhiza raw materials by
inoculating with SEC. Our data suggested that mycorrhizal
symbiosis may be used as a biotechnological method for the

production effects of phenolic acid compounds in medicinal
materials. GLF, FUG, and SEC species were suitable for
planting S. miltiorrhiza biological fertilizers, which could increase
the yield and quality of medicinal materials. Although the
accumulation mechanism of secondary metabolites mediated by
AMFs, however, they are still unclear.

CONCLUSION

In conclusion, the results showed that S. miltiorrhiza formed
a good symbiotic relationship with a variety of native
AMFs. S. miltiorrhiza inoculation with AMFs promoted the
accumulation of plant biomass and secondary metabolites
(especially phenolic acids), although changes were not always
positive. In addition, native AMF species exhibited high
functional specialization, even in the same genus. Different
AMF species showed different effects on biomass and secondary
metabolite accumulation in S. miltiorrhiza. Therefore, the
results contribute to select effective AMF species to inoculate
S. miltiorrhiza to generate optimized planting effects for
ecological planting. Equally, when compared with widely
distributed species, narrower distributed species shad a stronger
promotional effect on plant growth and secondary metabolism.
In summary, native AMF inoculation with S. miltiorrhiza
promoted the growth of the roots of the plant and increased
the levels of secondary metabolites. Thus, native AMFs have
huge potential in the ecological cultivation and production of
S. miltiorrhiza.
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