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Environment fluctuations can influence a plant’s phytochemical profile via phenotypic

plasticity. This adaptive response ensures a plant’s survival under fluctuating growth

conditions. However, the resulting plant extract composition becomes unpredictable,

which is a problem for highly standardized medicinal applications. Here we demonstrate,

for the first time, the feasibility of tracking the changes in the phytochemical profile based

on real-time measurements of a few environment and extract-preparation variables. As

a result, we predicted the chromatograms of Blumea balsamifera extracts through an

imputation-augmented convolutional neural network, which uses the image-transformed

temporal measurements of the variables. We developed a sensor network that collected

data in a greenhouse and a training algorithm that concurrently generated a data

representation of the implicit plant-environment interactions leading to the mutable

chromatograms of leaf extracts. We anticipate the generic applicability of the method

for any plant and recognize its potential for addressing the standardization problems in

plant therapeutics.

Keywords: plant-environment interactions, phenotypic plasticity, phytochemical profiling, plant therapeutics,

plant extracts, Blumea balsamifera, convolutional neural network

INTRODUCTION

Plants may be thought of as factories that synthesize highly complex and unusual substances for
various medical and non-medical applications (Mishra and Tiwari, 2011; Nikam et al., 2012).
These complex phytochemical mixtures in herbal or plant-derived medicines have been shown
to have advantages over the single molecules that are isolated or synthetically modified from
natural sources (Rodriguez-Concepcion et al., 2006; Carmona and Soares Pereira, 2013; Ekor,
2014). This has led to a tremendous increase in the use of herbal products and supplements over
the past three decades, as many people around the world have resorted to using these products
for treating various health-related concerns (Calixto, 2000; WHO, 2004; Ekor, 2014). However,
the production of herbal medicines is a gradual and meticulous process. It involves three basic
steps: (i) identification of herbs based on macroscopical and microscopical features; (ii) evaluation
of drugs for the confirmation of their identity and purity; and (iii) standardization (Kunle
et al., 2012; Newmaster et al., 2013). The standardization of herbal formulations encompasses
all of the quality control measures taken during the manufacturing process such as sample
preparation and phytochemical evaluation, as well as microbial, biological, and toxicity testing
(Calixto, 2000; Rodriguez-Concepcion et al., 2006; Kunle et al., 2012; Newmaster et al., 2013).
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Additionally, guidelines and protocols are utilized to ensure
the safety, quality, and efficacy of all herbal products and
formulations (WHO, 1998; Harvey, 2008; Sahoo et al., 2010;
Newmaster et al., 2013).

In the Philippines, there are 10 herbal plants that are
recommended by the Department of Health for medical
applications and potential product commercialization. These 10
medicinal plants have already been scientifically and clinically
validated. In fact, these plants are listed under the Republic Act
No. 8423 and by the Philippine Institute of Traditional and
Alternative Health Care as recommended for use in treating
specific physiological problems (Ammakiw and Odiem, 2013;
Boy et al., 2018). An example of which is Blumea balsamifera
(locally known and referred to hereafter as “sambong”), is a shrub
that grows across Southeast Asia, India, and China, known for
managing urolithiasis and other kidney problems (Ammakiw
and Odiem, 2013; Montealegre and De Leon, 2017; Boy et al.,
2018). However, despite proven therapeutic effects, the herbal
products derived from such medicinal plants remain difficult
to commercialize because of the inconsistent use of extraction
methods and the variable content in different batches of these
herbal formulations (Sahoo et al., 2010; Carmona and Soares
Pereira, 2013). As such, the primary goal of the standardization
of herbal formulations is to ensure a reproducible quality of
herbal products (Calixto, 2000; Rodriguez-Concepcion et al.,
2006; Sahoo et al., 2010; Kunle et al., 2012).

A very important aspect in the standardization of plant-
derived medicinal products is the phytochemical evaluation. This
involves the identification and relative quantification of bioactive
compounds in the herbal extracts. The evaluation is conducted
by analyzing the phytochemical profile of the extracts obtained
from tedious chromatographic and spectroscopic procedures.
Such procedures involve the use of highly-technical setups such
as liquid and gas chromatography in conjunction with mass
or ultraviolet spectroscopy (LC/GC-MS, LC/GC-UV), capillary
electrophoresis, nuclear magnetic resonance spectral analysis,
attenuated total reflection, and Fourier transform infrared
spectroscopic imaging, among others (Dias et al., 2012; Seger
et al., 2013; Huck, 2015). However, despite the use of these
modern chemical and analytical procedures, the determination
and isolation of bioactive metabolites in plant materials remains
challenging (Calixto, 2000). Such difficulty arises from the
plants’ inherent phenotypic plasticity in response to stress and
their environment, resulting to significant variability in their
phytochemical make-up. For instance, raw herbal materials
cultivated and collected from the same area of vegetation may
have different phytochemical profiles and may thereby exhibit
different bioactivities. Pérez-Balibrea et al. (2008) showed that
the light treatment of sprouting broccoli (Brassicaceae) seeds
increases the concentration of health-promoting phytochemicals,
such as vitamin C, glucosinolates, and phenolic compounds.
Odjegba and Alokolaro (2013) simulated the effects of a drought
and varying salinity conditions in Acalypha wilkesiana plants,
which resulted in a decrease in the quantity of alkaloids,
flavonoids, and tannins in the extracts, as well as an increase
in the saponin production levels. Due to their plasticity, plants
can adjust their responses to a multitude of biotic and abiotic

stresses. Therefore, changes in environmental conditions such
as temperature, humidity, sunlight, rainfall, and soil conditions,
as well as diurnal and seasonal cycles, can promote significant
variability in the phytochemical make-up of raw herbal materials.

The complex nature of plant extracts makes the development
of herbal products a difficult task. A large analytical effort
and high-quality manufacturing skills are needed to produce
standardized and quality controlled herbal formulations
(Cravotto et al., 2010; Carmona and Soares Pereira, 2013). One
approach to studying the complexity of these plant extracts is
through chemometrics, which aims to understand metabolomic
or chromatographic data using multivariate data analysis
(Parker et al., 2009; Turi et al., 2015). Chemomemtric analysis
denotes the application of statistical tools such as principal
component analysis (PCA) (Le Gall et al., 2003; Want et al.,
2010; Worley and Powers, 2013; Wolfender et al., 2015), support
vector machines (SVMs) (Zheng et al., 2009; Gromski et al.,
2015), and multivariate regression models (Brown et al., 2012;
Das et al., 2017; Ballesteros-Vivas et al., 2019) to examine
and validate the phytochemistry of organic extracts based on
their chromatographic or metabolomic profiles. Unsupervised
analytical techniques such as PCA and SVMs have been used
to determine the secondary metabolites that contribute to the
specific bioactivity of a plant extract (Le Gall et al., 2003; Zheng
et al., 2009; Want et al., 2010; Worley and Powers, 2013; Gromski
et al., 2015; Wolfender et al., 2015). Multivariate regression
models, a type of supervised statistical technique, have been
used to correlate the extraction parameters, such as the solvent
type and pH, with the concentrations of specific metabolites
in the plant extracts (Brown et al., 2012; Das et al., 2017;
Ballesteros-Vivas et al., 2019).

However, these types of chemometric tools usually require the
cumbersome process of choosing specific features that may be
suboptimal for a given task. Artificial intelligence technologies
such as deep learning (LeCun et al., 2015; Schmidhuber, 2015)
have generated new methods over recent years that permit the
determination of the most suitable set of features within the
training process, without any involvement from the investigator
(Zhang et al., 2017). In natural product research wherein
the volume of data sets is typically very large, deep learning
methodologies have shown promising results (Chen et al., 2018;
Sarker and Nahar, 2018). For instance, artificial neural networks
(ANNs) (Dahmoune et al., 2015; Eftekhari et al., 2018) were
trained to determine the non-linear relationship between the
laboratory and extraction parameters as the inputs and the
metabolite concentrations as the outputs. ANNs were also used
to predict the bioactivity of plant extracts given the relative
concentration of their secondary metabolites (Hosu et al., 2014;
Das et al., 2017). Moreover, convolutional neural networks
(CNNs) that are typically used for extracting features and
classifying spatial and grid-structured data such as images have
been applied to the 2D HSQC spectra of compounds from
marine and terrestrial organisms for the characterization of their
metabolic profiles (Zhang et al., 2017; Reher et al., 2020). This
particular CNN tool leverages the wealth of these spectral data
sets constructed over the past four decades from natural product
research (Zhang et al., 2017). CNNs were also used to analyze
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LC-MS data, particularly in classifying the true and false peaks
in the LC-MS spectra (Kantz et al., 2019). The cumbersome
process does not justify the prediction performance of these
chemometric tools.

A missing piece of information is likely the source of
the unexplained variability in existing predictive techniques
applied to the chromatographic characterization of plants. Few
studies have accounted for the gross effects of the environment
on the phytochemical compositions of herbal extracts, which
also makes the standardization of herbal formulations difficult
to achieve. Most previous studies have focused primarily
on characterizing specific groups of phytochemicals, such as
phenolic compounds, and their related bioactivity in the extracts
(Le Gall et al., 2003; Zheng et al., 2009; Want et al., 2010;
Brown et al., 2012; Worley and Powers, 2013; Dahmoune
et al., 2015; Gromski et al., 2015; Wolfender et al., 2015;
Das et al., 2017; Eftekhari et al., 2018; Ballesteros-Vivas et al.,
2019). In this work, we present a novel method for predicting
the chromatogram of sambong leaf extracts using sensor data
collected from the environment in which the plant has been
exposed for over 1 month. We used deep learning technology,
particularly CNNs, to correlate the abiotic stresses, such as
the changes in temperature, humidity, ambient light, soil pH,
and soil moisture, with the supposed chromatograms of the
leaf extracts. Herein, we show that the environmental forcing
on phytochemical synthesis can be encoded using CNNs. As
a result, the trained network model can be used to accurately
predict the entire chromatographic profile of plant extracts based
on different time-varying environmental parameters, as well
as using the controlled laboratory variables. Unlike previous
studies that have focused only on analyzing specific groups of
compounds, our work predicts the entire phytochemical profile
that represents the synergistic contributions of each putative
metabolite in the extract. As such, this method can be used
to evaluate the phytochemical composition of herbal extracts
without undergoing tedious laboratory and chromatographic
procedures. Our work on predictive chromatography offers a
fast, accurate, and high-throughput alternative for phytochemical
evaluation, which is an integral component of standardizing
herbal formulations. To our knowledge, this study is the
first to consider the extraction of temporal information from
environmental data using CNNs to predict the chromatogram of
a plant extract.

MATERIALS AND METHODS

The underlying workflow of the predictive chromatography is
graphically outlined in Figure 1. The following methods are
comprised of separate data collections for input and output
data sets. Subsequent pre-processing procedures were applied to
both the input and output data sets prior to the neural network
training and model evaluation.

Collection of Input Data Sets
An in-house remote environmental monitoring system (REMS)
was installed in Los Baños, Laguna to monitor and record the
real-time data for soil pH, soil moisture, ambient temperature,

relative humidity, and light intensity over a 1-month study
period (see Supplementary Figures 1, 2). The REMS consists of
a plurality of sensing instruments that are made from off-the-
shelf sensors and meters for detecting temperature and humidity
(DHT22), soil moisture (DFRobot SKU SEN0193), ambient light
(Adafruit TSL2591), and soil pH (Fisher Science Education
PH700 Rapitest pH meter). These instruments are linked
together via an expansion port that facilitates data transmission
from the sensors. The aggregated environmental data from the
linked instruments are then sent to a database server.

Collection of Output Data Sets
Chemicals
The naringenin standards were sourced from Sigma-Aldrich. The
solvents used for extraction, namely ethyl acetate, methanol, and
n-hexane, were all HPLC grade and were obtained from RCI
Labscan. LC-MS-grade methanol, formic acid and acetonitrile
with 0.1% (v/v) formic acid were purchased from Scharlau.
Ultrapure water (18.2 M�·cm resistivity at 25 , < 10 ppb
total organic carbon, passed through a 0.22–µm polyvinylidene
difluoride filter) was generated from a Milli-Q Integral 5 water
purification system.

Plant Cultivation and Harvesting
The sambong planting materials including the seedlings, garden
soil, and pots were all obtained from Los Baños, Laguna,
Philippines. All plants for the treatment experiment were
obtained using the cutting method. After a rooting period of
50–60 d, healthy plants were transferred to 2-L pots containing
garden soil. These plants were kept in the greenhouse for another
15–20 d to adapt and acclimatize. After this period, the plants
were divided into 10 separate pots according to their respective
treatments. The environmental and post-harvest processing
parameters were randomized across the plant samples via a
Plackett-Burman design (see Supplementary Table 1). Pots were
placed either under sunlight or under a high-density polyethylene
woven shade net (55–60% sun-shading). Pots were watered daily
to maintain their respective soil moisture content, as indicated in
Supplementary Table 1.

Sample Preparation and Liquid Chromatography
During harvest, the collected sambong leaves were washed with
water, dried in a convection oven at 70◦C for 5 h, ground,
and stored at −20◦C before use. Samples were extracted with
either methanol (E1), ethyl acetate (E2), or n-hexane (E3). Each
sample was prepared in six replicates. Extracts were filtered and
passed through 0.2–µm polytetrafluoroethylene filters prior to
LC analysis.

Ultra-high-performance liquid chromatography (UPLC)
(Want et al., 2010) was performed using a Waters ACQUITY
I-Class UPLC with ACQUITY photodiode array (PDA) eλ
Detector. A reverse-phase Waters ACQUITY HSS C18 column
(2.1-mm internal diameter×100-mm length; 1.8–µm particle
size) was used and maintained at 30◦C. The mobile phases
consisted of 0.1% formic acid in ultrapure water (A) and 0.1%
formic acid in acetonitrile (B). A gradient elution was performed
at a flow rate of 0.4 mL/min with an injection volume of 2
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FIGURE 1 | A method of predicting the phytochemical profile of plant extracts. Predictive chromatography of sambong leaf extracts obtained using the environmental

parameters such as temperature and humidity, ambient light, soil moisture, and soil pH. The training of the CNN model proceeds from the collection and

pre-processing of input and output data sets obtained from REMS and LC-UV chromatography, respectively. Using the images of the environmental time-series data

as inputs, the CNN model will be able to predict the relative percentage concentration profile of an extract taken from a specific sambong plant.

µL. The gradient was as follows: 20% B (0–3min), 20–50% B
(3–20min), 50–100% B (20–22min), 100–20% B (22–23min),
and 20% B (23–25min). A PDA detector was used to scan the
UV absorbance in the wavelength range of 200–700 nm and at
a single wavelength channel of 285 nm. UV absorbances were
acquired for only up to 20min during the UPLC run time. A 40–
µg/mL solution of naringenin was used as an external standard
for relative quantification. All LC-UV data were acquired using
MassLynx (Waters Corporation, Milford, USA).

Pre-processing of the Input Data Sets
Although the REMS was programmed to collect data
approximately every 2ms, this automated data collection
may be compromised due to power interruptions, as well as
other logistical and hardware concerns. We applied a stochastic
regression imputation (Wang and Oates, 2015) using a stochastic
fitting function to fill in the missing values in any of the
environmental data sets due to these logistical issues (see
Supplementary Figure 3). For comparison, we used both the
non-imputed and imputed input data sets for training the CNN
model. Non-imputed input data are sensor data that contain
missing values or NaNs due to interruptions in data collection.
Imputed input data are those with missing values that have been
replaced or imputed with stochastic variables.

Moreover, the environmental time-series data X =
{x1, x2, . . . , xN} collected from the REMS must be normalized

because it does not possess the same range as the output values.
To achieve this, we applied technical indicators used in financial
stock market chart analysis (Dash and Dash, 2016) such as
William’s R and stochastic oscillators to transform the range
[0, 1] while preserving any seasonality trends and auto-regressive
features in the time-series data. This normalization procedure
resampled our initial observation X (t) in a uniform a set of
X̃ (t) = {x̃1, x̃2, . . . , x̃N} , where each x̃i represents data collected
every minute ranging between 0 and 1.

Finally, a tempo-spatial transformation (Wang and Oates,
2015; Fawaz et al., 2019) known as Gramian Angular Summation
(Difference) Fields (GASF and GADF) was used to convert the
resulting normalized time-series data to a 128 × 128 image
(see Supplementary Figure 4). Upon resampling X̃ (t) to a 128-
vector, each pixel in the resulting image therefore contains
about 6 h of environmental data. As a result, k has an upper-
bound value of kmax = ceil

(

n
128

)

that can be used for
data augmentation. We considered multiple combinations of
k ∈ {5, 20, 30, 60, 720, 1440, 4320, 7200} min and d ∈
{720, 1440, 4320}min for these equations to increase the number
of pairwise training data for the neural network by about 12-fold
(see Supplementary Methods).

Pre-processing of the Output Data Sets
The typical outputs for CNNs are in the range of [0, 1]. However,
raw chromatographic data sets, specifically LC-UV data, have
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absorbance units that are above the order of 105. Therefore,
a pre-processing procedure must be conducted before training
the CNN model. For instance, a min-max normalization could
be applied to these output data sets to achieve the desired
range. However, chromatograms are not free from noises and
disturbances from the environment. Baseline drifts, for example,
are caused by column or temperature changes during elution.
As a result, min-max normalization could wrongly identify
the minimum and maximum peak height of the signals with
baseline drifts. Furthermore, the peak heights in the original
chromatogramwill not be preserved because the CNNmodel will
only predict values in the range of [0, 1]. Peak heights are very
important features of a chromatogram because they relate to the
relative concentrations of different metabolites in the extract.

In this work, we first corrected the baseline drifts by using
the BEADS algorithm (Ning et al., 2014). We then transformed
the raw data A (t) to its relative concentration profile C (t) (see
Supplementary Figure 5). The relative concentration of each
metabolite was calculated as mg naringenin equivalents per
100mg of dried leaves (mg/100mg or %). The normalization of
C (t) is derived from its area under the curve, which is basically
the concentration of all of the detectedmetabolites in the extracts.
The resulting normalized relative % concentrations C (t) will
already be in the desired range of [0,1], but they are typically
on the order of 10−4 and 10−3. This order of C (t) may lead to
vanishing gradients and slow convergence during the training
of the neural network. To mitigate these problems, we scaled
up C (t) to the order of 10−1 by taking the log normalized %
relative concentration y∗ (t). Because this log transformation has
a unique inverse, the % concentration C (t) can be easily obtained
from the predicted log concentration profile y∗ (t) of the model
from any given sample.

Input Data Types and the CNN Model
In CNNs, the input data can be generalized to a spatial data set or
an image of the formW×H ×D, whereW,H, andD refer to the
width, height, and depth of the input. In this work, we formed
three types of input training data with varying depths: (1) non-
imputed 1d data, (2) imputed 1d data, and (3) imputed 5d data
(see Supplementary Figure 6).

Because we have a total of five environmental parameters
to correlate per one output chromatogram of a sample extract,
we horizontally concatenated each 128 × 128 image of the
parameter to form input data with a depth of D = 1 (1d), or
of the size 640 × 128 × 1. To compare the model performances
achieved using different input data structures, we also stacked
the five 128 × 128 images to form D = 5 (5d) input
data with dimensions of 128 × 128 × 5. These three types of
input data were trained separately using the same CNN model
(see Supplementary Figure 7). The CNN is composed of four
convolution layers for extracting pertinent features from the
input images, as well as two fully-connected layers for correlating
these features to the log relative % concentration profile of
the samples. A total of 6,048 pairwise input-output data were
obtained after performing data augmentation on the input data
set. A model was trained using 85% of the pairwise data set
(randomly selected) and evaluated using the remaining 15%. The

metrics used for model evaluation were the cross-correlation, R2,
and the Matthew’s Correlation Coefficient (MCC) (Boughorbel
et al., 2017). During training, we used the mean absolute error for
the cost function and RMSProp for the optimization algorithm.

RESULTS

Model Evaluation for the Different Input
Data Types
An example of a predicted chromatogram produced using each
input data type is shown in Figure 2. By inspection, Figure 2D
is the least similar to the test chromatogram (Figure 2A) among
the other input data types. Although it contains outliers beyond
the 10−3 range of the test chromatogram (Figure 2A), it was still
able to recover the peak located around t = 4.8 min, as shown
in the inset plot. Among the three input data types, the imputed
1d input data type (Figure 2C) yielded the most visually similar
profile, as shown in Figure 2A.

To generalize this observation, we measured the degree of
similarity between the test and predicted profiles using a cross-
correlation. As shown in Figure 3, the imputed 1d input data
type obtained the highest average cross-correlation of µxcorr =
0.798 ± 0.163 (s.d). This indicates that the predictions from the
model obtained using the imputed 1d input data have a high
degree of similarity to the test samples. At the extreme end is
the imputed 5d input data type, which demonstrated the lowest
average cross-correlation of µxcorr = 0.013 ± 0.011 (s.d).
This very low average cross-correlation can be attributed to the
outliers observed in Figure 2D. If these points were to be filtered
from the raw predictions of the model, the cross-correlation for
the 5d input data will increase dramatically to µxcorr = 0.771±
0.170 (s.d).

In Figure 4, we quantified the accuracy of the predictions
by measuring the coefficient of determination, or R2, between
the test and predicted profiles. Unlike the cross-correlation that
measures the overall similarity of two signals based on their phase
difference, the R2-value measures the accuracy of the predicted
y∗ (t) . We observed in Figures 4C,F that the predictions from
the imputed 5d input data type have a higher mean R2 [µR2 =
0.426 ± 0.183 (s.d)] despite having the lowest µxcorr compared
to the non-imputed input data type [µR2 = 0.394 ± 0.173
(s.d)]. This can be attributed to the presence of outliers in
the predicted chromatograms. These outliers skew the resulting
regression model away from the non-outlier data points, thereby
increasing R2.

Interestingly, the model with 5d input data performed poorly
compared to the model that uses 1d input data, despite both
containing the same amount of temporal information from the
sensor data. This suggests that the predictive performance of a
model does not only depend on data integrity, but also on the
structure of the input layer. More complicated structures of the
input layer require complex combinations of filters and weights
of the CNN. In 5d input data sets, two additional 128×128 images
were stacked in addition to the usual 3d inputs (representing the
RGB channels in images) for the CNN. A different architecture
might be required to attain an equal or greater performance than
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FIGURE 2 | Predicted chromatograms of sambong leaf extracts. Sample chromatographic profiles (C(t) in % concentration) of a test extract obtained via (A) LC-UV

chromatography, (B) model prediction using non-imputed 1d input data, (C) model prediction using imputed 1d input data, and (D) model prediction using imputed

5d input data.

achieved by the 1d inputs. Nonetheless, it can be observed from
Figures 4B,E that using the imputed 1d input data type for the
given neural network yields the most accurate predictions among
the three input data types [µR2 = 0.470± 0.192 (s.d)].

Peak Evaluation in the Predicted Profiles
The most important feature in a chromatogram is its peaks.
A peak represents a metabolite, and the area under its curve
is related to the concentration of that metabolite in the
sample. To assess the performance of the CNN in terms of
peak reconstruction and classification, we matched the peaks
identified in the test and predicted chromatograms as shown in
Figure 5. We only considered the predictions resulting from the
1d input data types because they both demonstrated a higher
degree of similarity with the test chromatograms compared to
that obtained using the 5d input data.

In matching the predicted peaks p′ with the test peaks P,
we first classify a predicted peak p′ as a true peak tp if it lies
within a tolerance nσ of the test peak p. This peak tolerance
also addresses the peak shifts that may have occurred during the
chromatography procedure, thereby making this classification of
predicted peaks robust to such disturbances. Mathematically, the
set of true peaks tp can be expressed as:

tp =
{

p′ ∈ P
′ ∣
∣ p− nσ ≤ p′ + nσ ′ ≤ p

+nσ , ∀ n ∈ Z, p ∈ P
∣

∣

}

(1)

where ±nσ is the peak tolerance and σ , σ ′ are the standard
deviations of the Gaussian curves approximated by the peaks p
and p′, respectively. From this definition, we could also identify
the false positive peaks fp as the set of predicted peaks p′ that
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FIGURE 3 | Frequency distribution of the cross-correlation metric. The cross-correlation distribution for (A) non-imputed 1d input data (p = 1.75× 10−4), (B) imputed

1d input data (p = 1.09× 10−15), and (C) imputed 5d input data (p = 0.89) at a 5% level of significance.

FIGURE 4 | Comparison between the predicted and test chromatogram across different types of input data. Scatterplot of the log-transformed chromatogram,

predicted vs. the test chromatogram: (A) non-imputed 1d input data, (B) imputed 1d input data, and (C) imputed 5d input data. The frequency distribution of R2 for all

test samples for (D) non-imputed 1d input data (p = 1.36× 10−4), (E) imputed 1d input data (p = 2.50× 10−6), and (F) imputed 5d input data (p = 1.89× 10−5) at a

5% significance level.

do not correspond to any peaks in the test profiles (fp = {p′ ∈
P
′| p′ + nσ′ /∈ tp}). Conversely, false negatives are those non-

peaks in the predicted profile that should have been classified as
true peaks by themodel (fn =

{

np′ ∈ NP
′ ∣
∣ np′ ∈ tp}), while true

negatives are those non-peak points in both the predicted and test
profiles (tn =

{

np′ ∈ NP
′ ∣
∣ np′ /∈ tp}). Using these definitions,

we may evaluate the performance of the model in terms of
the peak classification using Matthew’s Correlation Coefficient
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FIGURE 5 | Matching of peaks between the predicted and test chromatogram. Peak classifications for N = 1, 501 points in the (A) test chromatogram, and the

predictions from the (B) non-imputed and (C) imputed 1d input data types. The MCC(1) distribution for the (D) non-imputed input data (p = 4.50× 10−3) and

(E) imputed 1-channel input data type (p = 1.89× 10−5) at a 5% significance.

(MCC) given by:

MCC (n) (2)

=
TP × TN − FP × FN

√
(TP + FP) × (TP + FN) × (TP + FN) × (TN + FP)

where TP, TN, FP, and FN are the cardinality of the sets
tp, fp, tn, and fn, respectively. An MCC of +1 implies a
perfectly correct predictor; an MCC of 0 is as good as a random
guess; and an MCC of −1 implies a perfectly wrong predictor.
We used MCC to evaluate the performance of our model
because the distribution of the peak types in a chromatogram
is imbalanced.
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FIGURE 6 | Optimization results for the peak tolerance and peak matching

accuracy. (A) The rate of change f ′(n) is monotonically decreasing for

1 ≤ n ≤ 6, which suggests an optimum value n* = 6 resulting to an 18%

improvement in MCC. (B) The Precision-Recall AUC curve for MCC(6) shows

70% accuracy of the CNN model.

In Figure 5, the model obtained using a non-imputed data
input has a higher TP compared to the model obtained using
an imputed data input. However, its MCC (1) = 0.3556 is
significantly lower compared to the latter model withMCC(1) =
0.6736. This huge difference in MCC(1) is clearly a result of
the presence of non-smooth peaks, as shown in Figure 2B.
Because most peak detection algorithms function by using the
first derivative test, those unwarranted sharp peaks in Figure 2B

are classified as false positives peaks. The more false-positive or
false-negative peaks that the model can classify, the lower its
MCC value will be. This observation is evident in Figures 5D,E,
wherein the non-imputed input data is shown to have obtained
a significantly lower µMCC(1) = 0.283 ± 0.104 (s.d) compared
to the imputed 1d input data type with µMCC(1) = 0.587 ±
0.138 (s.d).

As the peak classification hinges on the peak tolerance nσ ,
there exists a value n = n∗ such that the increase of MCC(n)
is no longer significant for n > n∗. We considered the ratio f (n)
as the basis of our optimization (Equation 3).

n∗ = arg min

{

f ′ (n)
∣

∣

∣
f (n) =

µMCC

σMCC

}

(3)

The solution for Equation 3 is shown in Figure 6A. Although
f (n) continues to increase for larger n values, the rate of change
f ′(n) is monotonically decreasing for 1 ≤ n ≤ 6, with
f ′(6) ≈ 10−3. This means that increasing n further corresponds
to a diminishing gain in the peak classification accuracy. At the
optimum value of n∗ = 6, we obtained µMCC(6) = 0.691 ±
0.110 (s.d), which is a significant 18% improvement (p < 0.001,
one-tailed t-test) from the previous mean we considered where
µMCC(1) = 0.587± 0.138 (s.d).

Furthermore, we also cross-validated the model (60-fold)
using different partitions of the imputed 1d input data set to
obtain its overall performance. Figure 6B shows that the area
under the curve (AUC) of the precision-recall plot for MCC(6)
is equal to AUC = 0.70. A perfect classifier has an AUC = 1,
suggesting that the CNN model is a sufficient predictor despite
having only been trained with sensor data covering a month-long
period. Increasing the amount of time over which a data set is
available will further improve the predictive performance of the
trained model.

Model Performance for Different Solvents
The appearance of the chromatogram is dependent on the solvent
that is used to perform the extraction. In this work, the solvent
system spans the extremes of dielectric constants, which could
likely indicate that the chromatograms would represent subsets
of very different extracted compounds. To determine if the model
would perform better using a particular solvent system, we also
assessed the model performance in relation to the type of solvent
used in each sample. Figure 7 summarizes the differences among
the three solvents after cross-validating the model using the
non-imputed and imputed 1d data sets (k-folds = 60 folds).
Consistently, the results of the cross-validation showed a better
performance for the model that uses imputed 1d data (see
Supplementary Table 2).

In Figure 7, we observe differences in the average metric
scores among the three solvents. This suggests that the model
has a preference toward a specific solvent system. In particular,
methanol (E1) has been shown to have the highest average
metric scores for the imputed input data. The difference
observed between ethyl acetate and n-hexane using this input
data is significant (p < 0.001, one-tailed t-test), which implies
that this trained model will more accurately predict the
chromatograms of extracts with methanol compared to those
with ethyl acetate or n-hexane (see Supplementary Tables 3, 4).
Considering the model obtained using non-imputed input data,
the difference between the methanol and ethyl acetate solvents
is also significant. However, the model’s preference for the best
solvent system is inconsistent as it fluctuates between these two
solvents depending on the metric that is being considered (see
Supplementary Tables 3, 5).
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FIGURE 7 | Comparing the model performance across three solvent systems

used during extraction. Randomized cross-validation results (60 folds) of the

CNN model for different solvent systems in (A) non-imputed

(E1 = 24, 996 samples, E2 = 27, 147 samples, and E3 = 6, 877 samples)

and (B) imputed (E1 = 19, 218 samples, E2 = 21, 060 samples, and

E3 = 5, 122 samples) 1d data sets. The cross mark represents the average

metric score of each distribution.

DISCUSSION

Typically, controllable laboratory variables, such as solvent
systems and ratios, are studied and standardized when evaluating
the phytochemistry and bioactivity of herbal extracts. However,
the plants’ phenotypic plasticity in response to stress and
their environment can also add significant variability to the
phytochemical make-up of raw herbal materials. This inherent
variability in plant extracts caused by plant-environment
interactions make the standardization of herbal formulations,
and other plant therapeutics challenging. Here, we have

demonstrated the feasibility of tracking the changes in the
phytochemical profile of plant extracts based on real-time
measurements of a few environment and extract-preparation
variables. As a result, we predicted the chromatograms of the
Blumea balsamifera leaf extracts using an imputation-augmented
convolutional neural network (CNN) that uses the image-
transformed temporal measurements of the variables.

The methods that we have established in this work involve
many data pre-processing steps that are inspired from multiple
scientific disciplines. To pre-process the input data, the following
steps were involved: (1) stochastic imputation for the missing
sensor values usually applied in statistics involving real world
data; (2) tempo-spatial transformation of the time series using
GASFs and GADFs that are conceptually equivalent to the
Gramian matrix in linear algebra; and (3) data augmentation
using technical indicators that are commonly applied in stock
chart analysis. The amalgamation of these seemingly unrelated
techniques is what allowed us to normalize and use time-
series data as an input for the CNN model that conventionally
utilizes only spatial data sets. Moreover, our results also showed
the importance of these pre-processing procedures, particularly
imputing missing sensor data to improve the accuracy of the
neural network model. Overall, deep learning strategies such as
CNNs depend not only on the amount, but also on the quality of
information that can be extracted from the data sets.

Furthermore, our methods can also address the baseline and
peak shifts that commonly appear in chromatograms due to
column or temperature changes during elution. Corrections in
the baseline shifts are learned by the model as the training
data sets, in particular the output chromatograms, undergo
pre-processing using the BEADS algorithm. The peak shifts,
conversely, can be resolved by optimizing the peak tolerance
for each predicted peak in the profile. Aside from the physical
disturbances that occur during elution, chromatograms are also
affected by the choice of solvent used during extraction. From
our results, we showed that there is a significant difference in the
accuracy of the predictions obtained using different solvent types
that span the extremes of dielectric constants. More specifically,
we found that the trained model could more accurately predict
the chromatogram of extracts when methanol was used. We
found thatmethanol has the highest dielectric constant of 33 at 20
compared to ethyl acetate (6.08) and n-hexane (1.89). Although
the scope of this work focuses primarily on environmental
forcing as it effects phytochemical synthesis, we have also
demonstrated the extent of this method in providing insights
about the effect of solvent types on the predicted phytochemical
profile of the extracts.

This novel approach for predictive chromatography highly
depends on the volume and veracity of the training data
sets, which include both the environmental and the laboratory
parameters. If trained with a sufficient amount of data,
this method could provide an alternative high-throughput
chromatography procedure for the identification and relative
quantification of bioactive compounds for plant therapeutics.
Unlike other methods used for the phytochemical profiling of
plant extracts, the trained CNN model would only rely on
the time-varying environmental data obtained for an area of
vegetation.Without requiring any tedious laboratory procedures,
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this method would be able to accurately and rapidly predict the
phytochemical profile of a particular plant extract using only
the data collected by the REMS. In future studies, the author
would recommend the use of a more comprehensive and robust
environmental monitoring system for collecting data over longer
cultivation periods to observe the effects of year-long seasonal
patterns on the phytochemistry of sambong leaves.

Although the proposed technique used LC-UV
chromatograms, it may also work with chromatograms generated
by other spectral approaches, such as LC-MS. Furthermore, while
we applied this method toward extracts taken from the leaf of a
Blumea balsamifera, it is also possible to use the same framework
for other plant species and for plant extracts from various parts
of the plant, such as the root, seed, or fruit. For example, the
same set of environmental time-series data could predict the
chromatograms of extracts obtained from different plants or
plant parts exposed to the same conditions, such as those present
in a greenhouse.

Therefore, the proposed method may also function as an
encoder of environmental forcing on phytochemistry across
multiple herbal species. The encoder could be useful for
controlling the growth and extract preparation conditions to
intensify the expression of specific bioactive compounds, or the
combinations thereof, in the extracts. The method can also detect
the impact of climate change in the form of significant structural
modifications to the phytochemical compositions of plant species
over extended periods of time.

Moreover, the proposed method may also be used to
discover previously unknown metabolites that contribute to the
observed therapeutic effects of the herbal extracts. This accurate
and high-throughput alternative to the tedious laboratory and
chromatographic procedures could permit the fast screening of
putative bioactive compounds across multiple herbal species.
Therefore, the synthesis of both herbal formulations or single-
molecule medicines could become much faster.

Another practical application of the proposed method is
quality-assurance verification at the phytochemical level for
plant-derived produce from farms. An automated system for
identifying which environmental factors exert a significant
impact on plant phytochemistry could provide valuable insights
for optimizing produce characteristics. For example, farmers
could use such insights to enhance their current farming practices
to increase production and improve quality control of their
products. Although in this study we saw the limitations of
our method in terms of continuous power supply and robust
sensing instrumentation, we believe that the fast pace technology
advancement would address these limitations and enhance the
practicability of our method, especially in the actual farm setting.

Lastly, this framework that may be used to attribute the
environment’s influence on a plant’s ability to synthesize
compounds will be useful in the analytical chemistry of natural
products in the future. It provides a direct and scalable means
to encode complex environmental influences on the chemical
synthesis processes within a plant. This framework is direct
because it considers the impact of a combination of multiple
environmental factors simultaneously without referencing any
particular molecular theory of forcing. It is scalable because
the method could assimilate additional environmental factors to
obtain more accurate and precise predictions.
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