AUTHOR=Zhang Hai-Yan , Liu Meng-Ran , Feng Zi-Heng , Song Li , Li Xiao , Liu Wan-Dai , Wang Chen-Yang , Feng Wei TITLE=Estimations of Water Use Efficiency in Winter Wheat Based on Multi-Angle Remote Sensing JOURNAL=Frontiers in Plant Science VOLUME=12 YEAR=2021 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2021.614417 DOI=10.3389/fpls.2021.614417 ISSN=1664-462X ABSTRACT=

Real-time non-destructive monitoring of water use efficiency (WUE) is important for screening high-yielding high-efficiency varieties and determining the rational allocation of water resources in winter wheat production. Compared with vertical observation angles, multi-angle remote sensing provides more information on mid to lower parts of the wheat canopy, thereby improving estimates of physical and chemical indicators of the entire canopy. In this study, multi-angle spectral reflectance and the WUE of the wheat canopy were obtained at different growth stages based on field experiments carried out across 4 years using three wheat varieties under different water and nitrogen fertilizer regimes. Using appropriate spectral parameters and sensitive observation angles, the quantitative relationships with wheat WUE were determined. The results revealed that backward observation angles were better than forward angles, while the common spectral parameters Lo and NDDAig were found to be closely related to WUE, although with increasing WUE, both parameters tended to become saturated. Using this data, we constructed a double-ratio vegetation index (NDDAig/FWBI), which we named the water efficiency index (WEI), reducing the impact of different test factors on the WUE monitoring model. As a result, we were able to create a unified monitoring model within an angle range of −20–10°. The equation fitting determination coefficient (R2) and root mean square error (RMSE) of the model were 0.623 and 0.406, respectively, while an independent experiment carried out to test the monitoring models confirmed that the model based on the new index was optimal, with R2, RMSE, and relative error (RE) values of 0.685, 0.473, and 11.847%, respectively. These findings suggest that the WEI is more sensitive to WUE changes than common spectral parameters, while also allowing wide-angle adaptation, which has important implications in parameter design and the configuration of satellite remote sensing and UAV sensors.