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Genomics and high throughput phenomics have the potential to revolutionize the field
of wheat (Triticum aestivum L.) breeding. Genomic selection (GS) has been used for
predicting various quantitative traits in wheat, especially grain yield. However, there are
few GS studies for grain protein content (GPC), which is a crucial quality determinant.
Incorporation of secondary correlated traits in GS models has been demonstrated to
improve accuracy. The objectives of this research were to compare performance of
single and multi-trait GS models for predicting GPC and grain yield in wheat and to
identify optimal growth stages for collecting secondary traits. We used 650 recombinant
inbred lines from a spring wheat nested association mapping (NAM) population. The
population was phenotyped over 3 years (2014–2016), and spectral information was
collected at heading and grain filling stages. The ability to predict GPC and grain yield
was assessed using secondary traits, univariate, covariate, and multivariate GS models
for within and across cycle predictions. Our results indicate that GS accuracy increased
by an average of 12% for GPC and 20% for grain yield by including secondary traits in
the models. Spectral information collected at heading was superior for predicting GPC,
whereas grain yield was more accurately predicted during the grain filling stage. Green
normalized difference vegetation index had the largest effect on the prediction of GPC
either used individually or with multiple indices in the GS models. An increased prediction
ability for GPC and grain yield with the inclusion of secondary traits demonstrates the
potential to improve the genetic gain per unit time and cost in wheat breeding.

Keywords: genomic selection, grain protein content, high throughput phenotyping, multivariate models, nested
association mapping, secondary traits, wheat

INTRODUCTION

Agronomically important traits are often controlled by a large number of small effect quantitative
trait locus (QTLs), which have been challenging to take advantage of in plant breeding (Bernardo,
2008). In recent years, genome-wide association studies (GWAS) have offered a solution for
dissecting the genetic basis of complex traits like disease resistance, grain yield, and end-use
quality traits (Jernigan et al., 2018; Lewien et al., 2018). However, in GWAS, small effect QTLs
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are challenging to map and even if the mapping is successful,
their effect is usually confounded due to multiple QTLs present.
Moreover, the small effect of these QTLs makes them inefficient
to be used with marker-assisted selection (MAS) (Bernardo,
2008). Grain yield is an essential example of a quantitative trait
which is difficult to improve in nearly all crop plants. On that
regard, genomic selection (GS) has demonstrated the capacity to
overcome the limitation of MAS and quantitative traits and is
being implemented in various crop plants to improve genetic gain
through selection (Jannink et al., 2010).

Originally proposed by Meuwissen et al. (2001), GS provides
an alternative method for predicting the breeding values in
plants using genome-wide markers. It offers the potential
for accelerating genetic gain by increasing selection intensity,
accuracy, and shortening the breeding cycle time. To perform
GS, a population that has been both genotyped and phenotyped
is selected and termed as the training population. Training
populations are used to train the GS models for estimating
marker effects, which are then used to assign genomic estimated
breeding values (GEBVs) for lines which have not been
phenotyped. This second set of lines which have only been
genotyped are termed as the testing population (Crossa et al.,
2010; Rutkoski et al., 2014). A model’s ability to predict accurately
is termed as prediction accuracy and is defined as the correlation
between observed phenotypes and predicted breeding values.
Individuals can be selected based on the GEBVs before being
tested under field conditions, ultimately speeding up the breeding
cycle (Heffner et al., 2010; Burgueño et al., 2012). Numerous
factors affect GS accuracy, including sample size, heritability,
selection intensity, relatedness between training and testing
population, and genotype imputation methods (Heffner et al.,
2011; Isidro et al., 2015).

Genomic selection models rely on accurate phenotypic
information which has been the main driver for increasing
genetic gain in classical breeding approaches. Prediction accuracy
of GS models depends upon the quality of phenotypic
data collected on the training population (Beyene et al.,
2019). However, advancements in phenotyping has lagged
compared with recent advancements in genomics (White
et al., 2012). During the last decade, several high throughput
phenotyping (HTP) tools have been developed to cope with
the phenotyping bottleneck (White and Conley, 2013; Araus
and Cairns, 2014). Recently, HTP tools have been implemented
to measure various traits in wheat breeding programs, such
as vegetation indices, growth rate, plant height, and disease
resistance (Stewart et al., 2016; Jimenez-Berni et al., 2018;
Khan et al., 2018; Rincent et al., 2018). HTP could be
performed during different growth stages and in multiple
environmental conditions, drastically increasing phenotypic
data to improve selection accuracy (Lopes et al., 2012; Singh
et al., 2016). In wheat, secondary traits aid in indirect
selection for primary traits such as grain yield, although
these estimates might not provide the same accuracy as that
of direct selection (Gizaw et al., 2018b,c). These indirect
estimates for selection are of great value in early generation
breeding cycles when the seed is limited to take measurements
for quantitative traits and conduct multi-environment trials.

Therefore, prediction of quantitative traits at an early stage
using HTP and genome-wide markers may assist in improving
selection accuracy.

The basis of spectral radiometry is to measure electromagnetic
energy at varying wavelengths interacting with different plant
parts. Plant cells, tissues, and metabolites have a light specific
reflectance, absorption, and transmittance of photons (Tucker
and Sellers, 1986; Sankaran et al., 2010). The phenotype is
measured quantitatively through interaction between light and
plants, that may aid in differentiating healthy and stressed
plants. Spectral reflectance indices (SRI) are derived by
measuring photons in visible and near-infrared regions of the
electromagnetic spectrum. These indices provide information
about different physiological and agronomic traits of plants.
The SRI calculated from reflected light in these regions
can be categorized into three main groups. In the first
group, a combination of reflection form visible and near-
infrared region is used to derive SRIs. These indices provide
information about stay green duration, vegetative greenness,
photosynthetic efficiency, and rate of senescence (Babar et al.,
2006). This group contains indices such as simple ratio (SR)
and normalized difference vegetation index (NDVI). The second
group contain indices such as anthocyanin reflectance index
(ARI) and photochemical reflectance index (PRI), which are
solely derived from reflectance in the visible region and estimate
the abundance and composition of plant pigments (Peñuelas
et al., 1994). The indices in the third group are calculated
from reflectance in the near-infrared region and provide
information about plant hydration status. Most commonly
used indices for measuring water stress are water index (WI)
and normalized water index (NWI) (Penuelas et al., 1993;
Zarate-Valdez et al., 2012).

Combining information from SRI and GS to identify lines
which have higher genetic potential for grain yield and end-
use quality traits have the potential for use in wheat breeding.
There are various physiological processes affecting grain yield
and grain protein content (GPC) in wheat, and SRI provides
indirect information about them (Gutiérrez-Rodríguez et al.,
2004; Babar et al., 2006). Traditionally, most of the GS models
were single trait models, including phenotypic information about
primary traits only, such as grain yield, GPC, end-use quality
attributes, or disease resistance, which are of main interest
to the plant breeder. These single trait GS models do not
take advantage of the correlation between the primary trait of
interest and secondary traits like SRI, which indirectly explain
the physiological processes occurring in the plants. Recently,
multi-trait GS models have been applied to utilize the power of
correlated traits (Anche et al., 2020). Improvement in prediction
accuracies for traits having lower heritability has been observed
by including correlated traits in the multivariate GS models (Jia
and Jannink, 2012). Calus and Veerkamp (2011) showed that
multivariate GS models increase the prediction accuracy up to
0.12 using traits having a high genetic correlation. Even traits
having less genetic correlation improved the prediction accuracy
when incorporated in multi-trait GS models. Crain et al. (2018)
showed that incorporation of vegetation indices and canopy
temperature in multivariate GS models improve the accuracy
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for grain yield in wheat by as much as 50% compared to a
univariate GS model.

These findings show that incorporation of secondary traits
helps improve the performance of GS models. Grain yield and
GPC are two traits very important in hard red spring wheat
breeding, yet difficult to select for due to their well-known
negative correlation. Furthermore, these traits are correlated
to various SRI and can be used for indirect selection. Thus,
we wanted to evaluate the (1) comparison between univariate
and multivariate GS models for predicting GPC and grain
yield in wheat; (2) identification of the best growth stage for
collecting spectral information in wheat breeding in the Pacific
Northwest (PNW) for each trait; (3) selection of the best SRI for
incorporation into GS models; and (4) assessment of GS model
performance for within and across environments predictions
for both traits.

MATERIALS AND METHODS

Plant Material
The nested association mapping (NAM) population used in this
study consists of 32 spring wheat accessions from the USDA-
ARS National Small Grains Collection, each crossed to common
cultivar “Berkut” to create 32 half-sib families (Blake et al.,
2019). Berkut was used as a common parent because it is a
semi-dwarf and broadly adapted photoperiod insensitive cultivar
released by the International Maize and Wheat Improvement
Center (CIMMYT), Mexico. As most of the NAM parents
were non-adapted landraces, crosses with “Berkut” helps in
evaluating effects of various un-adapted alleles. Recombinant
inbred lines (RILs) were generated by the single seed descent
method for five generations. A total of 864 F2 plants from each
family were planted in greenhouse in Bozeman, MT in 2010.
Selections were performed from the F2 to F5 generation to select
early flowering plants and photoperiod insensitive genotypes.
Furthermore, plants having height greater than the median height
were discarded, as most of the landraces were homozygous for
Rht alleles. Complete details about the population development
is referred to Blake et al. (2019). At the end, seventy-five early
heading and semi-dwarf plants were selected from each cross
resulting in a population of 2,400 RILs whose genotyping data
were provided by Kansas State University (Jordan et al., 2018).
Due to space constraint, 650 RILs from the original 2,400 were
planted between 2014 and 2016 at Spillman Agronomy Farm,
Pullman, WA, United States (Sandhu et al., 2020). A modified
augmented design was used each year with 15–20% of the
field plots planted with the replicated checks (Berkut, “McNeal”
(Lanning et al., 1994), and “Thatcher”).

Trait Measurement and Calculations
Grain yield (tha−1) was obtained from grain weight per
plot with a Wintersteiger Nursery Master combine (Ried
im Innkreis, Austria). A Perten DA 7,000 NIR analyzer
(Perkin Elmer, Sweden) was used to determine the percentage
of GPC. A handheld CROPSCAN multi-spectral radiometer
(CROPSCAN, Inc., Rochester, United States) was used to obtain

spectral reflectance at Feekes growth stages 10.1 (heading) and
11.1 (grain filling) (Large, 1954). These two stages were used
for selecting spectral information, as previous studies from our
group showed that these stages have high correlation to primary
traits of interest (Gizaw et al., 2016, 2018b). These two stages
provide a window of 1 week when spectral data could be
collected. We continuously monitored the weather conditions
and regularly visited the field to monitor growth stages, in
order to decide the best day for data collection. CROPSCAN
was radiometric calibrated before utilization, which accounts for
any interference due to clouds and wind during the operation.
CROPSCAN contains selective filters which measures incident
and reflected radiation at 16 different wavelengths between 420
and 980 nm. During data collection, CROPSCAN was placed
in the middle of each plot around 1 meter above the canopy
level. Data for spectral reflectance was taken within a 2-h
window of solar noon and avoiding shadow, clouds, and strong
wind. Reflectance values from the whole plots were averaged to
obtain the single value for a particular genotype to avoid the
bias. Spectral information for each plot was processed through
the CROPSACN MSR software. Eight SRI were derived using
reflectance values (Table 1).

Statistical Analysis
The augmented complete block design (ACBD) model
implemented in the R program was used to calculate
adjusted means for all phenotypic data collected under field
conditions between 2014 and 2016 (Rodríguez et al., 2018).
Best linear unbiased estimates (BLUE) were calculated for each
environment, treating effects as fixed and using the model

Yij = u+ Blocki + Genj + Checkj + eij.

Where Yij is the primary trait, u is the mean effect, Blocki
represents effect of the ith block, Checkj denotes effect of the
repeated checks on each block, Genj represents un-replicated
genotypes, and eij is the standard normal error. Broad sense
heritability for all traits is obtained from the ACBD model
treating genotypic effects as random and using the formula
H2
= σ2

g/(σ
2
g + σ2

e).
Where H2 is the broad-sense heritability, σ2

g and σ2
e are the

genotypic and error variance components.
Narrow sense heritability for both primary and secondary

traits were calculated with the model

Y = Xb+ Zg+ e

Where Y is the BLUP of the genotype for each trait, X is an
incidence matrix for the fixed effect (b), Z is also an incidence
matrix corresponding to random genetic effect (g), and e is
the standard error. Variance and covariance were based on the
assumptions that g ∼ N(0, Gσ2

a), where G is the genomic
relationship matrix and σ2

a is the additive genetic variance, and e
∼ N(0, Iσ2

e), where I is the identity matrix and σ2
e is the residual

variance. Narrow sense heritability for primary and secondary
traits was calculated using the formula h2 = σ2a

σ2a+σ2e .

Frontiers in Plant Science | www.frontiersin.org 3 February 2021 | Volume 12 | Article 613300

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-613300 February 8, 2021 Time: 18:13 # 4

Sandhu et al. Secondary Traits for Genomic Selection

TABLE 1 | Spectral reflectance indices, their calculation, and physiological processes measured for a nested association mapping population of spring wheat.

Index Formula+ Physiological processes References

Normalized difference vegetation index (NDVI) (R800
− R680)/(R800

+ R680) Biomass, plant health, vegetative greenness Rouse et al., 1972

Normalized water index (NWI) (R970
− R880)/(R970

+ R880) Plant water status Prasad et al., 2007

Water index (WI) R970/R900 Plant water status, root access to moisture Penuelas et al., 1993

Simple ratio (SR) R800/R680 Green biomass, degree of senescence Stenberg et al., 2004

Green normalized difference vegetation index (GNDVI) (R780
− R550)/(R780

+ R550) Chlorophyll content Gitelson et al., 1996

Photochemical reflectance index (PRI) (R531
− R570)/(R531

+ R570) Carotenoid content Peñuelas et al., 1997

Normalized chlorophyll pigment ratio index (NCPI) (R680
− R430)/(R680

+ R430) Chlorophyll pigments Peñuelas et al., 1994

Anthocyanin reflectance index (ARI) R800 (1/R550
− 1/R700) Anthocyanin pigment Gitelson et al., 1996

+The letter “R” followed by three-digit number stands for reflection measures from that wavelength.

Genetic correlation (rg) was calculated with the bivariate
model, which is represented as[

yA
yB

]
=

[
XA 0
0 XB

] [
bA
bB

]
+

[
ZA 0
0 ZB

] [
gA
gB

]
+

[
εA

εB

]
Where yA and yB are BLUP for primary and secondary traits,

respectively, X and Z are fixed and random design matrix,
subscript A and B represent the primary trait (GPC or grain
yield) and secondary trait (one of the SRI), separately, and b, g,
and e are the fixed effects, random genetic effect, and residual
for each trait, respectively. Variance components were calculated

assuming
[

gA
gB

]
∼ N(0, H⊗ G), where H is the genetic variance-

covariance matrix and G is genomic relationship matrix, and[
εA
εB

]
∼ N(0, I ⊗ R), where I is identify matrix, and R is

the residual variance covariance matrix. Genetic correlation was
calculated as

rG =
cov(A,B)

√
var(A) · var(B)

Where cov(A,B) is the covariance between primary and
secondary trait, and var(A), and var(B) represents the genetic
variance of the primary and secondary trait, individually (SAS
Institute Inc, 2011).

Genotyping
Genotyping by sequencing and 90K iSelect SNP genotyping was
used for genotyping the whole NAM population (Poland et al.,
2012; Wang et al., 2014). Detailed procedures about genotyping,
marker calling, and map construction is reported in Jordan et al.
(2018). Initial genotyping data consisted of 73,345 molecular
markers anchored to the Chinese Spring RefSeqv1 reference
map at Kansas State University (Marcussen et al., 2014; Jordan
et al., 2018). Individual lines missing phenotypic data in one
environment were removed before genotype filtering. Markers
were discarded if more than 20% of the lines had missing
data, and lines that had more than 10% genetic data missing
were removed for further analysis. Furthermore, markers were
discarded with minor allele frequency less than 0.1. At the end of
quality filters, 40,005 polymorphic markers were remaining for
635 individuals.

Genomic Selection Models
Genomic selection emerged as a technique that avoided using
an individual marker for predicting a trait, as in the MAS and
QTL mapping. Meuwissen et al. (2001) proposed GS to use the
whole genome-wide markers for estimating the marker effects
and total genetic values, thus minimizing the biasedness during
marker effect estimation. However, a large number of markers
(p) and fewer individuals (n) created the so-called “large p,
small n” problem. Ordinary least squares could not estimate
the marker effects due to a lack of enough degrees of freedom.
Furthermore, high collinearity among the markers results in
the overfitted model. Several statistical models were proposed
to overcome these limitations for using whole genome-wide
markers, which can be grouped into variable selection models,
shrinkage models, dimension reduction methods, and kernel
methods. The commonly used variable selection models are
Bayes A, Bayes B, Bayes C, shrinkage models are LASSO, rrBLUP,
and elastic net. Dimension reduction methods include principal
component analysis and partial least square, and finally, kernel
methods include reproducing kernel hilbert space and support
vector machine. All these GS models can be represented as

yi = g(xi)+ ei

Where yi is the observed phenotype for a particular trait in
ith individual, xi is a vector of 1 × p predictors (markers), g(xi)
is a function relating the predictors to the phenotypes, and ei is
the residual term. Each GS model tries to lower the residuals or
certain loss function. The GEBVs estimated from the models are
equal to g(xi).

The traditional least square regression for predicting a trait
and their residual sum of the square is represented as

RSS =
n∑

i=1

yi − β0 −

p∑
j=1

βjxij

2

Ridge regression is very similar to least square regression,
except the coefficients of the equations are estimated using
minimizing the ridge regression coefficient estimated as

n∑
i=1

yi − β0 −

p∑
j=1

βjxij

2

+ λ

p∑
j=1

β2
j = RSS+λ

p∑
j=1

β2
j
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Where λ is known as the tuning parameter. We can see that
ridge regression fit the data by lowering the RSS and selecting
small coefficients for

∑p
j=1 β2

j to shrink the estimates toward zero,
and hence in this way, it uses the shrinkage penalty. The value
of λ can vary from zero to infinity and is usually selected by
cross-validation.

Another way of solving for λ in GS is assuming that marker
effects are drawn from a normal distribution centered on zero and
solving the mixed linear model equation of Henderson (1975).
Here λ = σ2

e/σ2
u where σ2

e is the residual variance and σ2
u is

marker effect variance, as small σ2
u will result in shrinking of

marker effects strongly toward zero, showing that large λ has an
equivalent impact too. Here in this study, we used the rrBLUP
package for performing GS using shrinkage capacity of the ridge
regression; and this model is equivalent to the traditional BLUP
models, and hence all the formulas are represented as mixed
model equations.

The genome-wide marker effects for GPC and grain yield
were estimated using ridge regression best linear unbiased
prediction (rrBLUP) including SRI in the model (Endelman,
2011). Predictions were made using the rrBLUP GS model in the
R package “rrBLUP,” according to the model:

y = µ+ Zu+ e

Where y is the N× 1 vector of BLUEs for the phenotypic trait,
µ is the overall mean, Z is an N×M matrix linking markers to the
genotypes, µ is the vector of normally distributed random marker
effects as µ∼ N(0, Iσ2

u) and e is the residual error with e∼ N(0,
Iσ2

e). The solution for mixed equation can be written as

u = ZT(ZZT
+ λI)−1y

Here λ is the ridge regression parameters obtained as the
ratio of the residual and marker variances and is represented as
λ = σ2

e/σ2
u. The rrBLUP model was used in this study, as it has

the capability of dealing with “large p and small n” with penalized
regression and high stability with correlated markers (Endelman,
2011). In our study, we used above GS model with the addition of
different parameters in the baseline model.

Several statistical models were used for prediction namely
(1) univariate-single trait GS (Uni-GS) model, (2) models using
SRI as predictors only, (3) GS model with SRI as a phenotypic
covariate, and (4) multivariate GS model where primary and
secondary traits were fitted for each environment. The SRI
collected at heading and grain filling stages were fitted separately
in the model to identify the best stage for data collection for GPC
and grain yield. The models used for the analysis are

(1.) Uni-GS used to calculate the GEBVs and represented as

y = µ+ Zu+ e

Where y is an N × 1 vector of BLUEs for GPC and grain yield
for each line, µ is the overall mean, Z is an N × M matrix
assigning markers to genotypes and u is a 1 × N matrix of
normally distributed marker predictor effects as u ∼ N(0, Iσ2

u)
and e is the residual error with e ∼ N(0, Iσ2

e). This equation was

solved to obtain the GEBVs for all the lines, treating markers as
independent variables.

(2.) The univariate model fitting SRI as predictors (SRIr). Only
SRI information was used for prediction and the model is
represented as

y = µ+ Xβ+ e

Where X is the design matrix for the fixed effect components
(SRI) and β is the vector of fixed effect coefficients. Other
terms are defined previously. This equation was solved using SRI
information as independent variables in the model.

(3.) In a covariate GS model, SRI were fitted as fixed effects
(GS + SRI). The equation of the model is represented as

y = µ+ Xβ+ Zu+ e

Where X and Z are the design matrix associating the fixed effects
(SRI) and random effects (markers), β is the vector of fixed effect
coefficient of each SRI, u is a vector of normally distributed
random marker effects as u ∼ N(0, Iσ2

u) and e is the residual
error with e ∼ N(0, Iσ2

e). In this case, both markers and SRI
information was used as independent variables in the model for
obtaining GEBVs for all the lines.

(4.) Lastly, a multi-variate GS model was used containing
primary and secondary traits in the model (Multivariate
GS). The equation of the model is represented as
y1
1
1
1

yn

 =


X1 0
1 1
1 1
1 1
0 Xn




µ1
1
1
1
µn

+


Z1 0
1 1
1 1
1 1
0 Zn




u1
1
1
1

un

+

ε1

1
1
1
εn


Where n is the number of traits (grain yield or GPC, individual
SRI or combination of them), y1 to n represents the vector of
BLUEs for the primary (GPC and grain yield) and secondary
traits (SRI) y, X is a design matrix of fixed effects which simplifies
to a vector of 1 for each trait representing the mean only as only
markers were entered in the model, Z represents the random

effect design matrix,


u1
1
1
1

un

 represents the random marker

effects, distributed as ∼ N(0, G⊗ H) where G is the genomic
relationship matrix and H is the variance-covariance matrix, and
∈1...n represents the standard normal error, distributed as∼ N(0,
I ⊗ R), where I is identify matrix, and R is the residual variance
covariance matrix. The covariance matrix H and R were assumed
unstructured for the variance estimation. In this multivariate
equation, markers are used as independent variables while SRI
and primary traits (grain yield or GPC) are used as dependent
variables for predicting the GEBVs for all the lines.
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Cross-Validation and Model Performance
The GS models were developed separately for each environment
using a subset of the population as the training set to estimate
each marker effect. After assessing the marker effects, GEBVs
were calculated for the whole population. GS model accuracy is
defined as a correlation between GEBVs of predicted individuals
and actual phenotypes. GS was performed with five-fold cross-
validation by including 80% of the lines in the training model
and predicting the GEBVs values of the remaining 20% of the
lines under each environment. One replicate consisted of five
model iterations where the population was split into five groups,
and the testing set was rotated between each group. For accuracy
assessment, two 50 replication sets were performed.

Independent validations were performed by training the GS
model using the 2014 environment and predicting the GEBVs
for remaining two environments. Similarly, the model trained on
the 2015 environment was used for predicting GEBVs for the
2016 environment. These validations represent the scenario to
predict the performance of a line before planting them in the
field for further observations. Furthermore, SRI data were also
included in the independent validation GS models. These GS
models represent a scenario in the breeding program where SRI
have been collected, and the plants are not harvested; therefore,
lines will be selected primarily on predicted values.

RESULTS

Phenotypic Data Summary
Average grain yield ranged from 1.7 to 2.4 t/ha across the
three environments with 2016 having the highest and 2015
being the lowest yielding. Average GPC ranged from 12.2 to
14.4% with 2014 being the highest, and 2015 being the lowest
(Supplementary Table 1). Broad-sense heritability of GPC and
grain yield were obtained (Table 2). Grain yield and GPC both
showed the highest heritability in the 2016 environment. The
heritability for grain yield was less than all secondary traits
under all environments. The majority of SRI traits have higher
heritability than GPC (Tables 2, 3). Within each SRI, 2015 has
the lowest heritability (Table 3).

In contrast to heritability, correlation between primary traits
(grain yield and GPC) and secondary traits varied significantly
across growth stages and environments (Tables 4, 5). This
allowed using these correlated responses for predicting the

TABLE 2 | Genotypic variance and heritability for grain protein content and grain
yield for a nested association mapping population of spring wheat planted for
three environments (2014–2016) in the United States Pacific Northwest.

Genotypic variance Heritabilitya

Environment Grain yield GPC Grain yield GPC

2014 12.62 0.67 0.24 0.62

2015 18.28 0.48 0.42 0.36

2016 14.48 0.99 0.50 0.68

aBroad sense heritability.

TABLE 3 | Broad sense heritability of eight spectral reflectance indices derived for
a spring wheat population planted for three environments (2014–2016) in the
United States Pacific Northwest.

Environment NDVIa NWIb WIc SRd GNDVIe PRIf NCPIg ARIh

2014 0.75 0.60 0.71 0.81 0.69 0.93 0.64 0.74

2015 0.66 0.60 0.47 0.57 0.64 0.81 0.55 0.56

2016 0.80 0.74 0.93 0.70 0.72 0.60 0.82 0.76

aNDVI, normalized difference vegetation index. bNWI, normalized water index.
cWI, water index. dSR, simple ratio. eGNDVI, green normalized difference
vegetation index. f PRI, photochemical reflectance index. gNCPI, normalized
chlorophyll pigment ratio index. hARI, anthocyanin reflectance index.

TABLE 4 | Phenotypic correlation between grain yield and eight spectral
reflectance indices derived at the grain filling stage of a spring wheat population
planted for three environments (2014–2016) in the United States
Pacific Northwest.

Yield NDVIa NWIb WIc SRd GNDVIe PRIf NCPIg ARIh

2014 0.33*** 0.36*** 0.36*** 0.30*** 0.37*** 0.32*** −0.30*** −0.16***

2015 0.06 0.09* 0.09* 0.03 0.04 0.03 −0.12* −0.09*

2016 0.20*** 0.19*** 0.19*** 0.19*** 0.20*** 0.15*** −0.18*** −0.23***

aNDVI, normalized difference vegetation index. bNWI, normalized water index.
cWI, water index. dSR, simple ratio. eGNDVI, green normalized difference
vegetation index. f PRI, photochemical reflectance index. gNCPI, normalized
chlorophyll pigment ratio index. hARI, anthocyanin reflectance index. ***significant
at P < 0.0001; *significant at P < 0.05.

TABLE 5 | Phenotypic correlation between grain protein content and eight spectral
reflectance indices derived at the heading stage of a spring wheat population
planted in three environments (2014–2016) in the United States Pacific Northwest.

GPC NDVIa NWIb WIc SRd GNDVIe PRIf NCPIg ARIh

2014 0.35*** 0.35*** 0.35*** 0.38*** 0.34*** 0.19*** −0.38*** −0.12*

2015 0.19*** 0.21*** 0.21*** 0.22*** 0.28*** 0.11* −0.19*** 0.27***

2016 −0.20*** −0.16*** −0.16*** −0.17*** −0.20*** 0.02 0.08 0.12*

aNDVI, normalized difference vegetation index. bNWI, normalized water index.
cWI, water index. dSR, simple ratio. eGNDVI, green normalized difference
vegetation index. f PRI, photochemical reflectance index. gNCPI, normalized
chlorophyll pigment ratio index. hARI, anthocyanin reflectance index. ***significant
at P < 0.0001; *significant at P < 0.05.

primary traits. Phenotypic correlation of grain yield was higher
with SRI at the grain filling stage (Table 4 and Supplementary
Table 2), whereas GPC has higher correlation with SRI at
the heading stage (Table 5 and Supplementary Table 3).
These results were consistent with previous studies where SRI
were correlated with grain yield and GPC (Sun et al., 2019).
Correlation of grain yield was not significant with most of the
SRI under the 2015 environment at the heading and grain filling
stages. Genetic correlation of grain yield and GPC with SRI is
provided (Supplementary Table 4).

Genomic Selection Within Environments
Using All Four Models
For the three environments, GS prediction ability ranged between
0.07 and 0.58 for grain yield using four different models (Table 6).
There was an improvement of GS prediction accuracy with
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TABLE 6 | Genomic selection accuracies for three different environments
(2014–2016) using univariate GS model, all spectral reflectance indices in a
univariate model at heading and grain filling stage (SRIr), GS + SRI in a covariate
model with SRI as covariate, and multivariate GS model for prediction of grain
yield and grain protein content in a spring wheat NAM panel.

Trait 2014 2015 2016

Model Stage

UniGS 0.43 (0.007) 0.40 (0.007) 0.45 (0.007)

SRI Heading 0.44 (0.007) 0.07 (0.009) 0.21 (0.007)

Grain yield Grain filling 0.50 (0.007) 0.13 (0.009) 0.25 (0.007)

GS + SRI Heading 0.52 (0.006) 0.37 (0.007) 0.52 (0.006)

Grain filling 0.57 (0.007) 0.40 (0.007) 0.55 (0.006)

Multi-GS Heading 0.55 (0.006) 0.39 (0.007) 0.53 (0.006)

Grain filling 0.58 (0.007) 0.41 (0.007) 0.55 (0.006)

UniGS 0.51 (0.002) 0.55 (0.002) 0.53 (0.002)

SRI Heading 0.39 (0.007) 0.37 (0.007) 0.28 (0.009)

GPC Grain filling 0.31 (0.007) 0.34 (0.009) 0.27 (0.009)

GS + SRI Heading 0.63 (0.006) 0.57 (0.006) 0.56 (0.006)

Grain filling 0.59 (0.005) 0.52 (0.006) 0.55 (0.006)

Multi-GS Heading 0.64 (0.006) 0.58 (0.007) 0.56 (0.006)

Grain filling 0.60 (0.005) 0.54 (0.006) 0.53 (0.006)

Parenthesis indicates the standard error.

inclusion of all SRI traits in the covariate and multivariate GS
models. The highest improvement in prediction accuracy was
observed for 2014 (35%), followed by 2016 (22%), and negligible
effect during 2015 (2.5%). Spectral information collected at
the grain filling stage resulted in greater but non-significant
improvement in prediction accuracy compared to that of the
heading stage. Overall, there was an improvement of 20%
prediction accuracy for grain yield by including secondary traits.
The multivariate GS model performs as well as the covariate
model, with a non-significant difference between the two models.
We observed that the highest prediction with the univariate GS
model was for the 2016 environment (0.45) compared to the
2014 (0.43), and 2015 (0.40) environments (Table 6). The highest
accuracy observed in 2016 was due to the highest broad sense
heritability for grain yield for the 2016 environment. However,
with the inclusion of secondary traits in the multivariate models,
prediction accuracy was highest in the 2014 environment (0.58),
which can be attributed to more correlation observed between
the grain yield and spectral information (Table 6). In this
way, we observed that models perform differently across the
environment’s and their performance depends upon the trait
heritability and correlation with secondary traits.

GS prediction ability ranged between 0.27 and 0.64 for
GPC across the three environments (Table 6). Inclusion of
all spectral data with genetic markers consistently provided
higher prediction accuracies than univariate and SRI information
alone. On average, there was an increase in 12% prediction
accuracy with multivariate and covariate GS models when all
SRI data was used in the models. Similar to the improvement
in prediction accuracy for grain yield, there was the highest
improvement in 2014 (35%), followed by 2016 (6%) and
least in 2015 (3.6%) for GPC. Spectral information collected

at the heading stage resulted in a significant (p < 0.05)
improvement compared to the grain filling stage. The maximum
prediction accuracy for GPC was observed during the 2014
environment (0.64), followed by the 2015 (0.58) and 2016
(0.56) environments using multivariate GS models (Table 6).
While for the univariate GS model, the maximum prediction
accuracy was 0.55 for the 2015 environment (Table 6). This
within environment difference in prediction accuracy for GPC
can be attributed to environmental variation, which creates this
bias. Similarly, to grain yield, the model’s performance was
best with the inclusion of secondary traits for 2014 due to
more correlation and high heritability of secondary traits for
this environment.

Genomic Selection With Single SRI as
Predictor
Along with fitting all the SRI together for predicting GPC and
grain yield, individual SRI were used in multivariate GS models.
SRI at the heading stage were used to predict GPC, whereas
SRI data from the grain filling stage were used for predicting
grain yield, as these timings had the highest correlations between
traits (Table 6).

Across all environments for predicting GPC, GS models
including GNDVI in the multivariate model had the greatest
improvement in prediction accuracy for 2014 and 2015
(Figures 1A,B). In 2016, GNDVI and NDVI gave similar
increases in prediction accuracy in multivariate GS models
(Figure 1C). This suggested that GNDVI is the most important
SRI to be included in GS models for predicting GPC. In
the case of predictions for grain yield, NWI results in the
highest improvement in prediction accuracy for 2014 and 2015
(Figures 2A,B), whereas for 2016 ARI, NCPI, and WI perform
better for predicting grain yield (Figure 2C).

Genomic Selection Across the
Environments
In addition to within environment predictions for both
traits, we also assessed the across environment prediction
by including spectral information in the models. GS models
were trained on previous years data and predictions were
made for upcoming years for grain yield (Figure 3) and
GPC (Figure 4). Prediction accuracies for independent
validations varied across the environments, because of
different environmental effects. There was improvement in
prediction accuracy for each of the independent validations
with inclusion of spectral information in the multivariate
GS models, demonstrating the great potential for HTP in
wheat breeding and GS. There was higher independent
validation for grain yield when GS models were trained on
the 2015 environment and predictions were made on the 2016
environment (Figure 3). This was probably a result of the higher
phenotypic correlation between SRI and grain yield during this
field trial (Figure 3 and Supplementary Table 5). Similar results
were obtained for predicting the 2016 environment for GPC
using the 2015 environment as the training set (Figure 4 and
Supplementary Table 5).
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FIGURE 1 | Box plots of prediction accuracies for predicting GPC across three environments (2014–2016) using individual SRI collected at heading, as a predictor in
multivariate GS models while results for a univariate GS model is also provided. The figures (A–C) represent the model’s performance under the three environments
evaluated in this study. The mean squared error for each model is presented above the boxplots.

DISCUSSION

Prediction Ability With a Univariate,
Covariate, and Multivariate GS Models
We evaluated several different models for predicting GPC
and grain yield using univariate GS models, SRI in multiple
regression, covariate GS models with SRI as a covariate, and
multivariate GS models. GS is used in plant breeding to increase
genetic gain by reducing the time required to complete the
breeding cycle with HTP information improving the accuracy of
phenotypic selection (Cobb et al., 2013; Araus and Cairns, 2014).
This suggested that combining GS and HTP information could
translate into higher genetic gain by reducing breeding cycle time
and improving the model’s accuracy. Both Crain et al. (2018) and
Sun et al. (2019) combined GS with HTP information for grain
yield in wheat and observed improvement in GS accuracy using
NDVI and canopy temperature as secondary traits. Herein, we
combined eight different SRI collected at heading and grain filling
stages for assessing GS performances for GPC and grain yield.

We observed that inclusion of secondary correlated traits into
covariate and multivariate GS models resulted in a significant
(p < 0.05) improvement in prediction accuracies for both traits,
which can be attributed to the genetic correlation between
primary and secondary traits used in this study. These results
are strengthened by GS studies in animals and other crop plants,
where improvements in predictions were observed with the
inclusion of secondary correlated traits (Tsuruta et al., 2011;
Okeke et al., 2017). Another reason for the improvement of
predictions in multivariate GS models is attributed to the high
heritability of secondary correlated traits when the primary traits

have lower heritability, which was the case here for grain yield
(Hayashi and Iwata, 2013).

Furthermore, we did not observe any difference in
performances of covariate and multivariate GS models for
both traits. These observations are consistent with the work
of Crain et al. (2018), where they also observed no differences
between the performance of covariate and multivariate models
for predicting grain yield in wheat with the inclusion of
canopy temperature in the multivariate models. Additionally,
some studies have shown the superiority of multivariate
GS models compared to covariate GS models (Colombani
et al., 2012; Rutkoski et al., 2016). Our results thus suggested
that secondary correlated information can be used in any
of these models for improving the prediction of grain yield
and GPC in wheat.

Genomic Selection Within the
Environment
We observed higher and consistent prediction accuracy for
predicting both traits under each environmental condition
using cross-validation approaches in the univariate GS
model. Prediction accuracies are usually higher within the
environment than across environment predictions because using
a common environment for training and testing the model
introduces little bias in assessing the model’s performances.
The consistent performance of GS models for all environments
could be because univariate GS models can accurately estimate
the additive genetic variance component for training the
model and requires no environmental components to be
included. Furthermore, for within environment predictions,
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FIGURE 2 | Box plots of prediction accuracies for predicting grain yield across three environments (2014–2016) using individual SRI collected at grain-filling, as a
predictor in multivariate GS models while results for a univariate GS model is also provided. The figures (A–C) represent the model’s performance under the three
environments evaluated in this study. The mean squared error for each model is presented above the boxplots.

FIGURE 3 | Independent validations using univariate (UV) and multivariate (MV) GS models for predicting grain yield in a United States Pacific Northwest spring
wheat mapping population. First number on the x-axis represents prediction year, second number represents year for training population and third letter represent
the type of GS model used.

both training and testing populations have the same
environmental variations allowing biasness during model
training and testing.

Babar et al. (2006) showed that the combined use of SRI
collected at booting, heading, and grain filling contributes to
the indirect selection response for grain yield in wheat. We
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FIGURE 4 | Independent validations using univariate (UV) and multivariate (MV) GS models for predicting grain protein content in a United States Pacific Northwest
spring wheat mapping population. First number on the x-axis represents prediction year, second number represents year for training population and third letter
represent the type of GS model used.

observed that SRI collected during grain filling resulted in higher
prediction accuracies for grain yield when included in the GS
models, because of higher and significant correlation between SRI
and grain yield during grain filling compared to at the heading
stage. Higher correlation with grain yield could be because grain
filling is the main stage for accumulation of carbohydrates in
the grain. The difference in grain yield of different wheat lines
can be more accurately measured at grain filling compared
to heading because of continuous photosynthesis and nutrient
translocation happening after heading. This results in higher
correlation between SRI and grain yield collected during grain
filling compared to at the heading stage.

Grain protein content was accurately predicted at the heading
stage, with a higher correlation between SRI and GPC at
heading compared to the grain filling stage. The inverse
relationship between GPC and grain yield (Avivi, 1978), coupled
with the biological mechanics underlying these traits, lends
support to these results. The heading stage is important for
GPC because, up to this stage, plants accumulate required
nitrogen which needs to be translocated to the different plant
organs. As senescence starts, and these accumulated products
are translocated to different plant organs. This suggests that
measuring the nitrogen content is more appropriate at heading,
which is directly linked the GPC. SRI collected later at grain
filling have less correlation with GPC; this could be because of
the saturation of indices.

The inclusion of secondary correlated traits has resulted in
improvement in prediction accuracies for grain yield and GPC.

This can be attributed to high heritability and genetic correlation
between primary and secondary traits. The improved prediction
accuracies aid in predicting quantitative traits earlier in the
breeding cycle or when seed is limited for performing yield and
multi environment trials. Secondary correlated traits also allow
the opportunity for modeling the genotype by environmental
interaction, ultimately reducing the generations required for
variety evaluations. Increased prediction for these quantitative
traits aids more accurately predicting such quantitative traits with
limited seed availability, which helps in the selection of parents
for new crosses earlier in the breeding pipeline. These results
suggest that the inclusion of secondary traits have the potential
for increasing genetic gain per unit with the inclusion of them
in the GS models.

Genomic Selection With Individual SRI in
Multivariate GS Models
When using SRI for predicting GPC and grain yield, we
observed that inclusion of individual SRI resulted in significant
(p < 0.05) improvement for predicting GPC during 2014 and
2015 environment compared to multiple SRI in the model.
GNDVI was the best SRI which resulted in the highest increase in
GPC prediction accuracy for all three environments, suggesting
that there is some strong relationship between GNDVI and
GPC. GNDVI measures reflection in the near infra-red and
green region of the electromagnetic spectrum (Gitelson et al.,
1996). This index provides information about the chlorophyll A
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concentration in the plants, and it could be possible that this
green photosynthetic reflection region is a determinant of GPC
in wheat. GNDVI can be used as an indirect selection for GPC
because of its significant genetic and phenotypic correlation with
GPC and higher heritability than GPC.

Nitrogen is mobilized inside the grain from the soil, and
results in the increase of GPC in the wheat grain. Furthermore,
early senescence in wheat results in the higher accumulation of
GPC and some micronutrients as it increases remobilization of
nutrients from the senescing organ to the grain (Olmos et al.,
2003; Uauy et al., 2006). GNDVI provides information about
nitrogen status in the plant and is linked to the measurement of
the reflection for the nitrogen translocation in the plant, which
probably results in the better prediction accuracy compared to
other indices in this study. The leaf senescence and color changes
during the transition of various stages in crop plants are a clear
indicator for the accumulation of nutrients and decomposition
of pigments which are easily measured by these SRI (Gitelson
et al., 1996). NDVI just focuses on the vegetative greenness and
plant health, but GNDVI is known to be five times more sensitive
to this reflection in the green region of the electromagnetic
spectrum (Gitelson et al., 1996). The increased performance in
GS models with GNDVI provides insight that plant breeders need
to target specific indices for each trait for making predictions.

When predictions were made for grain yield with single
and multiple SRI in the GS model, NWI performed best for
predicting grain yield under two of the three environments.
NWI directly measures the plant hydration status by measuring
reflection in the near infrared region (Prasad et al., 2007). The
increase in prediction accuracy for grain yield with inclusion of
NWI suggests that canopy water status plays an important role
for determining grain yield under the rainfed conditions. NWI
showed higher genetic correlation compared to the phenotypic
correlation observed under each environment. This showed that
NWI has an association at the genetic level to grain yield and acts
as a powerful tool for determining grain yield. Therefore, higher
heritability of NWI than grain yield, larger genetic correlation,
and increases in prediction accuracy for grain yield provides
ample scope for inclusion of NWI as an indirect estimate for
selecting high yielding lines.

We observed that the inclusion of individual SRI is as
good, or superior, compared to the addition of multiple SRI
in the GS model for GPC. Inclusion of more secondary
correlated traits results in multicollinearity issues and made it
harder to understand the significance of individual SRI. The
multicollinearity arises between the SRI as they are derived from
the same region of reflection, either visible or near infrared. This
can be avoided by identifying SRI which are highly correlated
to each other or provide the same physiological information
about the plant traits, and not including them into the multi-
variate models. Furthermore, dimension reduction techniques
such as partial least square or principal component analysis can
be used to extract the latent variables from these SRI which
explains the maximum variation between the response and
predictors (Wold et al., 2001; Crain et al., 2018). Montesinos-
López et al. (2017) showed that with the use of functional splines
and functional Fourier models, 250 reflection bands could be

used to make predictions for grain yield in wheat while avoiding
multicollinearity issues.

Another advantage of including individual SRI compared to
multiple SRI, is computational time and convergence problems
in the mixed model outcomes. There is no advantage of including
a large number of SRI in the GS models if they do not
increase the prediction accuracy. Schulthess et al. (2016) also
showed that inclusion of multiple traits in GS models did not
result in improved predictions compared to inclusion of the
single best correlated features for predicting grain yield in rye
(Secale cereale), validating our results for inclusion of the single
most influential SRI in the GS models. In this context, due to
issues associated with inclusion of large number of SRI in the
GS models, it is advisable to select the best SRI for making
predictions. In this study, we concluded that GNDVI and NWI
result in the highest improvement in the prediction accuracy
for GPC and grain yield, respectively, and should be used in
selecting improved lines. Furthermore, these indices have higher
genetic correlation and heritability for inclusion in the GS
models and will ultimately translate to increase the genetic gain
in wheat breeding.

Genomic Selection Across Environments
Without Inclusion of Secondary Traits
We also applied across cycle predictions providing realistic
scenarios for the use of GS in plant breeding programs by
testing the performance of lines in untested environments. There
was a significant (p < 0.05) decrease in across environment
prediction accuracy compared to cross-validation prediction
accuracy. This is due to the different environmental conditions
in training and testing environments compared to the common
environment for the cross-validation predictions. Furthermore,
univariate GS models are not able to model the genotype
by environment interactions and provide an opportunity
for inclusion of secondary correlated traits or genotype by
environment interactions into the GS models to explain such
variations. The other reason for the decrease in prediction
accuracy is that both these traits are polygenic. Hence, training
of a population in one environment results in the prediction
of marker effect under that environment only, completely
ignoring non-genetic variations (González-Recio et al., 2014).
When that same model was used for predicting phenotypes in
unknown environments, it results in less accuracy because the
real phenotype not only depends upon the genetic effect, but also
on environment and genotype by environmental interactions.

The highest independent prediction accuracy for grain yield
was observed for the 2016 environment when the GS model was
trained on the 2015 environment. This is because the genotypic
variance explained for grain yield was highest for the 2015
environment compared to the other two environments (Table 2).
Higher genotypic variance for the 2015 environment results in
the accurate training of the GS models which explain more
genetic variation, and ultimately results in better predictions of
grain yield for 2016. Another reason for this high prediction
for these two environment combinations could be because of
the larger phenotypic correlation of grain yield for these two
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environments (Supplementary Table 5). There was variation in
the correlation between traits across environments because of the
varying environment and genotype by environment interactions,
providing the importance of conducting multi environmental
and replicated trails.

Improvement of Across Environments
Prediction Accuracy With the Inclusion
of Secondary Traits
Previous studies by Rutkoski et al. (2016) and Crain et al.
(2018) have demonstrated improvement in prediction accuracies
for grain yield using secondary traits (NDVI and canopy
temperature) within and across cycles. Rutkoski et al. (2016)
observed a maximum improvement of 70% prediction accuracy
for grain yield with secondary traits in multivariate models.
Such high accuracy in their study was attributed to many
replications, large training population, frequent collection of
spectral information across all replicates, and correctness for
days to headings in the models. However, Crain et al. (2018)
concluded that prediction accuracy in multivariate models
varies from −33 to 7% for predicting grain yield with the
inclusion of secondary traits. Herein, we included secondary
traits from the tested environments for making predictions
and observed the improvement in prediction accuracies for
both traits, which vary from 1–10%. This improvement
in prediction accuracy suggests that secondary traits can
accommodate some amount of environmental effect, and hence
improve the model performance. The other reason for the
improvement in prediction accuracy is the genetic correlation
between primary and secondary traits and higher heritability
of the secondary traits. Improvement in prediction accuracy
across environments provides an opportunity for inclusion
of the best SRI in the GS model for each trait. These
collected SRI can aid in understanding the genotype by
environment predictions which might be present under the
testing environment.

We did not observe any improvement in independent
prediction accuracies for GPC in 2016, which can be attributed
to the negative correlation observed between GPC and SRI in
2016 compared to positive correlation in other environments.
This suggests that GS selection models used for across
cycle predictions are problematic if the secondary correlated
traits are affected by environmental conditions and do not
account for unpredictable genotype by environment interactions.
These findings provide evidence that increased prediction
in the untested environment is governed by the secondary
correlated traits.

The approach used for across cycles predictions in this study
resembles a breeding program where SRI has been collected, and
plots are not yet harvested to get information for grain yield and
GPC. This allows the breeders to make the selection based on
these predicted GEBVs by incorporation of secondary traits in
the multi-trait GS models. Previously, it has been shown that
these secondary correlated traits have the potential for indirect
selection in the PNW for spring and winter wheat breeding
(Gizaw et al., 2018a,b). This study demonstrated the potential of

inclusion of secondary traits for predicting GPC and grain yield
for spring wheat within and across cycles. These increases in GS
selection accuracy will aid in increasing the genetic gain per unit
time and cost. The findings from this study can be applied in
other crops with selection of appropriate secondary traits and
identification of appropriate growth stages for collecting them.

CONCLUSION

Our study demonstrates the improvement in GS prediction
accuracies for grain yield and GPC in wheat with the inclusion of
secondary correlated traits in the models and identifies the most
effective SRI and plant growth stage for secondary data collection.
We observed a vital role of secondary traits for improving the
predictions for both within and across cycle predictions. On
average, there was an improvement in prediction accuracies of
20% for grain yield and 12% for GPC. Moreover, we observed
that secondary traits have the potential to improve independent
validations, showing their capabilities to accommodate for
different environmental effects in the models. This study shows
the potential of combining genomics and HTP for improving
selection in wheat breeding programs and can be transferable to
other plant breeding programs. Inclusion of HTP and GS in a
plant breeding program will ultimately improve the genetic gain
by increasing the selection accuracy and reducing the cycle time.
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