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Real-time non-destructive monitoring of water use efficiency (WUE) is important for 
screening high-yielding high-efficiency varieties and determining the rational allocation of 
water resources in winter wheat production. Compared with vertical observation angles, 
multi-angle remote sensing provides more information on mid to lower parts of the wheat 
canopy, thereby improving estimates of physical and chemical indicators of the entire 
canopy. In this study, multi-angle spectral reflectance and the WUE of the wheat canopy 
were obtained at different growth stages based on field experiments carried out across 
4 years using three wheat varieties under different water and nitrogen fertilizer regimes. 
Using appropriate spectral parameters and sensitive observation angles, the quantitative 
relationships with wheat WUE were determined. The results revealed that backward 
observation angles were better than forward angles, while the common spectral parameters 
Lo and NDDAig were found to be closely related to WUE, although with increasing WUE, 
both parameters tended to become saturated. Using this data, we constructed a double-
ratio vegetation index (NDDAig/FWBI), which we named the water efficiency index (WEI), 
reducing the impact of different test factors on the WUE monitoring model. As a result, 
we were able to create a unified monitoring model within an angle range of −20–10°. The 
equation fitting determination coefficient (R2) and root mean square error (RMSE) of the 
model were 0.623 and 0.406, respectively, while an independent experiment carried out 
to test the monitoring models confirmed that the model based on the new index was 
optimal, with R2, RMSE, and relative error (RE) values of 0.685, 0.473, and 11.847%, 
respectively. These findings suggest that the WEI is more sensitive to WUE changes than 
common spectral parameters, while also allowing wide-angle adaptation, which has 
important implications in parameter design and the configuration of satellite remote sensing 
and UAV sensors.

Keywords: winter wheat, hyperspectral remote sensing, angle adaptability, water use efficiency, monitoring 
model
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INTRODUCTION

Wheat is one of the important food crops in the world, and 
with recent economic development and population growth, 
the level of winter wheat production has become even more 
important for ensuring world food security. Meanwhile, due 
to global climate change, lack of water has become a key 
limiting factor in winter wheat production. Water use efficiency 
(WUE) is a broad agronomic concept that reflects the 
comprehensive effect of crops on water use. Leaf WUE is 
the main criterion used to measure drought tolerance and 
efficient water use in crops, and subsequent selection and 
screening of high WUE varieties is one of the most important 
goals of crop breeding (Richards, 2006; Zhang et  al., 2007). 
Efficient use of limited water resources and increases in overall 
WUE has therefore become an urgent goal of winter wheat  
production.

Leaf WUE is defined as the ratio of net photosynthesis 
(PN) to transpiration (Tr; Condon et  al., 2002), which can 
be  estimated using the carbon isotope ratio (δ13C; Hultine 
and Marshall, 2000). Recently, rapid development of remote 
sensing technology has provided an effective tool for large-
scale analysis of water use in crops. Compared with traditional 
crop WUE monitoring and diagnostic tools, hyperspectral 
remote sensing technology has made it possible to obtain 
a huge amount of continuous large-scale data in a more 
efficient manner (Peñuelas et  al., 1993b; Dong et  al., 2011). 
Ground hyperspectral remote sensing technology selects 
sensitive bands using spectral characteristic information to 
obtain vegetation indexes, which are used to establish 
estimation models (Hatfield et  al., 2008; Mistele and 
Schmidhalter, 2008).

An appropriate water content is the basis of vigorous 
plant growth and efficient water use. As early as 1971, 
Thomas et  al. (1971) analyzed the relationship between the 
leaf water content (LWC) and spectral reflectance, and 
revealed a strong correlation with reflectance at 1450 and 
1930  nm. Similarly, Carter (1991) suggested that the near-
infrared absorption peak at 950–970  nm could be  used to 
monitor plant moisture content, while Dawson et  al. (1999) 
examined the performance of the moisture spectral index 
to estimate the canopy water content, revealing that indexes 
based on 970 and 1200  nm water absorption characteristics 
had a high coefficient of determination (Dawson et  al., 
1999). However, studies also suggest that reflectance at 970, 
1200, and 1900  nm is easily affected by starch, protein, 
and nitrogen (Curran, 1989). For example, Sims and Gamon 
(2003) revealed that the best spectral bands for remote 
estimates of the plant water content at the canopy scale 
were 1150–1260 and 1520–1540  nm (Sims and Gamon, 
2003), while in addition to the near infrared region, reflectance 
at 690 and 740  nm have also been shown to reflect water 
stress in plants (Dobrowski et  al., 2005). Screening and 
analysis of spectral bands that are sensitive to water also 
provides a basis for the establishment of relevant vegetation 
indexes that reflect the water status. Peñuelas et  al. (1993a) 
combined the water absorption band at 970  nm and the 

reference band at 900  nm as a ratio to establish a water 
index (WI) capable of tracking changes in water content. 
Similarly, Zarco-Tejada et  al. (2003) used MODIS data to 
construct a plant water index (PWI) for monitoring vegetation 
moisture content, and revealed good consistency with the 
water content of ground crops (Zarco-Tejada et  al., 2003). 
Moreover, the floating-position water band index (FWBI) 
has also been established, which uses the reflectance at 
900 nm and minimum reflectance at 900–980 nm to represent 
the water status (Strachan et  al., 2002). Yao et  al. (2014) 
subsequently introduced a new water-sensitive band based 
on the normalized vegetation index NDSI (1429, 416) to 
construct a three-band vegetation index capable of estimating 
the leaf equivalent water thickness. However, these previous 
studies mainly used the sensor to obtain two-dimensional 
information of the crop in a vertical direction, and failed 
to include data from middle to lower parts of the canopy. 
The accuracy of remote sensing monitoring therefore requires 
further improvements.

Compared with vertical observation angles, the multi-
angle observation method collects data from different 
directions, providing multi-dimensional information and 
representing a new method of remote sensing monitoring 
(Thenkabail et  al., 2000; Pocewicz et  al., 2007; Huang et  al., 
2011). A number of studies have been carried out to extract 
optical and structural information using multi-angle 
observations (Cierniewski et  al., 2004; Rautiainen et  al., 
2004), suggesting that multi-angle remote sensing technology 
can improve the ability of a vegetation index to estimate 
crop canopy structure and distinguish between crop varieties 
(Shibayama and Wiegand, 1985; Diner et  al., 1999). The 
photochemical reflectance index (PRI) is notably affected 
by the observation angle. For example, PRI values calculated 
using backward spectral data tend to be  higher than those 
obtained with forward observation data (Drolet et  al., 2008; 
Garbulsky et al., 2011; Middleton et al., 2011). Furthermore, 
Galvão et  al. (2009) found that data collected in a 
backscattering direction was better at distinguishing between 
different soybean varieties, while Chopping et  al. (2003) 
obtained canopy characteristics of desert grassland using 
multi-angle remote sensing data. Chen et  al. (2005) and 
Leblanc et  al. (2005) proposed a multi-angle index for 
measuring leaf aggregation based on hot and dark spot 
reflectivity. Multi-angle hyperspectral remote sensing has 
also made great progress in estimations of crop pigment 
content and nitrogen content (Stagakis et al., 2010; He et al., 
2015). Meanwhile, He et  al. (2016) constructed an angle 
insensitivity index (AIVI) based on analysis of different 
bands and vegetation indexes, improving the accuracy of 
plant nitrogen content estimations and expanding the scope 
of application.

In the field of remote sensing monitoring, in addition to 
analyses of vegetation canopy structure and physiological 
indicators, the performance indicators of crop production are 
also important. The PN of field crops has been shown to 
be  significantly correlated with physiological indicators, and 
studies suggest the use of the ratio vegetation index (R810/680) 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Multi-Angle Remote Sensing for WUE

Frontiers in Plant Science | www.frontiersin.org 3 March 2021 | Volume 12 | Article 614417

to directly estimate the PN of rice leaves (Tian et  al., 2005). 
In addition, based on hyperspectral data, Zhang et  al. (2018) 
established an estimation model of nitrogen fertilizer use 
efficiency in winter wheat, while photosynthetic effective radiation 
(FPAR) captured by the canopy can also be  directly obtained 
through multi-angle remote sensing (Chen et  al., 2003).

Light use efficiency (LUE) is one of the most important 
traits in crops, and is usually reflected by the PRI (Zarco-
Tejada et  al., 2013). For example, Hall et  al. (2008) proposed 
a method to obtain forest LUE directly from space by measuring 
the shadow component of the PRI based on multi-angle spectral 
information (Hall et  al., 2008). Meanwhile, Bastiaanssen et  al. 
(1999) used remote sensing data to estimate crop yield and 
crop transpiration (ETc), and then determined the WUE of 
crops in the Barkra region of India. Li et  al. (2005) also used 
remote sensing observation means combined with meteorological 
data to invert crop WUE in the Haihe River Basin by estimating 
crop transpiration. Thus, while progress has been made in the 
use of remote sensing data to monitor crop WUE, the monitoring 
indicators, methods, and models remain inconsistent due to 
geographical differences and crop types, as well as differences 
in cultivation conditions. However, estimations of WUE 
utilization efficiency at the leaf scale based on hyperspectral 
remote sensing data are lacking, especially with regards the 
influence of different observation angles, and the angle range 
of model adaptation requires further clarification. The main 
goal of this study, therefore, was to create a model capable 
of estimating the instantaneous WUE of winter wheat leaves 
based on multi-angle hyperspectral remote sensing data. By 
clarifying the relationship between common spectral parameters 
and WUE at different vertical angles, a new vegetation index 

for estimating WUE was established. The new parameter was 
then compared with common vegetation indexes under different 
observation angles, and the optimal range of angles was 
determined, allowing establishment of a unified estimation 
equation. The findings provide a theoretical basis for real-
time accurate monitoring of water use in winter wheat, 
supporting the screening of germplasm resources and efficient 
irrigation management.

MATERIALS AND METHODS

Experimental Design
Five experiments were carried out across 4 years at two different 
locations. Various water management, N rates, and cultivars 
of hexaploid winter wheat (Triticum aestivum L.) were studied, 
specific details are shown in Table  1. Experiments 1–4 were 
completed in the experimental station of Henan Agricultural 
University (35°51’N, 113°35’S), Zhengzhou, Henan Province, 
China, in fluvo-aquic soil. Experiments 1 and 4 were completed 
in 2016–17, and experiments 2 and 3 in 2017–18 and 2018–19, 
respectively. Experiment 5 was completed at Shangshui 
experimental station in Zhoukou, Henan Province (33°33’N, 
114°37’S), in 2017–18, in lime concretion black soil. The 
experiments 1, 4, and 5 consisted of a only one irrigation 
regiments (twice irrigation, 750 m3ha−1 at jointing plus anthesis 
stage), experiments 2–3 consisted of a three irrigation regiments 
(no irrigation, single irrigation of 750  m3ha−1, and 
irrigation750  m3ha−1 at jointing plus anthesis stage). Three 
different winter wheat cultivars were examined, two erect (Yumai 
49–198 and Zhoumai 27) and one horizontal (Zhengmai 9694). 

TABLE 1 | Seasons, soil status, cultivars, nitrogen rates, irrigation frequency, and sampling dates for five experiments.

Exp. no.
Season, Site, 
and Cultivar Soil characteristics Treatments Sampling stage

Exp. 1 2016-2017

Zhengzhou

Yumai49-198

Type: fluvo-aquic soil, Organic-M: 20.7 g kg−1, 
Soil pH (CaCl2): 7.9, Total N: 
1.9 g kg−1,AvailableP: 40.63 mg kg−1, Available 
K: 116.2 mg kg−1

Irrigated N: N rate (kg ha-1), W2: [N0(0), N6(60), N12(120), N18(180), 
N24(240)]. N: 50% prior to seeding and 50% at jointing. Irrigation 
frequencies: W2 (twice at jointing and anthesis stage).

Booting
Anthesis

Mid-filling

Exp. 2 2017-2018

Zhengzhou

Yumai49-198

Type: fluvo-aquic soil, Organic-M: 16.8 kg−1, 
Soil pH (CaCl2): 7.8, Total N: 0.92 g kg−1, 
Available P: 18.90 mg kg−1, Available K: 
152.64 mg kg−1

Water and nitrogen coupling: N rate (kg ha-1), W0: [N0(0), N6(60), 
N12(120), N18(180), N24(240)], W1: [N0(0), N6(60), N12(120), N18(180), 
N24(240)], W2: [N0(0), N6(60), N12(120), N18(180), N24(240)]. Irrigation 
frequencies: W0(none), W1(once at jointing stage), W2 (twice at 
jointing and anthesis stage).

Booting
Heading
Anthesis

Mid-filling

Exp. 3 2018-2019

Zhengzhou

Yumai49-198

Type: fluvo-aquic soil, Organic-M: 16.8 kg−1, 
Soil pH (CaCl2): 7.8, Total N: 0.92 g kg−1, 
Available P: 18.90 mg kg−1, Available K: 
152.64 mg kg−1

Water and nitrogen coupling: N rate (kg ha-1), W0: [N0(0), N6(60), 
N12(120), N18(180), N24(240)], W1: [N0(0), N6(60), N12(120), N18(180), 
N24(240)], W2: [N0(0), N6(60), N12(120), N18(180), N24(240)]. Irrigation 
frequencies: W0(none), W1(once at jointing stage), W2 (twice at 
jointing and anthesis stage).

Booting
Heading
Anthesis

Mid-filling

Exp. 4 2016-2017

Zhengzhou

Zhengmai9694

Type: fluvo-aquic soil, Organic-M: 16.8 kg−1, 
Soil pH (CaCl2): 7.8, Total N: 0.92 g kg−1, 
Available P: 18.90 mg kg−1, Available K: 
152.64 mg kg−1

Irrigated N: N rate (kg ha-1), W2: [N0(0), N12(120), N18(180), 
N24(240)]. N: 50% prior to seeding and 50% at jointing. Irrigation 
frequencies: W2 (twice at jointing and anthesis stage).

Booting
Heading
Anthesis
Mid-filling

Exp. 5 2017-2018

Shangshui

Zhoumai27

Type: lime concretion black soil, Organic-M: 
kg−1, Soil pH

(CaCl2): 7.0, Total N: kg−1, Available P: 
4.87 mg kg−1,

Available K: 176.52 mg kg−1

Irrigated N: N rate (kg ha-1), W2: [N0(0), N6(60), N12(120), N18(180), 
N24(240)]. N: 50% prior to seeding and 50% at jointing. Irrigation 
frequencies: W2 (twice at jointing and anthesis stage).

Heading

Anthesis

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Multi-Angle Remote Sensing for WUE

Frontiers in Plant Science | www.frontiersin.org 4 March 2021 | Volume 12 | Article 614417

Experimental plots 1–4 covered an area of 7 × 2.9 m, respectively, 
planted in a north-south direction, with 18  cm row spacing, 
while plot 5 covered an area of 9  ×  6  m, planted in a north-
south direction, with 20  cm row spacing. All experiments 
followed a completely randomized block design, and each 
treatment was repeated three times. All plots were managed 
according to local standard management practices.

Measurements of Agronomic Indicators
The PN and Tr of the top leaf were determined in the field 
using a photosynthetic device (LI-6400 photosynthetic rate 
system; Li-Cor Inc., United States). Measurements were obtained 
in the open at a carbon dioxide concentration of approximately 
385  μmol  1−1. The built-in light source was set at 
1600  μmol  m−2  s−1. The ratio of PN and Tr was then used to 
reflect the WUE. Measurements were taken at the booting, 
heading, anthesis, initial-filling, and mid-filling stages.

Twenty representative plants from each treatment were then 
randomly selected and brought back to the laboratory where 
they were separated into stem and leaf samples. Leaf weight 
(FW) was recorded before drying the samples in an oven at 
105°C for 30  min then to a constant weight at 70°C. The dry 
mass of the leaves (DW) was then determined and the LWC 
was calculated as follows:

LWC  =  (FW-DW)/FW.

Plant leaf samples were simultaneously dried to a constant 
weight then crushed and passed through a sieve before determining 
the leaf nitrogen content (LNC) using the Kjeldahl method.

Canopy Spectrum Acquisition
At the same time as measuring the WUE, the spectral reflectance 
of the winter wheat canopy was also determined. A FieldSpec 
Pro FR 2500 back-mounted field hyperspectral radiometer 
(Analytical Spectral Device, American ASD Company) was 
used to sample 10 points per 1  m2, which were then averaged 
as one point of data. Measurements were made on a sunny 
day with no cloud cover between 10:00 and 12:00  a.m. The 
field of view of the spectrometer was set at 25°, the spectral 
range was 350–1075 nm, and the sampling interval was 1.6 nm. 
Before sampling and during use, a 40 × 40 cm BaSO4 whiteboard 
was used for calibration. To obtain multi-angle spectrum, a 
probe was fixed to the multi-angle observation frame according 
to the design of the field angle measurement system (FIGOS, 
Figure  1). A total of 13 observation angles were examined 
following the principal plane of the sun, with the sunny side 
representing backward observation angles (−60, −50, −40, −30, 
−20, and −10°, respectively), and angles on the opposite side 
representing forward observation angles (10, 20, 30, 40, 50, 
and 60°, respectively), with the vertical angle set at 0°.

Data Application
A self-developed computation program was used to optimize the 
sensitive band combinations and equations using MATLAB 7.0 
software. Data from experiments 1–3 were used to construct the 

new vegetation index and WUE estimation model, while independent 
data from experiments 4–5 were used to test the model by 
comparing differences between the coefficient of determination 
(R2), root mean square error (RMSE), and relative error (RE, %). 
A 1:1 scatter plot was then used to show the effect of the model. 
Some common spectral indices were calculated using the equation 
listed in Table  2. RMSE and RE were calculated as follows:

 RMSE
n

P Q

i
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i i= × −( )
=
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1
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where Pi and Qi represent the predicted and measured values, 
respectively, and n represents the number of samples.

RESULTS

Quantitative Relationships Between the 
Leaf Nitrogen Content, Water Content, and 
WUE
Based on the data from experiments 1–3, the relationships 
between the LNC, LWC, and ratio between LNC/LWC under 
different experimental conditions was analyzed in terms of the 
WUE (Figure  2). As shown in Figure  2A, when the irrigation 
treatment conditions are not distinguished, the relationship 
between LNC and WUE was generally poor (R2 = 0.366). Under 
a single water treatment condition, the LNC showed a significant 
linear relationship with the WUE, and the correlation was best 
under W1 (once water at jointing stage) conditions (R2 = 0.869), 
followed by W0 conditions (R2  =  0.803). The worst correlation 
was observed under W2 (twice water at jointing and anthesis 
stage) conditions (R2 = 0.682). Similarly, the relationship between 

FIGURE 1 | Dimensions and design of the field goniometer system.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. Multi-Angle Remote Sensing for WUE

Frontiers in Plant Science | www.frontiersin.org 5 March 2021 | Volume 12 | Article 614417

the LWC and WUE was also affected by nitrogen treatment. 
Overall, the R2 between the LWC and WUE was only 0.098 
(Figure 2B). Under different nitrogen treatment conditions, the 
relationship between LWC content and WUE was significant. 
The transition from high to low nitrogen treatment caused an 
increase followed by a decrease in R2, with N12 (120  kg  ha−1) 
treatment giving the highest value (R2 = 0.885). The relationships 
between the LNC and LWC content and WUE were therefore 
affected by each other, and these relationships were therefore 
analyzed further. Results revealed that the variation in WUE 
was closely related to the slope between LNC and LWC. With 
increasing WUE, the slope of the equation between LNC and 
LWC gradually increased (Figure 2C), and there was a significant 
positive correlation between the LNC/LWC ratio and WUE 

(R2  =  0.564, Figure  2D). These findings suggest that the LNC/
LWC ratio more accurately reflects the dynamic changes in 
WUE under different water and nitrogen conditions.

Relationship Between Common Spectral 
Parameters and WUE at the Vertical 
Observation Angle
The relationships between 330 previously reported vegetation 
indices and WUE were subsequently analyzed, then the best 
12 were selected (Figure  3). As shown in the figure, the R2 
between WUE and only three of these parameters was greater 
than 0.4 (R2 of Lo, EVI-1 and NDDAig: 0.439, 0.523, and 
0.545; RMSE: 0.539, 0.511, and 0.500, respectively). To further 

A B

C D

FIGURE 2 | Quantitative relationships between leaf nitrogen (N) content (LNC: A), water content (LWC: B), LNC/LWC (D) and water use efficiency (C: The relation 
between LWC and LNC. WUE; n = 140).
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improve the estimation accuracy using the relationship between 
LNC/LWC and WUE, LNC and LWC were converted using 
related vegetation indexes then the relationship with WUE was 
analyzed further. Ten indexes representing the LNC and seven 
representing the LWC were combined to create different ratios 
of the two vegetation indexes then the correlations with WUE 
were determined at a vertical angle (Figure 4). Ten combinations 
showed a R2 greater than 0.40, and of these, three had an R2 
exceeding 0.50 and were considered optimal (NDDAig/FWBI, 
NDDAig/WBI-1, and SPRI/WBI-1). Overall, the combination 
of NDDAig/FWBI performed the best (R2  =  0.624).

The quantitative relationships between the two common 
spectral parameters Lo and NDDAig and the optimized novel 
ratio vegetation index (NDDAig/FWBI) and WUE are shown 
as a scatter plot in Figure  5. A significant linear correlation 
was revealed between Lo and WUE (R2  =  0.523 and 
RMSE  =  0.501, Figure  5A), with an obvious saturation 
phenomenon. Compared with Lo, the NDDAig model showed 
improvement (R2 = 0.543, RMSE = 0.486, Figure 5B), although 
the combined NDDAig/FWBI index gave the best results 
(R2  =  0.624, 19.31 and 14.92% higher than that of Lo and 
NDDAig, respectively; RMSE = 0.441, 13.61, and 10.20% lower 

than that of Lo and NDDAig, respectively), with obvious 
weakening of the saturation phenomenon. Based on highest 
R2 values, the new ratio vegetation index (NDDAig/FWBI) 
was constructed to generate a water efficiency index (WEI).

Relationships Between the Spectral 
Parameters and WUE at Different Zenith 
Angles
Based on the data from experiments1–3, the relationships 
between the 12 common vegetation indexes and new combined 
index WEI were analyzed in terms of WUE under different 
observation angles (Table  3). Overall, except for angles of −60 
and −50°, all spectral parameters had a higher backward R2 
than forward R2, especially in the range of −40–30°. Moreover, 
the optimal observation angles of the different vegetation indexes 
were inconsistent with the monitoring accuracy. Two of the 
13 spectral parameters (GVI and TC2) had an optimal observation 
angle of 0° with R2 values of 0.375 and 0.365, respectively, 
while five spectral parameters [TSAVI (800, 670), RDVI (800, 
670), PSRI, SIPI (800, 680, 445), and EVI-1] had an optimal 
angle of −20° with R2 values of 0.424, 0.406, 0.407, 0.422, 
and 0.472, respectively. It is worth noting that the optimal 
observation angle of seven of the indexes was −10°, suggesting 
that observation angles of −10 to −20° are important when 
monitoring the WUE of winter wheat leaves.

Compared with the common spectral parameters, the new 
vegetation index WEI showed obvious advantages at specific 
observation angles, especially an angle of −10°. The R2 and 
RMSE of the WEI model at different zenith angles are shown 
in Figure  6. The R2 was highest in an angle range of −20–10° 
and the RMSE was relatively low.

Relationship Between the New Spectral 
Parameter and WUE Under Different Angle 
Ranges
From a single observation angle point of view, the monitoring 
accuracy of the new combined index was highest within a 
range of −20–10°, with highest precision at −10° (R2 and 
RMSE: 0.635 and 0.441, respectively). By combining the data 
from different observation angles, equation fitting was further 
analyzed under five observation angle ranges according to the 
principle of adjacent observation angles. As shown in Figure 7, 
the monitoring accuracy of WEI was higher than that of Lo 
and NDDAig, and the RMSE value was lowest under different 
angle ranges. Compared with an observation angle of −10°, 
the R2 of WEI decreased by 6.72% within a range of −20–20°, 
while the RMSE increased by 7.76% (Figure  8A). Meanwhile, 
the R2 decreased by only 1.93% in a range of −20–10° and 
the RMSE increased by only 4.71% (Figure 8B). These findings 
suggest that within an angle range of −20–10°, the WEI model 
reduces the dependency on the observation angle, increasing 
the applicability and stability of the model.

Testing of the Estimation Model
The WUE estimation models were subsequently tested with 
the independent test data obtained in experiments 4–5 using 

TABLE 2 | Summary of selected spectral parameters reported in the literature.

Vegetation 
indices Formula Reference

DVI(810,680) R810-R680 Jordan, 1969

SRPI R430/R680 Peñuelas et al., 1995a
WBI-1 R950/R900 Peñuelas et al., 1993a
WI R900/R970 Peñuelas et al., 1997
Readone R415/R695 Read et al., 2002
Lo min(R680-780) Miller et al., 1990
PSRI (R680-R500)/R750 Merzlyak et al., 1999
R434/(R496 + R401) R434/(R496 + R401) Tian et al., 2011
R705/(R717 + R491) R705/(R717 + R491) Tian et al., 2011
FWBI R900/min(R930-980) Strachan et al., 2002
PRI(570, 531) (R531-R570)/(R531 + R570) Gamon et al., 1992

SIPI(800, 680, 445) (R800-R445)/(R800-R680) Peñuelas et al., 1995a

mSR705 (R750-R445)/(R705-R445)
Sims and Gamon, 
2002

RES (R718-R675)/(R755-R675) Ju et al., 2010

NDVI(895, 675) (R895-R675)/(R895 + R675)
Santos and Negri, 
1997

NDRE (R790-R720)/(R790 + R720) Fitzgerald et al., 2006
NRI(570, 670) (R570-R670)/(R570 + R670) Li et al., 2005

RDVI(800, 670) (R800-R670)/sqrt(R800 + R670)
Roujean and Breon, 
1995

NDDAig (R755 + R680−2 × R705)/(R755−R680) Feng et al., 2014

NDGI
[R(520-560)-R(630-690)]/ [R(520-560) +  
R(630-690)] Rouse et al., 1974

EVI-1
2.5*(R860-R645)/(1 + R860 + 6*R645-
7.5*R470) Huete et al., 2002

MCARI(700, 670, 
550) [(R700-R670)-0.2*(R700-R550)]*(R700/R670) Daughtry et al., 2000

Vari-GREEN
(R520-560-R630-690)/(R520-560 + R630-

690-R430-470) Gitelson et al., 2002

TSAVI(800, 670)

1.4735*(R780 + 1.4735*R650-
1.3681)/
(-1.4735*R780+R650 + 1.4735*1.3681)

Baret and Guyot, 
1991

WEI
[(R755+R680-2*R705)*Min(R930-980)]/
[(R755-R680)*R900] This study
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three indicators (R2, RMSE, and RE). The prediction ability 
is shown as the ratio between predicted and observed values 
in Figure  9. The WUE model using NDDAig (R2  =  0.602, 

RMSE  =  0.474, and RE  =  14.191%) as a variable was better 
than that using Lo (0.517, 0.523, and 18.012%, respectively); 
however, new parameter WEI gave better predictions, with 

FIGURE 3 | Relationships between common vegetation indices and WUE (n = 140).

FIGURE 4 | Correlations between different parameter ratios and the WUE. [X-axis: VIs-LNC (vegetation indices related to LNC) 1–10 represent NDDAigig, R434/
(R496 + R401), R705/(R717 + R491), SRPI, NDRE, Lo, NRI, NDGI, RES, MCART (700, 670, and 550), respectively; Y-axis: VIs-LWC (vegetation indices related to LNC) 1–7 
represent PRI (570 and 531), FWBI, WBI-1, WI, Vari-GREEN, mSR705, NDVI (895 and 675), respectively; n = 140].
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R2  =  0.685, RMSE  =  0.403, and RE  =  11.147%. Overall, 
these findings suggest that the new combined index of WEI 
can be  used to accurately monitor the WUE of winter 
wheat leaves.

DISCUSSION

Water and nutrients are not only the main stress factors affecting 
agricultural production, but they also interact with each other, 
playing individual as well as complimentary roles. The main 
aim of agricultural management, therefore, is to maximize the 
coupling effect of water and nitrogen, adjust water management 
according to nitrogen absorption, and use water management 
to promote nitrogen absorption (Sheshbahreh et  al., 2019). 
Water stress significantly affects nitrogen absorption, while 
improved soil water conditions benefit nitrogen absorption and 
utilization. Increased uptake of nutrients under drought stress 
can also help improve drought resistance, while optimal increases 
in nitrogen fertilizer application can improve WUE and increase 
yield (Wolfe et al., 1988). As a result of the synergetic relationship 
between soil water and nitrogen, the changes in crop nitrogen 
and water contents are also synchronized. However, this 
relationship is also affected by irrigation and nitrogen fertilizer 
treatment. Meanwhile, this study confirmed that the relationship 
between the LNC and WUE is also affected by irrigation 
treatment, while at the same time, the relationship between 
the LWC and WUE is also affected by nitrogen fertilizer 
treatment. Thus, the use of LNC and LWC alone was relatively 
unreliable in characterizing the WUE. In contrast, the relationship 
between the ratio of LNC/LWC in terms of WUE was relatively 
less affected by irrigation and nitrogen fertilizer treatment. 
The coefficient of determination of the fitting equation was 
0.564, suggesting that the LNC/LWC ratio is a good indicator 
of dynamic changes in WUE. Overall, the findings confirmed 
that an increase in nitrogen in line with an increase in the 
water content of crop leaves is beneficial to overall 
water absorption.

The WUE of a plant is genetically controlled as well as 
being affected by the environment, and can therefore 
be  improved by both breeding and cultivation measures.  

A high WUE is beneficial in maintaining a certain yield under 
water stress, and therefore has important application value. 
In addition, WUE plays a significant role in estimations of 
net primary productivity (NPP  =  WUE  ×  Tr) on a regional 
scale. However, recent studies have shown that the WUE is 
not constant, but rather it varies greatly with environmental 
conditions and the plant type (Yu et  al., 2001). The use of 
remote sensing to rapidly and non-destructively determine the 
real-time WUE of a crop therefore provides important 
information for terrestrial ecosystem and water cycle models 
at different scales. The crop canopy spectrum provides mixed 
information, and is susceptible to factors such as plant coverage, 
soil type, and leaf area. Accordingly, a number of studies have 
aimed to construct new indexes that reduce noise and improve 
the estimation accuracy (Wang et  al., 2012). For example, 
Peñuelas et  al. (1997) and Pinol et  al. (1998) successfully 
determined the humidity of combustibles using spectral data 
obtained in the field in the Mediterranean using a combined 
ratio spectral index (Peñuelas et  al., 1997; Pinol et  al., 1998). 
Studies have also shown that double-ratio vegetation indexes 
can reduce the effects of variables such as background and 
leaf area index (LAI), and provide more useful information 
for estimations of the vegetation canopy water content (Daughtry 
et  al., 2000; Haboudane et  al., 2002). Meanwhile, double-ratio 
vegetation indexes also include more sensitive bands, thus 
improving the estimation accuracy (Gitelson et al., 2017). Based 
on these studies, we  therefore combined the close relationship 
between LNC/LWC and WUE to obtain a new spectral parameter, 
one indicate the change in nitrogen content of the leaf is 
selected, another parameter that is sensitive to the change in 
LWC is selected, the combination of these two vegetation 
indexes in the form of ratio provides an opportunity to invert 
WUE of leaves. To this end, we selected two spectral parameters 
of nitrogen content (NDDAig) and water content (FWBI), 
and combined the two (NDDAig/FWBI) to give a new index, 
WEI. Accordingly, estimations of the WUE of winter wheat 
leaves were greatly improved. Compared with common spectral 
parameters, the new WEI performed best at 13 angles, with 
optimal angle compatibility within the range of −20–10° 
(R2  =  0.623). The use of independent test data also confirmed 
the accuracy of the model.

A B C

FIGURE 5 | Relationships between Lo (A), NDDAig (B), NDDAig/FWBI (C), and the WUE at a 0° zenith angle (n = 140).
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The difference between a vegetation index in different 
observation directions depends on various factors, including 
the crop canopy structure, the shape, and angle of the sensor, 
shadows, and the soil type (Kimes et  al., 1985). In this study, 
the relationship between WEI and WUE also varied depending 
on the angle of observation. Pocewicz et  al. (2007) made 
full use of the hotspot effect of the backward observation 
angles to improve the estimation accuracy of LAI (Pocewicz 
et  al., 2007). Meanwhile, a multi-angle observation method 
was used to collect image data of the soybean canopy at 
different growth stages in the field, revealing that a 40° zenith 
angle was the best angle for inverting chlorophyll density 
(Zhang et al., 2013). In this study, the R2 between the spectral 
parameters and WUE decreased with increasing observation 
angle, possibly because a smaller angle results in more 
comprehensive information of the upper, middle, and lower 
canopies of the entire crop. The absorption of water by crop 
leaves is the result of interactions throughout the canopy; 
therefore, small-angle spectral information is important in 
determining an accurate WUE. In addition, the effects of 
backward observation angles were found to be  better than 
those of forward observations. This is thought to be  because 
when data is collected in a backward direction, the sensor 
is located on the same side as the sun, and data is mainly 
collected from canopy falling within the light. In contrast, 
the crop canopy with a larger shadow share is collected in 
a forward direction, although angles of −60° and −50° behave 
abnormally, possibly due to the decline in data quality at 
larger angles (Barnes and Hu, 2016).

Compared with the vertical angle, the wider angle range 
not only resulted in more information on the crop canopy, 
but also expanded the application range of the sensor, 
increasing overall efficiency. In addition to determining the 
best observation angle, it is also important to comprehensively 
model data from different angles to increase application 
accuracy (Guo et  al., 2018; He et  al., 2018). The WEI 
constructed in this study provided high estimation accuracy 
(R2  =  0.623) within a range of −20–10°, and compared 
with the optimal angle (−10°), the estimation accuracy of 
WEI within a range of −20–10° decreased by only 1.93%, 
while the RMSE value increased by only 4.71%. These results 
suggest that the WEI reduces the sensitivity to observation 
angles within the range of −20–10°, helping establish a 
more unified monitoring model, and increasing the efficiency 
and applicability of portable monitors in the field. However, 
despite these findings, this experiment was carried out using 
only three winter wheat varieties under two ecological 
conditions, and therefore, further analysis of the monitoring 
model in other regions, and with different crop types and 
varieties is required.

CONCLUSION

Real-time monitoring of crop water use is of great significance 
in improving crop irrigation management and guiding water-saving 
agricultural production. Based on the WUE, this study adopted TA
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FIGURE 6 | Correlations between water efficiency index (WEI) and WUE at different zenith angles (n = 140).

FIGURE 7 | Comparisons of the predictive abilities of Lo, NDDAig, and WEI within five zenith angle ranges (−60–60°, −60–0°, 0–60°, −20–20°, and −20–10°) with 
respect to WUE (n = 140).
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a combined vegetation index method, using NDDAig/FWBI to 
effectively determine the WUE of winter wheat leaves reflecting 
a new index named the WEI. The WEI performed better than 
other common vegetation indexes at 13 observation angles, with 
the most suitable observation range falling between −20 and 10°. 
Within this range, a unified estimation model was established 
with reduced dependency on observation angle limitations. These 
findings provide a basis for the selection of varieties with a high 
WUE as well as supporting water-saving cultivation management.
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