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The size of the chloroplast genome (plastome) of autotrophic angiosperms is generally
conserved. However, the chloroplast genomes of some lineages are greatly expanded,
which may render assembling these genomes from short read sequencing data
more challenging. Here, we present the sequencing, assembly, and annotation of the
chloroplast genomes of Cypripedium tibeticum and Cypripedium subtropicum. We de
novo assembled the chloroplast genomes of the two species with a combination of
short-read Illumina data and long-read PacBio data. The plastomes of the two species
are characterized by expanded genome size, proliferated AT-rich repeat sequences,
low GC content and gene density, as well as low substitution rates of the coding
genes. The plastomes of C. tibeticum (197,815 bp) and C. subtropicum (212,668 bp)
are substantially larger than those of the three species sequenced in previous studies.
The plastome of C. subtropicum is the longest one of Orchidaceae to date. Despite
the increase in genome size, the gene order and gene number of the plastomes are
conserved, with the exception of an ∼75 kb large inversion in the large single copy
(LSC) region shared by the two species. The most striking is the record-setting low
GC content in C. subtropicum (28.2%). Moreover, the plastome expansion of the two
species is strongly correlated with the proliferation of AT-biased non-coding regions:
the non-coding content of C. subtropicum is in excess of 57%. The genus provides a
typical example of plastome expansion induced by the expansion of non-coding regions.
Considering the pros and cons of different sequencing technologies, we recommend
hybrid assembly based on long and short reads applied to the sequencing of plastomes
with AT-biased base composition.

Keywords: plastome expansion, repeat sequence, hybrid assembly, AT-biased base composition, long-read
sequencing, palindromic repeat, inversion

INTRODUCTION

The average chloroplast genome (plastome) size of land plants is 151 kb, with most
species ranging from 130–170 kb in length, and the average GC content is 36.3% (NCBI
database, 4,281 land plant plastomes, March 17, 2020) (Supplementary Table 1). However,
previous studies documented that the plastome size of some lineages was extremely enlarged
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(Chumley et al., 2006; Kim et al., 2015; Blazier et al., 2016; Weng
et al., 2017; Lim et al., 2018; Gruzdev et al., 2019; Li H. et al., 2020).
The largest chloroplast genome of angiosperm is Pelargonium
transvaalense (242, 575 bp), with the inverted repeat (IR) region
of the species expanding to 87,724 bp (Weng et al., 2017). Of
more than 4,000 land plant plastomes from NCBI, 82 sequences
examined to date had chloroplast genome sizes over 170 kb, and
seven of these species had chloroplast genome sizes over 200 kb
(Supplementary Table 1). The expansion of the plastomes of
these species is mainly caused by gene duplications in the IR
regions (Chumley et al., 2006; Weng et al., 2017; Sinn et al.,
2018; Li H. et al., 2020) or the expansion of repeat sequences in
non-coding regions (Dugas et al., 2015; Li H. et al., 2020).

Chloroplast genome sequences have been widely used in
studies of phylogeny, evolution, and population genetics of
angiosperms (Tonti-Filippini et al., 2017). The accurate assembly
and annotation of plastome sequences are the foundation of
these studies. At present, most of the studies used Illumina
short reads for chloroplast genome assembly. However, the short-
reads method occasionally does not perform well owing to
biased coverage depth, which may lead to fragmented genome
assemblies (Ferrarini et al., 2013; Sinn et al., 2018). Recently, a
few studies used long reads (Ferrarini et al., 2013; Wu et al.,
2014; Chen et al., 2015; Xiang et al., 2016; Cauzsantos et al.,
2017; Lee et al., 2020; Zhang et al., 2020) or combined short
and long reads for chloroplast genome assembly (Ruhlman et al.,
2017; Lin et al., 2018; Wang et al., 2018; Yan et al., 2019; Li
H. et al., 2020). Ruhlman et al. (2017) combined long and
short read data to investigate repeat sequences in Monsonia
emarginata (Geraniaceae). Wang et al. (2018) compared short-
read (Illumina) data only assembly, long-read (Oxford nanopore)
data only assembly, and hybrid assembly involving short- and
long-read data to test the accuracy of chloroplast genome
assembly. They suggested that hybrid assembly provides highly
accurate and complete chloroplast genome assembly.

Cypripedium is a genus of Orchidaceae, mainly distributed in
the temperate regions of the Northern Hemisphere, with high
ornamental and economic values. The genus is a good example
to study the evolution of orchids. Owing to the large genome
size (average 1C = 31.3 pg) (Leitch et al., 2009), molecular
evolution studies of the genus are relatively rare. Cypripedium is
one of the genera with chloroplast genome expansion (>170 kb)
(Supplementary Table 1). At present, three chloroplast genomes
of the genus have bene reported: Cypripedium japonicum (Kim
et al., 2015), C. formosanum (Lin et al., 2015), and C. calceolus
(Zhang et al., 2019). The sequenced chloroplast genomes showed
that the genome sizes of the three species are larger than those
of most other species of angiosperms, with relatively low GC
contents (33.9–34.5%), and that the expansion of the genome
size correlated with the expansion of the LSC region. Lin et al.
(2015) found an ∼62 kb inversion in C. formosanum. However,
the inversion was not observed in C. japonicum, which is the sister
species of C. formosanum. In addition, Kim et al. (2015) found
AT-rich regions in C. japonicum, and owing to the difficulty of
sequencing poly(A), poly(T), or poly(AT) regions, they proposed
a method for improving the success rates of these AT-rich
regions, but the method was limited. Considering that the

extents of chloroplast genome expansion and genome structure
variation at the genus level are unknown, Cypripedium provides
an ideal example to study the chloroplast genome evolution of
angiosperm with expanded plastome size.

In this study, we selected two species of Cypripedium with
clear morphological and habitat differentiation to investigate
the chloroplast genome variation in the genus. Cypripedium
tibeticum is widely distributed in southwest China, and
Cypripedium subtropicum is restricted to southeast Yunnan
Province and northern Vietnam. We sequenced, assembled, and
annotated the complete chloroplast genomes of C. tibeticum and
C. subtropicum using a combination of Illumina and PacBio
sequencing platforms; then, we compared the two genomes
with the previously reported chloroplast genomes of the genus
in terms of genome size, gene number, genome structure, GC
content, and substitution rates of the coding genes; finally,
we discussed the expansion mechanism of Cypripedium and
investigated the repeat sequences of the genus.

MATERIALS AND METHODS

Taxon Sampling and Library
Construction
We sampled fresh leaves of C. tibeticum and C. subtropicum
from Huanglong, Sichuan and Malipo, Yunnan, China. Total
genomic DNA was isolated using the CTAB method (Doyle and
Doyle, 1987). The extracted total genomic DNA was used for
library construction with 350 bp and 20 kb insert sizes and then
sequenced on MGI2000 (MGI, Shenzhen, China) and PacBio
RS-II platforms for the short and long reads, respectively.

Sequence Assembly and Annotation
The potential chloroplast genome reads were filtered in reference
to the three chloroplast genomes of the genus reported in
previous studies. Short reads were extracted with a script in
NOVOPlasty 3.8.1 (Dierckxsens et al., 2017), and long reads were
extracted with BLASR (Chaisson and Tesler, 2012). The hybrid
assembly of the chloroplast genomes was performed in SPAdes
3.14.0 based on the filtered reads, with careful error correction
and different K-mers (21, 33, 55, and 77) (Bankevich et al.,
2012). Then, we used coding genes as seed sequences to test
the assembly with NOVOPlasty 3.8.1 (Dierckxsens et al., 2017).
The two methods generated almost identical results, except for
the AT-biased repeat regions, and the short read only method
failed to obtain the assemblies of these regions. The assembled
sequences were annotated in Geneious Prime 2020 (Biomatters
Ltd., Auckland, New Zealand), coupled with manual correction.
The three plastome sequences downloaded from GenBank were
reannotated for the following comparison. In addition, we
found a paper reporting the chloroplast genome of C. tibeticum
(GenBank accession No. MN561380) with samples collected from
Qinling Mountains of China (Li J. et al., 2020), but the sequence
was not yet accessible at the time of the analysis (June 2, 2020), so
we were not able to perform further comparisons.

Linear plastome maps were generated with OGDRAW
(Greiner et al., 2019). The boundaries of the IR and SC regions
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were defined by Repeat Finder embedded in Geneious Prime
2020. We calculated GC content in Geneious Prime 2020.
Then, we visualized the genome rearrangement of the genus
using the progressiveMauve algorithm (Darling et al., 2010)
with IRa removed.

Nucleotide Substitution Rate Analyses
We used the CODEML program in PAML v. 4.9 (model = 0)
(Yang, 2007) to calculate the average non-synonymous
substitution rate (dN) and synonymous substitution rate (dS)
for 79 protein coding genes by the F3X4 codon model. Gapped
regions were excluded for rate estimation (cleandata = 1). The
input tree [C. subtropicum, (C. formosanum, C. japonicum),
and (C. calceolus, C. tibeticum)]simplified from Li et al. (2011)
was used for the following analyses. In matK, only three
sequences could be used for substitution rate estimation, and C.
formosanum, (C. calceolus, C. tibeticum) was used as input tree.
In addition, we counted the numbers of indels in the intergenic
spacer regions and introns in the plastomes of Cypripedium using
DnaSP v6.12.03 (Rozas et al., 2017) with unalignable regions
removed using GBlocks (Talavera and Castresana, 2007) with the
default settings.

Repeat Sequence Analysis
Simple sequence repeats (SSRs) (≥10 bp) were detected via MISA
(Beier et al., 2017), and the minimum thresholds for mono-, di-,
tri-, tetra-, penta-, and hexa-nucleotides were set to 10, 5, 4, 3, 3,
and 3, respectively. In addition, tandem repeats were identified
with Tandem Repeats Finder v4.09 (Benson, 1999) with default
parameters, the identity of repeats was set at 90%, and overlapped
repeats were removed manually. Dispersed repeats (≥30 bp) and
palindromic repeats (≥20 bp) were identified with Vmatch1.

RESULTS

Plastomes of Cypripedium tibeticum and
Cypripedium subtropicum
We obtained the full chloroplast genome sequences of 197,815 bp
for C. tibeticum and 212,668 bp for C. subtropicum (GenBank
accession Nos. MT937101 and MT937100, respectively). The
plastid genomes of the two species showed typical quadripartite
structure, with two identical copies of the IR region separated by
an LSC region and a small single copy (SSC) region (Figures 1, 2).
The LSC regions of the two species expanded to 117,193 and
129,998 bp, respectively, the IR regions of the two species
(27,764 and 27,628 bp, respectively) were similar to those of
the previously sequenced species, and the SSC regions of the
two species (25,094 and 27,414 bp, respectively) were slightly
larger than those of the other three species (Table 1). The gene
number of the genus was conserved and consisted of 131–132
genes, including 85–86 protein coding genes (seven duplicated
in the IR region), 38 tRNAs (eight duplicated in the IR region),
and eight rRNAs (four duplicated in the IR region). A total
of 15 genes contained one intron, including six tRNA genes

1http://www.vmatch.de/

(trnG-UCC, trnK-UUU, trnL-UAA, trnV-UAC, trnA-UGC, and
trnI-GAU) and nine protein coding genes (rps16, rpl2, rpl16,
rpoC1, petB, petD, atpF, ndhA, and ndhB), while the other three
protein coding genes (clpP, rps12, and ycf3) contained two introns
(Supplementary Table 2). We found pseudogenization of the
matK gene owing to a single-base deletion-induced frameshift in
C. subtropicum. Corresponding to the expansion of the genome
size and the relatively conserved gene number, the gene density
of the genus ranged from 0.62 to 0.75. The GC contents of
the total genomes were 30.5% for C. tibeticum and 28.2% for
C. subtropicum (Figure 2), and the GC contents of the two
genomes were uneven. The GC contents of the IR regions
(42.5 and 42.6%) were higher, whereas the LSC regions (26.5
and 23.7%) and SSC regions (22.4 and 20.6%) had lower GC
content (Table 1).

Approximately 36.67–45.50% of the genome encoded
proteins, 1.35–1.64% encodes tRNA, and 4.25–5.18% encodes
ribosomal RNA (Table 1). The length of the coding regions of
the five species was approximately 90 kb, whereas the length of
non-coding regions ranged from 84 kb in C. calceolus to 123 kb
in C. subtropicum (Table 1). Correspondingly, the non-coding
regions of some genes were extremely expanded in the two
species; for example, the intron of rpl16 expanded to 7.5 kb in
C. subtropicum, the intron of trnK-UUU expanded to 7.7 kb
in C. subtropicum and to 6 kb in C. tibeticum, the intergenic
region between psbA and trnK-UUU expanded to 4.3 kb in
C. subtropicum, the intergenic region between rbcL and atpB
expanded to 4.9 kb in C. tibeticum, the intergenic region between
trnL-UAG and ccsA expanded to 2.5 kb in C. tibeticum and to
3.4 kb in C. subtropicum (Supplementary Table 3). However,
some of the non-coding regions were conserved in length, such
as the introns of ndhB and rpl2, which had no length variation
(Supplementary Table 3).

The LSC/IR boundary and the IR/SSC boundary were stable
in the genus (Figure 3). The LSC/IRb boundary in all five species
was located on rpl22, while one end of SSC was located on ycf1,
and the other end of SSC was located on the truncated copy of
ycf1 (Figure 3). The gene order of the genus was conserved, apart
from the ∼75 kb inversion spanning from trnG-UCC to trnP-
UGG in the LSC region (Figure 1 and Supplementary Figure 2).
In addition, the intergeneric regions adjacent to the long
inversions also had high AT contents compared to the other two
species without long inversions.

Repeat Sequences in Cypripedium
The plastomes of Cypripedium ranged from 252 repeats
(5,362 bp) in C. japonicum to 930 repeats (30,453 bp) in
C. subtropicum, and these repeat sequences represented 3.07%
in C. japonicum to 14.32% in C. subtropicum of the chloroplast
genome length, the newly sequenced two species had increased
numbers and sizes of repeat sequences (Table 2). The total length
of SSR, tandem repeats, and dispersed repeats revealed 3.05-fold,
2.56-fold, and 15.88-fold variations, respectively (Table 2).
The repeat sequences in the genus were dominated by SSR
(182–535), followed by tandem repeat (54–120) or dispersed
repeat (12–191), whereas palindromic repeats were the fewest
(three to 84) (≥30 bp) (Table 2). C. subtropicum (84) and
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FIGURE 1 | The chloroplast genome structures of five species of Cypripedium. The red lines indicate the inversion spanning from trnG-UCC to trnP-UGG in the LSC
region.
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FIGURE 2 | The plastomes of C. tibeticum and C. subtropicum exhibit atypical size and GC content.

TABLE 1 | General characteristics of the plastomes of the five Cypripedium species included in this study.

Species C. subtropicum C. tibeticum C. japonicum C. formosanum C. calceolus

GenBank No. MT937100 MT937101 KJ625630* KJ501998* MN602053*

Total length (bp) 212,668 197,815 174,417 178,131 175,122

Length of LSC (bp) 129,998 117,193 97,322 ∼10,0973 97,486

Length of SSC (bp) 27,414 25,094 21,911 21,921 22,260

Length of IR (bp) 27,628 27,764 27,592 ∼27,579 27,688

Number of genes 131 (19) 132(19) 131(19) 132(19) 132(19)

Number of protein coding genes 85 (7) 86 (7) 85 (7) 86 (7) 86 (7)

Number of tRNA genes 38 (8) 38 (8) 38 (8) 38 (8) 38 (8)

Number of rRNA genes 8 (4) 8 (4) 8 (4) 8 (4) 8 (4)

Length of protein coding genes (bp) 77,979 79,626 77,931 79,485 79,680

Length of tRNA genes (bp) 2866 2866 2866 2866 2866

Length of rRNA genes (bp) 9042 9042 9042 9042 9042

Length of coding regions (bp) 89,887 91,534 89,839 91,393 91,588

Length of non-coding regions (bp) 122,781 106,281 84,578 86,738 83,534

Percent of protein coding genes (%) 36.67 40.25 44.68 44.62 45.50

Percent of tRNA genes (%) 1.35 1.45 1.64 1.61 1.64

Percent of rRNA genes (%) 4.25 4.57 5.18 5.08 5.16

Percent of coding regions (%) 42.27 46.27 51.51 51.31 52.30

Percent of non-coding regions (%) 57.73 53.73 48.49 48.69 47.70

Total GC content (%) 28.2 30.5 34.5 33.9 34.4

LSC GC content (%) 23.7 26.5 31.7 30.7 31.6

IR GC content (%) 42.6 42.5 42.7 42.7 42.6

SSC GC content (%) 20.6 22.4 26.4 26.4 26.1

Gene density 0.62 0.67 0.75 0.74 0.75

*Sequences downloaded from GenBank. Numbers in brackets indicate genes duplicated in the IR regions.

C. tibeticum (54) had more palindromic repeats than the other
three species (three to four). All the five species shared a 48-bp
(TATAGTGTGGTAGAAAGAGCTATATATAGCTCTTTCTAC

CACACTATA) palindromic repeat located in the intergeneric
region between psbM and petN, and most of the other
palindromic repeats were species-specific. The longest repeats
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FIGURE 3 | Comparison of the border positions of LSC, SSC, and IR regions among the five Cypripedium chloroplast genomes.

reached 156 bp in C. tibeticum (a 78-bp motif repeated twice),
180 bp in C. subtropicum (a 44-bp motif repeated 4.1 times).
Unexpectedly, when the repeat length was set to 20 bp, the
palindromic repeat number increased substantially (149–5,481)
(Table 2), with most of the palindromic repeats having lengths
between 20–25 bp (Supplementary Table 5). These repeats
were strongly AT-biased, and tandem A/T, AT/TA, AAT/ATT,
AAAT/ATTT, and AATAT/ATATT were the five dominant motif
types in the SSR (Figure 4). Most of these repeat sequences were
located in the non-coding regions of LSC and SSC regions and
rarely appeared in the IR region (Figure 4).

Nucleotide Substitution Rate Analyses
Mean synonymous and non-synonymous divergence was
extremely low (dN = 0.0069, dS = 0.0287), and varied among
genes (Supplementary Table 6). The most rapidly evolving genes
in the genus was rpl33, while the sequences of some protein
coding genes were identical in the five species, such as atpH, petG,
petN, psaI, psbF, rpl23, rps12, and rps14 (Supplementary Table 6
and Figure 5). Most of the expanded AT-rich regions were
unalignable, and the expanded IGS in LSC and SSC regions had
more indels than the non-coding regions without expansion
(Supplementary Table 7).

DISCUSSION

The Plastome Characters of
Cypripedium tibeticum and Cypripedium
subtropicum
To date, the chloroplast genome of C. subtropicum (212,668 bp)
is the largest of Orchidaceae and the sixth largest of sequenced
land plants. Following the expansion of the plastomes, the gene
density of the genus decreased to 0.62 in C. subtropicum (Table 1),
while the gene density of most angiosperms is over 0.80 (the

average plastome size of land plants is 151 kb, ∼130 genes, and the
gene density is approximately 0.86). The mean synonymous and
non-synonymous divergence was low (dN = 0.0069, dS = 0.0287)
(Supplementary Table 6). The divergence rate of coding genes is
even lower than the coniferous forest tree genus Picea, the mean
synonymous and non-synonymous of Picea was 0.017 ± 0.024
and 0.040 ± 0.031 (Sullivan et al., 2017). The low substitution
rates might explain the unresolved relationships among sections
in Cypripedium (Li et al., 2011).

Interestingly, the overall GC contents of C. subtropicum
(28.2%) and C. tibeticum (30.5%) plastomes are much lower than
those of the three species sequenced in previous studies, and the
GC content of C. subtropicum is the lowest in the sequenced
autotrophic species to date (Figure 2 and Table 1). The GC
content of the genus is lower than the average GC content
of land plant plastomes (37.6%) (Supplementary Table 1).
The high AT content is induced by repetitive sequences
composed of poly(A), poly(T), or poly(AT) regions in non-
coding regions in the single copy region, especially in the
LSC region (Kim et al., 2015). Tandem AAT/ATT is the
most abundant repeat in newly sequenced species, whereas
A/T mononucleotide is the most abundant repeat in the
three species sequenced in previous studies (Figure 4). In
addition, we found 26 records of the NCBI plastome database
with GC content below 30%, and these lower GC content
species were restricted to parasitic/mycoheterotrophic plants,
mosses, and liverworts (Supplementary Table 5), such as
the holoparasitic Balanophora reflexa (11.6%) and B. laxiflora
(12.2%) (Su et al., 2019), the parasitic Pilostyles hamiltoni (22.7%)
(Bellot and Renner, 2016), and the mycoheterotrophic Gastrodia
elata (26.7%) (Ma & Jin, unpublished data, MF163256.1).
In Cypripedium, the GC contents of the coding regions are
similar to those of other species, whereas the non-coding
regions have relatively lower GC contents, including intergenic
spacer regions and introns, and some of the intergenic regions
with GC contents lower than 10%, e.g., trnL-ccsA (1.3% in
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TABLE 2 | Summary of repeat sequences in the plastomes of five Cypripedium species.

Species C. subtropicum C. tibeticum C. japonicum C. formosanum C. calceolus

No. of SSRs 535 498 182 222 208

No. of tandem repeats 120 94 54 65 73

No. of dispersed repeats 191 84 12 23 12

No. of palindromic repeats (≥30 bp) 84 54 4 4 3

No. of palindromic repeats (≥20 bp) 5,481 3,008 288 155 149

Total No. of repeats* 930 730 252 314 296

Length of SSR (bp) 6,973 6,753 2,283 2,786 2,638

Length of tandem repeat (bp) 5,250 3,765 2,047 2,654 2,689

Length of dispersed repeat (bp) 13,559 6,127 890 1,638 854

Length of palindromic repeat (≥30bp) 4,671 3,017 142 170 112

Length of repeat sequence (bp)* 30,453 19,662 5,362 7,248 6,293

Percent of repeat sequence* 14.32% 9.94% 3.07% 4.07% 3.59%

*Includes palindromic repeats ≥ 30 bp.

C. subtropicum to 7.2% in C. japonicum) and psbA-trnK (2.5%
in C. subtropicum).

Although the gene order of the two species is conserved, the
two species sequenced in this study share an ∼75 kb inversion in
the LSC region; the inversion was also found in C. formosanum
(Lin et al., 2015), and the gene order and orientation in the
long inversion were completely conserved (Figure 1). Apart
from the long inversion, the chloroplast genome structure of
the genus is conserved. According to the section delimitation
of the genus (Chen et al., 2013), the three species with long
inversions are ascribed to different sections: C. tibeticum belongs
to section Cypripedium, C. subtropicum belongs to section
Subtropica, C. formosanum belongs to section Flabellinervia,
which suggests that the long inversion occurred independently
in the genus. Large inversions were also found in other lineages,
a 47 kb inversion (petN to clpP) in Paphiopedilum fairrieanum
(unpublished data), a 30 kb inversion (trnG-GCC to trnE-UUC)
in Hevea brasiliensis (Tangphatsornruang et al., 2011), an 8 kb
inversion (ycf4 to atpE) in Annona cherimola (Blazier et al., 2016),
a 24 kb inversion (trnQ-UUG to trnT-GGU) in Viscum minimum
(Petersen et al., 2015), a 42 kb inversion (clpP to trnC-GCA) in
Passiflora edulis (Cauzsantos et al., 2017), and a length portion
of LSC (trnH-GUG to trnT-GGU) in Asarum (Sinn et al., 2018).
The mechanism of these long inversions is mostly unclear, but
Sinn et al. (2018) found that the inversion in Asarum is flanked
by long AT-rich regions, and they proposed that intramolecular
recombination induced a long inversion in the genus. The AT-
biased repeat sequences were also found in the flanking regions
of the three Cypripedium species with the long inversion, but
there are some other regions of the plastome with AT-rich repeat
sequences; thus, the relationship between the inversion and the
AT-rich sequences remains uncertain.

Furthermore, despite the increases in the chloroplast genome
size of the two sequenced species, the gene number (131–132
genes) of the genus is rather conserved, and the genus encodes
all the coding genes commonly found in the chloroplast genomes
(Table 1 and Supplementary Table 2). The one gene variation in
the two newly sequenced species was due to the pseudogenization
of matK in C. subtropicum. The pseudogenization of matK

was also observed in C. japonicum (Guo et al., 2012; Kim
et al., 2015). Interestingly, the pseudogenization of matK
occurred independently, and both pseudogenization events
were frameshift mutations induced by non-triplet nucleotide
deletions following a 10-bp mononucleotide (T) repeat 294 bp
from the start codon, a 10-bp deletion and a 1-bp deletion
(Supplementary Figure 1). The non-triplet indels of matK
have been reported in previous studies (Kores et al., 2000;
Freudenstein and Senyo, 2008; Kocyan et al., 2008; Logacheva
et al., 2011), and 82% of the pseudogene entries in GenBank
are from Orchidaceae (Barthet et al., 2015). MatK is a rapidly
evolving chloroplast gene that encodes maturase in the plastome
and is related to the splicing of the group IIA introns of
seven genes (atpF, rpl2, rps12, trnV-UAC, trnI-GAU, trnA-UGC,
and trnK-UUU) in land plants (Zoschke et al., 2010). Some
angiosperm lineages present coevolution between matK and
the seven group IIA introns, such as the parasitic Cuscuta
(McNeal et al., 2009) and the mycoheterotroph Rhizanthella
gardneri (Delannoy et al., 2011). However, there is no parallel
loss of matK and the seven group IIA introns in Cypripedium:
matK in C. subtropicum and C. japonicum are pseudogenes,
while the seven group IIA introns are all retained in the two
species. We infer that the matK gene in the genus might be
at the transition from a functional gene to a pseudogene, and
that there are other mechanisms regulating the splicing of the
group IIA introns.

The Expansion Mechanism of
Cypripedium
The plastome expansion of Cypripedium is strongly correlated
with the proliferation of AT-biased non-coding regions.
The five species with larger chloroplast genomes all belong
to Pelargonium of Geraniaceae (Supplementary Table 1).
However, the plastomes of the two genera expanded in different
ways. The plastomes of Pelargonium incorporated a large
portion of what was once the SSC region into the IR region,
which induced massive gene duplications (Chumley et al.,
2006; Weng et al., 2017). In Cypripedium, the lengths of
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FIGURE 4 | Statistics of the repeat elements in the five Cypripedium chloroplast genomes. (A) Number and type of repeats; (B) the number of repeat sequences in
different regions (palindromic repeats excluded); (C) number and type of SSR.

the IR region (27,764 and 27,628 bp) and the SSC region
(27,764 and 27,628 bp) are conserved, but the LSC regions
of the two species expanded to 117,193 and 129,998 bp
respectively, which are 20–30 kb larger than the LSC regions
of the three species sequenced in previous studies (Figure 1
and Table 1; Kim et al., 2015; Lin et al., 2015; Zhang et al.,
2019). The coding regions of the sequenced species were
approximately 90 kb, and the non-coding regions varied in
different species. The non-coding region of C. subtropicum
expanded to 122,781 bp (approximately 57.73% of the
chloroplast genome), whereas the non-coding region of
C. japonicum was 83,534 bp (approximately 47.7% of the
chloroplast genome) (Table 1). Given that coding regions of
the genus are conserved, we infer that the plastome expansion
in the genus is strongly correlated with the proliferation of

non-coding regions, especially the non-coding regions in LSC
regions, and the two species are typical examples of plastome
expansion without gene duplication. These AT-rich repeat
sequences led to the plastome expansion of Cypripedium.
Dispersed repeats contributed most to plastome expansion,
followed by SSR and then tandem repeats (Table 2). The
expanded regions appeared as unalignable insertions, where
the number of indels are correlated with the length of the
non-coding regions (Supplementary Table 7). Furthermore,
other studies have proposed that repeat sequences lead to
plastome expansion; however, the expansion of these species
is also associated with gene duplications caused by boundary
shifts in IR regions, e.g., watercress (Yan et al., 2019) and
Rhododendron delavayi (Li H. et al., 2020). Interestingly, short
palindromic repeats (20–25 bp) are prevalent in the plastomes of
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FIGURE 5 | Non-synonymous substitution rate (dN), synonymous substitution rate (dS), and dN/dS for each gene.

C. subtropicum and C. tibeticum (Supplementary Table 5).
Smith (2020) indicated that panlindromic repeats are
mutational hotspots, and contribute to plastome expansion
in chlamydomonadalean Chlorosarcinopsis eremi. In addition
to this study, the proliferation of non-coding regions was
mainly documented in algae (Muñoz-Gómez et al., 2017;
Gaouda et al., 2018; Smith, 2018), and the non-coding
DNA of Haematococcus lacustris comprises over 90% of the
plastome (Smith, 2018). In addition, we also found high AT

regions in Paphiopedilum (trnS-trnG, trnE-trnT, and trnP-
psaJ) (unpublished data). AT-rich regions were also found in
some other genera, e.g., Asarum (Sinn et al., 2018). However,
the AT-rich regions in most cases do not contribute to
plastome size expansion.

Finally, there is coverage bias related to the GC content in
the short-read sequencing technologies (Browne et al., 2020),
which means that the AT-rich regions exhibit under-coverage
in the high-throughput dataset compared to the GC neutral
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regions. In this study, we failed to obtain parts of the plastomes
of the two species through a short-read dataset, especially the
AT-rich repetitive regions. We are also unable to circularize the
plastomes of some Paphiopedilum species due to the lengthy
AT-rich regions (unpublished data). Sinn et al. (2018) obtained
fragmented plastomes in Asarum owing to the lengthy AT-biased
regions. Moreover, Zhang et al. (2020) found that two repeat
fragments were missing in the short-read assembly compared to
the long-read assembly. In contrast, most studies indicated that
the coverage depth of long-read sequencing is relatively even
(Ferrarini et al., 2013) and could yield highly-accurate plastome
assemblies (Wang et al., 2018). Considering the limitation of
short-read sequencing and the fact that most of the plastomes in
GenBank are obtained based on short-read data, the species with
AT-biased plastomes might be underrepresented. Considering
the pros and cons of different sequencing technologies, we
recommend that the research of plastomes with AT-biased
base composition and lengthy repetitive sequence use hybrid
assembly, which will take advantage of the high throughput
of second-generation sequencing and the longer read length
of third-generation sequencing and reduce the coverage biases
introduced by DNA sequencing methods, especially the species
containing long repetitive elements, and the combination of the
two sequencing platforms will greatly simplify the assembly.
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