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In recent years, the unmanned aerial vehicle (UAV) remote sensing system has been
rapidly developed and applied in accurate estimation of crop parameters and yield at
farm scale. To develop the major contribution of UAV multispectral images in predicting
winter wheat leaf area index (LAI), chlorophyll content (called soil and plant analyzer
development [SPAD]), and yield under different water treatments (low water level,
medium water level, and high water level), vegetation indices (VIs) originating from UAV
multispectral images were used during key winter wheat growth stages. The estimation
performances of the models (linear regression, quadratic polynomial regression, and
exponential and multiple linear regression models) on the basis of VIs were compared
to get the optimal prediction method of crop parameters and yield. Results showed that
LAI and SPAD derived from VIs both had high correlations compared with measured
data, with determination coefficients of 0.911 and 0.812 (multivariable regression [MLR]
model, normalized difference VI [NDVI], soil adjusted VI [SAVI], enhanced VI [EVI],
and difference VI [DVI]), 0.899 and 0.87 (quadratic polynomial regression, NDVI), and
0.749 and 0.829 (quadratic polynomial regression, NDVI) under low, medium, and high
water levels, respectively. The LAI and SPAD derived from VIs had better potential in
estimating winter wheat yield by using multivariable linear regressions, compared to the
estimation yield based on VIs directly derived from UAV multispectral images alone by
using linear regression, quadratic polynomial regression, and exponential models. When
crop parameters (LAI and SPAD) in the flowering period were adopted to estimate yield
by using multiple linear regressions, a high correlation of 0.807 was found, while the
accuracy was over 87%. Importing LAI and SPAD obtained from UAV multispectral
imagery based on VIs into the yield estimation model could significantly enhance the
estimation performance. This study indicates that the multivariable linear regression
could accurately estimate winter wheat LAI, SPAD, and yield under different water
treatments, which has a certain reference value for the popularization and application
of UAV remote sensing in precision agriculture.
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INTRODUCTION

The estimation of crop parameters (leaf area index [LAI] and
chlorophyll content) is helpful in improving the level of crop
monitoring, which is key to accurate monitoring and estimation
of crop growth in agricultural management (Huang et al.,
2016; Li et al., 2016; Liu et al., 2017; Yebra et al., 2017; Sun
et al., 2021). LAI and chlorophyll are often used to describe
canopy structure and to predict grain yield (Guo et al., 2020),
which requires efficient and rapid measurement of crop LAI
and soil and plant analyzer development (SPAD, which is
used instead of chlorophyll content). Traditional methods to
estimate crop parameter are based on destructive measurement,
which not only consume time and manpower but also are
difficult to be applied in a large area. In recent decades,
remote sensing technology has been successfully applied to
crop growth monitoring through satellite platforms, manned
airborne platforms, and ground spectral equipment (Michele
et al., 2015; Maimaitijiang et al., 2017; Ansar and Muhammad,
2020; Dehkordi et al., 2020). There are two kinds of satellite
remote sensing data for crop parameters, namely, optical image
and synthetic aperture radar data (Cougo et al., 2015; Castillo
et al., 2017; Du et al., 2017; Pham and Yoshino, 2017; Pandit
et al., 2018; Li et al., 2019), providing different spatial resolutions,
such as SPOT (20 m), MODIS (250 m), Sentinel 1A (10 m), and
ALOS-2 PLASAR2 (6 m) (Niu et al., 2019). However, several
limitations such as deficient spatiotemporal resolution and cloud
cover contamination restrain the application of satellite-based
platforms. Relatively, the operation cost of manned airborne
platforms is relatively high, and ground-based spectral devices
are laborious and suffer from inefficient operations (Zhang and
Kovacs, 2012; Yang et al., 2017; Yao et al., 2017; Katja et al., 2018).

In contrast, the rapid development of unmanned aerial
vehicle (UAV) platforms provides an economical and efficient
method to meet the increasing requirements of spatial, temporal,
and spectral resolutions (Yue et al., 2017; Zheng et al.,
2018; Heinemann et al., 2020; Qiao et al., 2020). UAV-based
multispectral images were adopted to predict crop growth status
and to predict grain yield in recent years. For example, Yao
et al. (2017) obtained narrowband multispectral images based on
UAV and used MTVI2 to estimate wheat LAI effectively, with an
accuracy of 0.79 and a relative root mean square error (RMSE)
of 24%. Guo et al. (2018) obtained remote sensing images based
on UAV and established an inversion model of mangrove LAI
by using the vegetation-level interruption index (VLOI), with
an inversion accuracy of 0.72 and an RMSE of 0.137. Gao et al.
(2016) used a multirotor UAV synchronously carrying a Canon
Power Shot G16 digital camera and ADC Lite multispectral
sensor to obtain the crown (Tian et al., 2016). Fu et al. (2020)
examined the ability of multiple image features derived from
UAV RGB images for winter wheat N status estimation across
multiple critical growth stages. Another difference of the study
on UAV-based prediction of plant LAI was that researchers
usually aimed at a few growth periods (Hua et al., 2012). There
is still little information on using UAVs to predict plant LAI
during the whole important growth stages on a large scale
of LAI, and fewer had studied the accuracy comparison of
UAV inversion of LAI under different water treatments. The

chlorophyll concentration, measured in mass per unit leaf area, is
an important biophysical parameter retrievable from reflectance
data (Zhu et al., 2020). Tian et al. (2016) used the spectral
index of UAV imaging spectrometry to retrieve the chlorophyll
concentration of cotton using multiple stepwise regression and
partial least squares regression and achieved high accuracy. The
Hekou District was selected as the core test area, and 140
ground sampling points were selected. Based on the measured
SPAD values and UAV multispectral images, UAV-based SPAD
inversion models were constructed, and the most accurate model
was selected (Zhang et al., 2019). Cao J. et al. (2020) developed
an inversion model that can predict japonica rice chlorophyll
content by using the hyperspectral image of the rice canopy
collected with a UAV. The inversion model was developed by
using an extreme learning machine (ELM), the parameters of
which are optimized by using particle swarm optimization (PSO).
The PSO-ELM algorithm could accurately model the nonlinear
relationship between hyperspectral data and chlorophyll content.
The model achieved a coefficient of determination (R2) of
0.791 and an RMSE of 8.215 mg/L. Furthermore, UAVs are
promising remote sensing platforms that is gaining more and
more attention for crop studies. For example, Jin et al. (2017)
estimated wheat plant density from UAV RGB images. Zhou
et al. (2017) estimated grain yield in rice using multitemporal
vegetation indices (VIs) from UAV-based multispectral and
digital imagery. This parameter has been extensively studied in
the field of remote sensing, while research for multispectral data
based on UAV is relatively few under different water treatments.
The techniques used are mainly based on portable spectrometers,
airborne multispectral imagers, and remote sensing satellites
(Skudra and Ruza, 2017). Portable spectrometers have difficulty
differentiating “point” from “surface,” while satellite images have
coarser spatial resolution and poor timeliness and are thus
prone to “isospectral foreign bodies,” resulting in low prediction
accuracy. Therefore, the prediction of chlorophyll concentrations
and LAI using multispectral sensors on low-altitude UAV remote
sensing platforms has gradually become a trend (Cao Y. et al.,
2020; Guo et al., 2020; Wan et al., 2020). The existing researchers
used the multispectral remote sensing images of medium and
low spatial resolutions (such as Landsat 8 and TM) to carry
out remote sensing inversion research on winter wheat LAI,
SPAD, yield estimation, and other indicators. However, due
to the limitations of spatial resolution, revisit period, weather
conditions, and other factors, there are still some limitations in
the precise monitoring of winter wheat growth.

Therefore, this study is aimed at estimating LAI, SPAD,
and yield of winter wheat based on VIs (normalized difference
VI [NDVI], soil adjusted VI [SAVI], enhanced VI [EVI], and
difference VI [DVI]) derived from UAV multispectral images.
The estimation performances of models based on VI alone and
VI combinations were also analyzed. According to the obtained
optimal estimation of LAI and SPAD values, the crop yield was
estimated. More specifically, our study paid attention to the
following:

(1) Establishment of winter wheat LAI and SPAD estimation
models under different water treatments based on VI alone
by using a linear regression model, quadratic polynomial
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regression model, and exponential regression analysis and
based on VI combinations by multivariable regression
(MLR) analysis;

(2) A comparison of the performances of winter wheat LAI
and SPAD estimating models and selection of the optimal
estimation models of LAI and SPAD;

(3) Estimation of the winter wheat yield by using multivariate
regression model based on the optimal LAI and SPAD
values obtained in (2) in the flowering stage.

MATERIALS AND METHODS

Study Area
The experiment was carried out on a field in the Daxing District
located in the south of Beijing, China (39◦37.25′N, 116◦25.51′E).
The research field with an area of approximately 1.68 km2 was
planted with winter wheat. Thirty 7.8× 7.5-m2 fields within each
region were chosen as samples for data collection (Figure 1).
According to the amount of irrigation, the 30 fields were divided
into three irrigation levels (low water [0–60 mm], medium water
[120–180 mm], and high water [240–300 mm]). The cumulated
precipitation rates of DAS210 (days after sowing [DAS], jointing

TABLE 1 | Crop management 2017–2018.

Item Winter wheat

Sowing date October 5, 2017

Variety Zhong Mai 175

Average seeding rate 289 grains/m2

Harvest date June 30, 2018

Soil type Loam sandy

stage), DAS229 (flowering stage), and DAS240 (filling stage) were
134.87, 138.43, and 138.43 mm, respectively (Figure 2). The
soil type was loam sandy (85% sand, 11.5% power, and 3.5%
clay), according to the United States Department of Agriculture
taxonomy. Winter wheat was planted on October 5, 2017, and
harvested on June 30 with a 265-day life span (Table 1).

Research Measurements
At the winter wheat key stages (DAS210–DAS240) (Du et al.,
2017; Yue et al., 2017; Ji et al., 2020; Jiang et al., 2020; Tao
et al., 2020a), crop parameters (LAI and SPAD) were measured
on DAS210, DAS229, and DAS240. Sixty sets of samples (LAI [30
sets] and SPAD [30 sets]) were obtained every 7 days.

FIGURE 1 | Research area: (A) location of the research field in China; (B) area view of the research field indicating region division; and (C) the location of sampling
plots and ground control plots; L, M, and H represent low water, medium water, and high water treatments, respectively.

FIGURE 2 | Irrigation and precipitation accumulation under different irrigation treatments (low water, medium water, and high water).
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LAI from LAI-2200C: To be synchronous with the imagery, we
took three wheat stems from each plot as one sample, separated
the green leaves, and used an LI-3000 leaf area meter to scan the
green leaf area. We had a total of 18 plots (low water: six plots;
medium water: six plots; and high water: six plots), whose length
and width are 7.8 and 7.5 m, respectively. The number of stems 1
m in length in each plot was counted manually. Based on formula
(1), the LAI of the population was calculated.

LAI =
1
D
× B×

A
C
× 10−4 (1)

where D is the distance between two rows of wheat; B is the
number of stems in 1 m in length; A is the leaf area of the
sample; and C is the number of stems of the sample. A SPAD-502
chlorophyll meter (Minolta Corporation, NJ, United States) was
used for in vivo measurement of the ratio of light transmittance
through the leaf. Instrument readings have been shown to
correlate well with laboratory measurements of chlorophyll
concentrations in several species (Haie and Keller, 2008). On
each sampling campaign, 30 SPAD measurements were collected
on average. The chlorophyll meter readings were taken midway
on fully expanded top-of-canopy leaves. Each measurement was
characterized by the mean of three replicate measurements. The
chlorophyll meter measured an area of 2 × 3 mm with an
accuracy of± 1.0 SPAD unit (at room temperature).

Acquisition and Pretreatment of UAV
Multispectral Image
In this study, a small six-spin UAV (Nanjing Hepu Aero
Science and Technology Co., Ltd.)1 was used. Multispectral
cameras were mounted synchronously on a UAV remote sensing
platform (before the camera was used, noise removal and lens
distortion correction were carried out). Table 2 illustrates the
UAV specification in more detail.

When the weather was clear and cloudless, three flights (DAS
210, DAS229, and DAS240) were carried out from 12:00 to 13:00,
when the solar zenith angle was minimal. Continuous flight
monitoring was carried out in 30 plots of the study area. The flight
altitude was 60 m, and the spatial resolution was 0.0409 cm.

The image mosaic processing was performed by using
the Pix4Dmapper software (Pix4D Inc., Switzerland)2 (Turner
et al., 2012). The preprocessing of mosaic multispectral images
included geometric correction and radiation correction, and the
geometric correction mainly used the ENVI software. With the
Orthophoto image as a reference image, 20 reference points

1http://www.agrouas.com/
2http://www.pix4d.com

TABLE 2 | UAV and multispectral camera specifications.

UAV Multispectral camera

Type Pixhawk (M600) Type Red Edge-M

Maximum payload 5 kg Band range 475–840 nm

Maximum duration 15 min Terrestrial resolution 0.0409 m

were selected uniformly in different positions of the image to
correct the geometric accuracy of the multispectral image. The
error of the geometric correction of the image was less than
0.5 pixels after verification. For radiation correction, due to
the difference between the time and weather conditions of the
multispectral data obtained from different sites, the pseudo-
standard ground object radiation correction method was used to
convert the multispectral image value into the image reflectance
value through the reflectance measured by the ground target
(Wang and Liu, 2014).

The five multispectral bands were blue (central wavelength
475 nm, bandwidth 40 nm), green (central wavelength 560 nm,
bandwidth 40 nm), red (central wavelength 668 nm, bandwidth
40 nm), red edge (central wavelength 717 nm, bandwidth 10 nm),
and near infrared (central wavelength 840 nm, bandwidth
40 nm) (Figure 3).

UAV Multispectral VI
Many previous studies have used different VIs in multispectral
imagery to estimate the crop parameters (LAI and SPAD). In
this study, VIs and one VI combination were calculated by using
visible bands, including the NDVI (Rouse et al., 1974), SAVI
(Huete, 1988), EVI (Huete et al., 2002), and DVI (Jordan, 1969;
Figure 4). Their calculation formulas are as follows:

NDVI =
Rnir − Rred

Rnir + Rred
(2)

SAVI = 1.5
Rnir − Rred

Rnir + Rred + 0.5
(3)

EVI = 2.5
Rnir − Rred

Rnir + 6Rred − 7.5Rblue + 1
(4)

DVI = Rnir − Rred (5)

Note that Rnir is the near-infrared reflectance, Rred is the red
reflectance, and Rblue is the blue reflectance.

FIGURE 3 | Reflectance of five bands under different water treatments.
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FIGURE 4 | VI of the research area. (a–d) were the NDVI, SAVI, SVI and EVI in DAS210 of research area, (e–h) were the NDVI, SAVI, SVI and EVI in DAS229 of
research area, (i–l) were the NDVI,SAVI,SVI and EVI in DAS240 of research area.

Estimation Models of Crop Parameters
(LAI and SPAD) and Yield
Figure 5 showed the main procedures of obtaining the optimal
estimation model of crop parameters and yield based on winter
wheat features derived from UAV multispectral imagery. Four
estimation models of winter wheat crop parameters were used
in this study, i.e., prediction models: (1) linear regression model,
(2) quadratic polynomial regression, (3) exponential model, and
(4) multiple linear regression based on VIs. In the establishment
of the yield prediction model, multivariable linear regression
analysis was adopted.

Statistical Analysis
For statistical analysis, SPSS 23 was adopted. For the spectral
reflectance information of winter wheat observed in different
plots, the linear regression model, quadratic polynomial
regression, exponential model, and multiple linear regression
model (Quan et al., 2017) of winter wheat VIs, LAI, and SPAD
were established. The validation set was used to fit the predicted
and measured values of the model (Marenco et al., 2009; Drusch
et al., 2012), and then the multiple linear regression model was
used to predict the output.

y = ax+ b (6)

y = ax2
+ bx+ c (7)

y = aex (8)

y = y0 + y1x1 + y2x2 + · · · + ynxn +m (9)

In the formula, y0, y1, y2, . . ., yn is the regression coefficient, and
m is the model error.

The coefficient of determination (R2) and RMSE were used
to evaluate the performance of each model. Mathematically, a
higher R2 corresponds to a smaller RMSE and thus represents
better model accuracy. The following equations were used to
calculate R2 and RMSE (Pandit et al., 2018; Li et al., 2019),
respectively:

R2
=

∑n
i=1
(
yi − xi

)2∑n
i=1
(
yi − ȳ

)2 (10)

RMSE =

√∑n
i=1
(
xi − yi

)2

n
(11)

where xi and yi are the estimated and measured values,
respectively; x̄ and ȳ are the average estimated and measured
values, respectively; and n is the sample number.

RESULTS

Table 3 shows the statistics of LAI, SPAD, and yield
measurements for different water treatments. In this study,
four VIs (NDVI, SAVI, EVI, and DVI) derived from UAV
multispectral imagery were used for the linear regression
model, quadratic polynomial regression, exponential model,
and multiple linear regression for winter wheat LAI and SPAD
under low water, medium water, and high water. In Figures
A1–A3 and Tables 4, 5, the four VIs all had significant positive
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FIGURE 5 | Schematic indicating the main procedures to obtain the optimal estimation model of winter wheat crop parameters and yield.

correlations (p < 0.01) with low water, medium water, and high
water on LAI and SPAD.

Estimation Models of Winter Wheat LAI
on the Basis of UAV Multispectral VIs
As shown in Table 4, the NDVI had the highest R2 values
of 0.868 (quadratic polynomial), 0.897 (exponential), and 0.749
(quadratic polynomial), followed closely by the EVI with R2

of 0.747 (quadratic polynomial), 0.8746 (quadratic polynomial),
and 0.741 (quadratic polynomial) and by the and SAVI with R2

of 0.698 (exponential), 0.852 (quadratic polynomial), and 0.740
(linear). The lowest correlations were observed by using DVI
to estimate winter wheat, with R2 values of 0.620 (exponential),
0.718 (exponential), and 0.607 (exponential). When it comes to
the RMSE, a similar observation was obtained. And for low-
water LAI, the NDVI also had a lower RMSE of 0.591, followed
closely by the EVI and SAVI with RMSE values of 0.607 and 0.615,

TABLE 3 | Descriptive statistics of LAI, SPAD, and yield from the study area.

Treatment Parameter Samples Min Mean Max SD CV (%)

Low water LAI 18 2.00 3.68 5.04 0.96 25.98

SPAD 18 42.08 51.78 63.97 6.37 12.30

Yield (kg/ha) 6 2,397.0 4,945.4 3,731.2 944.91 25.12

Medium water LAI 18 2.53 4.22 5.67 0.97 22.93

SPAD 18 42.36 53.44 63.08 6.97 13.03

Yield (kg/ha) 6 2,935.3 5,588.6 4,526.4 1,093.4 24.23

High water LAI 18 2.97 3.97 5.99 0.65 11.35

SPAD 18 50.66 60.85 72.67 6.91 16.39

Yield (kg/ha) 6 3,116.3 4,848.6 5,810.7 926.1 19.02

SD, standard deviation; CV, coefficient of variation. Six points were randomly
selected from 18 points of high water treatment.

respectively. The DVI had a larger RMSE of 0.814. For medium
and high water treatments, similar observations were found.

After estimating winter wheat LAI with different water
treatments by using a single VI, for LAI with low water treatment
(LAIl), the four VI combinations that had the higher correlations
were chosen to estimate winter wheat LAI by adopting MLR
analysis. When MLR was used, the estimation performance
of winter wheat LAI was improved (Figure 6A), with an R2

value of 0.911, with an increase of 0.0434 compared to the
highest R2 value of 0.8676 (NDVI, quadratic polynomial) for
the single VI. The RMSE of LAI decreased to 0.3663, compared
to the lowest RMSE value of 0.5914 for single VI, quadratic
polynomial. The winter wheat LAI could be calculated based on
NDVI, SAVI, EVI, and DVI by using Equation (12). However,
for LAI with medium and high water treatments (LAIm and
LAIh), when MLR was adopted, the estimation performance of
winter wheat (LAIm and LAIh) was not improved, and the R2

values were 0.73 and 0.744, with a decrease of 0.167 and 0.005,
compared to the highest R2 values of 0.897 (NDVI, exponential)
and 0.748 (NDVI, quadratic polynomial) for the single VI. The
RMSE of LAI increased by 0.046 and 0.058, compared to the
lowest RMSE values of 0.609 and 0.631 for single VI with
single linear regression, quadratic polynomial, and exponential
models, respectively. The winter wheat (LAIm and LAIh) could
be calculated based on NDVI by using Equations (13) and (14)
(Figures 6B,C).

LAIl = 14.643× NDVI − 15.293× SAVI + 33.510

×EVI − 16.431× DVI − 0.698 (12)

LAIm = 1.3626× e1.384NDVI (13)

LAIh = 13.567× NDVI2
− 14.567×NDVI+ 6.932 (14)
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TABLE 4 | Correlations between VIs derived from UAV multispectral imagery and LAI with different water treatments.

Model VIs Low water Medium water High water

R2 RMSE R2 RMSE R2 RMSE

Linear NDVI 0.8504** 0.606 0.8943** 0.6222 0.6673** 0.5992

SAVI 0.6972** 0.5979 0.818** 0.6095 0.7395** 0.6317

EVI 0.7455** 0.624 0.7643** 0.5924 0.7467** 0.6345

DVI 0.6609** 0.5915 0.7586** 0.5995 0.7162** 0.6338

Quadratic polynomial NDVI 0.8676** 0.5914 0.8951** 0.6223 0.7493** 0.6312

SAVI 0.6973** 0.5979 0.8523** 0.6189 0.7409** 0.6317

EVI 0.7466** 0.6065 0.8746** 0.6152 0.7261** 0.6298

DVI 0.6637** 0.6272 0.8208** 0.6116 0.7461** 0.6235

Exponential NDVI 0.7961** 0.6583 0.8966** 0.6094 0.6504** 0.6081

SAVI 0.6983** 0.6299 0.8223** 0.6357 0.7249** 0.6551

EVI 0.6467** 0.6178 0.7241** 0.6112 0.73** 0.6592

DVI 0.6197** 0.8136 0.7175** 0.6258 0.7038** 0.6610

Multiple Four VIs 0.911** 0.2251 0.73** 0.6558 0.744** 0.637

Four VIs, NDVI, SAVI, EVI, and DVI, were used to establish regression estimation models for LAI with different water treatments. **Significant at the level of 0.01.

Prediction Models of Winter Wheat SPAD
Based on UAV Multispectral VIs
In Table 5, the NDVI had the highest correlations with R2 values
of 0.808 (quadratic polynomial), 0.874 (exponential), and 0.829
(quadratic polynomial) followed by the SAVI with R2 values
of 0.769 (quadratic polynomial), 0.831 (quadratic polynomial),
and 0.725 (quadratic polynomial). For both low and high water
treatments, the lowest correlations were observed by using DVI
to predict SPAD, with R2 values of 0.663 (exponential) and 0.623
(exponential), respectively. However, with the medium water
treatment, the lowest correlations were observed by using EVI
to estimate SPAD, with R2 values of 0.701 (linear). For low
water level, the NDVI also had the lowest RMSE with a value
of 7.00, followed by the SAVI with an RMSE value of 7.17; the
maximum RMSE of DVI was 7.99. For the medium and high
water treatments, similar observations were found. The R2 was
negatively correlated with RMSE.

After estimating winter wheat SPAD with different water
treatments by using single VI, for SPAD with low water treatment
(SPADl), the four VI combinations, which had the highest
correlations, were chosen to estimate winter wheat SPAD by using
MLR analysis. When MLR was used, the estimation performance
of winter wheat SPADl was improved (Figure 7A); the R2 value
was 0.812, with an increase of 0.0038, compared to the highest R2

value of 0.808 (NDVI, quadratic polynomial) for the single VI.
The RMSE of SPAD decreased with a value of 0.004, compared
to the lowest RMSE value of 7.022 for single VI, quadratic
polynomial. The winter wheat SPADl could be calculated based
on NDVI, SAVI, EVI, and DVI by using Equation (15). However,
with medium and high water treatments (SPADm and SPADh),
when MLR was used, the estimation of winter wheat (SPADm
and SPADh) was not improved, and the R2 values were 0.87 and
0.822, with a decrease of 0.0042 and 0.008, respectively, compared
to the highest R2 values of 0.8742 (NDVI, exponential) and
0.830 (NDVI, quadratic polynomial) for the single VI. The RMSE
of SPAD increased with values of 0.021 and 0.286, compared

to the RMSE of 7.038 and 6.126 for single VI with the single
linear regression, quadratic polynomial, exponential models. The
winter wheat (SPADm and SPADh) could be calculated based on
NDVI by using Equations (16) and (17) (Figures 7B,C).

SPADl = 249.19× NDVI − 686.477× SAVI + 24.896

×EVI + 596.61× DVI + 24.647 (15)

SPADm = 26.499× e1.0796×NDVI (16)

SPADh = 108.21× NDVI2
− 103.02× NDVI + 74.93(17)

Prediction Models of Winter Wheat Yield
on the Basis of Both LAI and SPAD
Remote sensing estimation of winter wheat yield is based on VIs
which can reflect crop yield. It is necessary to verify whether the
relationship between wheat LAI, SPAD, and yield (measured) is
significant. Figure 8 shows the relationship between LAI, SPAD,
and winter wheat yield under different stages. It can be seen that
the relationships between LAI, SPAD, and winter wheat yield
were the most significant in different models. LAI and SPAD
could estimate winter wheat yield well under different stages.
For LAI (Figure 8A) and SPAD (Figure 8B), R2 values are
0.68 (DAS210), 0.885 (DAS229), and 0.612 (DAS240) and 0.534
(DAS210), 0.949 (DAS229),and 0.566 (DAS240), respectively.
This provided a basis for the prediction of winter wheat yield
using LAI and SPAD which are estimated by VIs.

Figures 8A,B show that the predicted values of crop growth
parameters at three stages (DAS210, DAS229, and DAS240) were
consistent with the measured values and that the R2 values
(0.885 for LAI and 0.949 for SPAD) were the highest in DAS229,
which was the best estimation period of yield; this result was
consistent with that of previous studies (Zhang et al., 2019;
Tao et al., 2020b). Under the support of the above, the optimal
estimates of winter wheat LAI and SPAD values in DAS229
based on VIs were adopted to estimate the yield of winter wheat
by using the quadratic polynomial model (Equations (18) and
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TABLE 5 | Correlations between VIs derived from UAV multispectral images and SPAD with different water treatments.

Model VIs Low water Medium water High water

R2 RMSE R2 RMSE R2 RMSE

Linear NDVI 0.7994** 7.205 0.8693** 7.632 0.748** 6.3045

SAVI 0.7423** 7.089 0.8249** 7.541 0.7061** 6.5237

EVI 0.7222** 7.048 0.7011** 7.281 0.7112** 6.5348

DVI 0.6831** 7.968 0.7842** 7.456 0.6549** 6.4787

Quadratic polynomial NDVI 0.8082** 7.022 0.8697** 7.633 0.8296** 6.1259

SAVI 0.7689** 7.143 0.8306** 7.553 0.7247** 6.6320

EVI 0.7485** 7.102 0.803** 7.514 0.7217** 6.6398

DVI 0.7375** 7.079 0.7491** 7.591 0.6637** 6.5622

Exponential NDVI 0.7788** 7.341 0.8742** 7.038 0.7369** 6.4004

SAVI 0.7212** 7.172 0.8243** 8.951 0.6789** 6.6773

EVI 0.6989** 7.121 0.7034** 7.4651 0.6813** 6.6899

DVI 0.6627** 7.989 0.7812** 7.599 0.6225** 6.6248

Multiple Four VIs 0.812** 7.018 0.87** 7.059 0.8221** 6.412

Four VIs and one VI combination, NDVI, SAVI, EVI, and DVI, were used to establish regression estimation models for SPAD with different water treatments. **Significant
at the level of 0.01.

FIGURE 6 | Correlations between winter wheat LAI estimated based on NDVI, SAVI, EVI, and DVI by using optimal regression analysis and ground-truth LAI; (A)
lower water treatment, (B) medium water treatment; (C) and higher water treatment.

FIGURE 7 | Correlations between winter wheat SPAD estimated based on NDVI, SAVI, EVI, and DVI by using optimal regression analysis and ground-truth SPAD;
(A) low water treatment, (B) medium water treatment; and (C) high water treatment.

(19) and Figure 10). The accuracy of LAI and SPAD based on
UAV multispectral imagery to estimate winter wheat yield was
over 87%.

Yield = 1095× LAI2
− 7666.6LAI + 16981 (18)

Yield = −2.214× SPAD2
− 366.9SPAD− 9689.2 (19)

Yield = 327.44× LAI+ 72.15SPAD− 1414.8 (20)

After estimating winter wheat yield based on a single parameter
(LAI or SPAD) by using quadratic polynomial, when MLR was
used in Equation (20), the estimation result of the winter wheat
yield was improved (Figure 10C), and the R2 value was 0.807,
with the increase of 0.099 and 0.137, respectively, compared to
the R2 values of 0.708 (LAI) and 0.670 (SPAD) for the single
parameter. The RMSE of yield decreased by 7.08 and 16.13 kg/ha,
compared to the RMSE values of 788.67 kg/ha (LAI, quadratic
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FIGURE 8 | Relationships between LAI, SPAD, and yield of winter wheat under different stages; (A) LAI and (B) SPAD.

FIGURE 9 | Correlations between yield of winter wheat estimated based on LAI and/or SPAD alone by using optimal regression analysis and multivariable liner
regression with ground-truth yield; (A) LAI, (B) SPAD, and (C) LAI and SPAD.

FIGURE 10 | Relationships between VIs and yield of winter wheat under different water treatments; (A) NDVI, (B) SAVI, (C) EVI, and (D) DVI.
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polynomial) and 797.72 kg/ha (SPAD, quadratic polynomial) for
the single parameter, respectively.

DISCUSSION

Estimation of Winter Wheat Parameters
at Different Water Treatments
The estimation of winter wheat LAI and SPAD with different
water treatments (low water, medium water, and high water)
using linear, quadratic polynomial, exponential models in
different days is shown in Appendix Figures A1–A3. It is
shown that the best agreement of predicted winter wheat
LAI and SPAD values was for the medium water level (120–
180 mm), followed by the low water level (0–60 mm) (LAI);
the worst was the high water level (210–240 mm). In Table 4,
the R2 values between the LAI obtained from eight estimation
models and the measured LAI were more than 0.7 in the
medium water level (0.7175–0.8966, at low water level: 0.6197–
0.8504 and at high water level: 0.650–0.749); there were few
estimation models with R2 greater than 0.8 between the
estimated LAI and the measured LAI. This indicates that
different water treatments had an effect on the inversion
of LAI-based VIs alone under the same models. However,
when multivariable liner regression was adopted (Table 4 and
Figure 6), the trend of LAI retrieval from VI-based UAV
multispectral imagery had changed (Quan et al., 2017; Berger
et al., 2018; Guo et al., 2020). The best inversion result was for
the low water level, followed by the medium water level and
high water level.

Again, it can be seen from Table 5 that all the R2 values
between the SPAD obtained estimation models and the measured
SPAD were more than 0.7 in medium water level (0.7011–0.8742);
in both low water and high water levels, 75% of them have an
R2 greater than 0.7, but in general, the estimation in the low
water level was better. However, when the multivariable linear
regression was adopted (Table 5 and Figure 7), the results here
were not similar to the LAI; the best inversion result was for
the medium water level, followed by the high water level and
low water level. It is shown that it was necessary to consider
multiple VIs to retrieve LAI and SPAD using multivariable linear
regression compared to the VI alone (Sun et al., 2012; Boegh et al.,
2013; Elarab et al., 2015; Li et al., 2015).

Prediction of Winter Wheat Yield on the
Basis of UAV
The crop parameters of winter wheat under different stages could
reflect the change of yield (Lin et al., 2009; Sid"ko et al., 2017)
(Figures 8A,B); the nonlinear values were both very significant
(R2 = 0.885 for LAI and R2 = 0.949 for SPAD), indicating
that the yield could be estimated by measuring LAI and SPAD
of winter wheat in the flowering stage (DAS229). The LAI
and SPAD of winter wheat were estimated by VI constructed
by UAV multispectral imagery (NDVI, EVI, SAVI, and DVI)
(Figures A1–A3). Figure 10 shows the estimation of winter
wheat yield with NDVI, SAVI, EVI, and DVI constructed by

UAV multispectral imagery under different water treatments,
and NDVI had the highest correlation with an R2 value of
0.673 (medium water > high water > low water), followed
by SAVI with an R2 value of 0.616 (high water > medium
water > low water).

According to the principle that LAI and SPAD were closely
related to the yield (Simonetta et al., 2009; Fang et al., 2010;
Bendig et al., 2013), it was feasible to carry out large-area remote
sensing yield estimation based on various VIs constructed by
UAV multispectral imagery (Figures 8–10). If drought caused
wilting of winter wheat, withering of lower leaves, or excessive
irrigation, crop development was abnormal, which could be
reflected by the dynamic change of crop parameters retrieved by
UAV multispectral remote sensing.

FUTURE WORK

There is an increasing need for further raising awareness on
the issue of improving estimation performance by using drone
multispectral images and constructing crop vision systems to
estimate crop parameters and yields. In order to reduce the error
in the process of image acquisition and processing, there are still
some problems to be solved. First of all, since the pixel value of the
image is the reflectivity of the incoming sunlight, the variation
of light conditions may lead to the variation of the image-
derived features. To further explore the relationship between
light changes and camera response (reflection) during UAV flight
missions, better integration of light dynamics (UAV attitude,
sun position, light scattering, clouds, etc.) is needed to describe
light changes. The number and date of data points selected are
important issues. In this study, different water treatments (lower
water, medium water, and higher water) were selected for the
dates from jointing stage to filling stage (DAS210, DAS229, and
DAS240). In addition, further research is needed to validate these
results for different crops and different sites.

CONCLUSION

The UAV multispectral remote sensing system, as an important
farmland-scale data acquisition tool, has great application
potential in rapidly, accurately, and economically estimating
farmland crop parameters and yields. The results confirmed
that the visible light directly derived from UAV multispectral
imagery had a high correlation with the measured LAI and
SPAD. Compared to the linear regression model, the quadratic
polynomial model, and the exponential model based on VIs
alone, the MLR based on NDVI, SAVI, DVI, and EVI had higher
correlations for both LAI and SPAD under low water treatment
with R2 values of 0.911 and 0.812, respectively. The quadratic
polynomial model based on NDVI alone had higher correlations
for both LAI and SPAD under medium water treatment, with
R2 values of 0.8996 and 0.87, respectively. However, under high
water treatment, the exponential model performance was better
than that of the linear model and quadratic polynomial model,
with R2 values of 0.829 and 0.749, respectively. Under different
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water treatments, the optimal regression model was different,
and with medium water treatment, the estimation was better for
both LAI and SPAD. The relationships between the measured
crop parameters and the measured yield were verified, and good
results were obtained (R2 = 0.689 for LAI and R2 = 0.717
for SPAD).

The LAI and SPAD derived from VIs had better potential
to estimate winter wheat yield; in the flowering stage, the
R2 values of winter wheat yield estimation based on LAI
(quadratic polynomial) and SPAD (quadratic polynomial)
were 0.708 and 0.670, respectively. When MLR was used to
estimate the yield based on LAI and SPAD, the result of
winter wheat yield estimation was improved (R2 = 0.807,
RMSE = 781.59 kg/ha). The ability of VI to identify different
aspects of plants is different, which results in improving
the prediction performance. Adding LAI and SPAD of UAV
multispectral images into the production prediction model
based on VIs can significantly improve the performance of
production estimation.

In conclusion, this study shows the potential of the UAV
multispectral imagery and regression model to estimate the
growth parameters and yield of winter wheat. The results
provide reference and technical support for the popularization
and application of UAV remote sensing in large-scale
precision agriculture.
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