
fpls-12-594195 March 12, 2021 Time: 16:15 # 1

ORIGINAL RESEARCH
published: 18 March 2021

doi: 10.3389/fpls.2021.594195

Edited by:
Kazimierz Trebacz,

Maria Curie-Skłodowska University,
Poland

Reviewed by:
Frantisek Baluska,

University of Bonn, Germany
Anthony Trewavas,

University of Edinburgh,
United Kingdom

*Correspondence:
André Geremia Parise

andregparise@gmail.com

Specialty section:
This article was submitted to

Plant Physiology,
a section of the journal

Frontiers in Plant Science

Received: 16 September 2020
Accepted: 22 February 2021

Published: 18 March 2021

Citation:
Parise AG, Reissig GN, Basso LF,

Senko LGS, Oliveira TFC,
de Toledo GRA, Ferreira AS and

Souza GM (2021) Detection
of Different Hosts From a Distance

Alters the Behaviour and Bioelectrical
Activity of Cuscuta racemosa.

Front. Plant Sci. 12:594195.
doi: 10.3389/fpls.2021.594195

Detection of Different Hosts From a
Distance Alters the Behaviour and
Bioelectrical Activity of Cuscuta
racemosa
André Geremia Parise1* , Gabriela Niemeyer Reissig1, Luis Felipe Basso1,
Luiz Gustavo Schultz Senko1, Thiago Francisco de Carvalho Oliveira1,
Gabriel Ricardo Aguilera de Toledo1, Arlan Silva Ferreira2 and Gustavo Maia Souza1

1 Laboratory of Plant Cognition and Electrophysiology, Department of Botany, Institute of Biology, Federal University
of Pelotas, Pelotas, Brazil, 2 Department of Physics, Federal University of Pelotas, Pelotas, Brazil

In our study, we investigated some physiological and ecological aspects of the life
of Cuscuta racemosa Mart. (Convolvulaceae) plants with the hypothesis that they
recognise different hosts at a distance from them, and they change their survival strategy
depending on what they detect. We also hypothesised that, as an attempt of prolonging
their survival through photosynthesis, the synthesis of chlorophylls (a phenomenon
not completely explained in these parasitic plants) would be increased if the plants
don’t detect a host. We quantified the pigments related to photosynthesis in different
treatments and employed techniques such as electrophysiological time series recording,
analyses of the complexity of the obtained signals, and machine learning classification
to test our hypotheses. The results demonstrate that the absence of a host increases
the amounts of chlorophyll a, chlorophyll b, and β-carotene in these plants, and the
content varied depending on the host presented. Besides, the electrical signalling of
dodders changes according to the species of host perceived in patterns detectable by
machine learning techniques, suggesting that they recognise from a distance different
host species. Our results indicate that electrical signalling might underpin important
processes such as foraging in plants. Finally, we found evidence for a likely process
of attention in the dodders toward the host plants. This is probably to be the first
empirical evidence for attention in plants and has important implications on plant
cognition studies.

Keywords: Cuscuta, parasitic plants, attention, 1/f noise, machine learning, plant cognition, plant-plant
interaction, plant electrophysiology

INTRODUCTION

Dodder plants (Convolvulaceae: Cuscuta spp.) belong to a genus of holoparasitic plants distributed
all over the world, except Antarctica (Birschwilks et al., 2006; Costea et al., 2011, 2015). These plants
do not possess roots and their leaves are reduced to vestigial scales without photosynthetic function.
Although heterotrophic, some species have retained the ability to photosynthesise (MacLeod, 1961;
Ciferri and Poma, 1962, 1963; Machado and Zetsche, 1990; Hibberd et al., 1998). However, all the
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water, nutrients and the overwhelming majority of
photoassimilates they need to survive come from their hosts
(Jeschke et al., 1994; Hibberd et al., 1998).

Due to these characteristics, these heterotrophic plants share
with herbivorous animals the need of locating their host
plants and develop strategic behaviours to maximise their
chances of survival and increase their fitness (Kelly, 1990, 1992;
Mescher et al., 2009). Many dodder species have retained their
ability to synthesise chlorophylls and even make photosynthesis,
although in a very low rate (MacLeod, 1961; Ciferri and
Poma, 1962, 1963; Pattee et al., 1965; Baccarini, 1966; Laudi,
1968; Machado and Zetsche, 1990; Choudhury and Sahu,
1999). Throughout more than a 100 years some authors have
suggested that they retained this ability because it can be
useful for extending their survival during their free life stage
as a seedling or when they are separated from their hosts
(Peirce, 1894; Pizzolongo, 1963; Pattee et al., 1965; Laudi, 1968;
Lyshede, 1985).

Since the 19th century, it is known that dodders forage and
make choices (von Mohl, 1827; Koch, 1874; Peirce, 1894; Kelly,
1990, 1992; Koch et al., 2004; Runyon et al., 2006; Wu et al.,
2019), yet the mechanisms by which these behaviours emerge
are still unclear. However, there are two likely mechanisms for
host detection: volatile organic compounds (VOCs) emitted by
the host plants, and/or by light cues (Albert et al., 2008).

Interestingly, when provided with options, dodders seem to
choose what might be best for their survival. This phenomenon
was first observed by von Mohl (1827) and, later, by Koch
(1874). Koch (1874) used the word “capacity of choice”
(Wahlfähigkeit) to describe this behaviour. According to him,
seedlings of Cuscuta lupuliformis Krock. “show a certain,
as yet unexplained, capacity of choice which physiological
benefits are obvious” (Koch, 1874). Peirce (1894) supported
the ability of dodders in choosing and, after a gap of
almost 100 years, Kelly (1990, 1992) resumed the studies on
decision-making in Cuscuta. It is noteworthy that Lyshede
(1985) also have observed this phenomenon in Cuscuta
pedicellata Ledeb.

Kelly (1990, 1992) claimed that the response of an organism
toward a source of resources depends on the expected reward
to be obtained, and that this gauging happens before the
exploitation of these resources (Kelly, 1990). Then, Kelly (1990)
demonstrated that Cuscuta subinclusa Durand and Hilg. is able
to differentiate between diverse host species and that it invests
energy and resources in the coiling around the host’s stem
depending on the species of the host. The proportion of the
investment is related to the proportion of the expected reward
(Kelly, 1990). In a subsequent experiment, she demonstrated that
Cuscuta europaea L. can detect different nutritional levels of its
hosts, and it “rejects” hosts with poor nutritional quality after
simply touching the host’s bark (Kelly, 1992). The hypothesis
that dodders forage was supported by Koch et al. (2004), who
performed experiments with Cuscuta campestris Yunck. for
evaluating the foraging of the dodder when different host species
were simultaneously present. They concluded that there is strong
evidence that dodders forage for choosing the best hosts (Koch
et al., 2004). Kelly’s (1990, 1992) and Koch et al.’s (2004) studies

suggest that dodders have some “preuptake mechanism” for
selecting potential hosts (Koch et al., 2004).

Runyon et al. (2006) have demonstrated that dodders forage
and make choices based on the VOCs they perceive in
the environment. The idea that dodders could show certain
chemotropism was proposed by Bünning and Kautt (1956), but
until then not confirmed. In Runyon et al.’s (2006) study, they
demonstrated that seedlings of Cuscuta pentagona Engelm. were
attracted by the VOCs emitted by potential hosts and used these
cues for selecting and reaching them. Between wheat and tomato
plants, the dodder mainly chose tomato. However, when wheat
alone was presented to the dodder, the seedling grew toward it.
The same was observed when extracted volatiles of both hosts
were presented to the dodders (Runyon et al., 2006).

Another way by which dodders could detect and select among
hosts is through light cues. Orr et al. (1996) demonstrated
that Cuscuta planiflora Ten. shows phototropism toward low
ratios of red/far-red light, even when they are under white light.
Accordingly, Benvenuti et al. (2005) revealed that C. campestris
can use red/far-red ratios as cues for selecting between hosts.
Low ratios of red/far-red light were predictive of healthy leaves
with abundant chlorophyll, and the dodders were strongly
attracted by sugar beet leaves that transmitted this combination
of wavelengths (Benvenuti et al., 2005).

These studies and others on Cuscuta show that these plants
possess exquisite sensorial abilities to detect, locate, choose, and
parasitise their hosts. Beyond, they indicate that both the species
and characteristics of the hosts influence the dodders’ behaviour
and predation strategies. However, most of these studies are
behavioural and little is known about how the interaction from
a distance of dodders with its hosts influence their physiology.

We have observed (Parise et al., in press) that excised twigs of
Cuscuta racemosa Mart. accumulate green pigments within a few
days. Then, acknowledging that (i) dodders detect hosts from a
distance and change their behaviour accordingly, and assuming
that (ii) dodders would synthesise photosynthetic pigments in
order to prolong their lives in the absence of a host, we have
hypothesised that the presence of a viable host near an excised
twig of dodder would influence in its pigment content.

However, before this response to the hosts happen, other
physiological processes must occur. A likely candidate for early
detection of hosts is electrical signalling (Debono and Souza,
2019; Simmi et al., 2020). Electrical signals generated in the cells’
surface due to the detection of the host could rapidly spread to
the entire plant and trigger other physiological processes.

Plants have a spontaneous, non-evoked, electrical signalling
activity which is related to basic physiological processes (Fromm
et al., 2013). Depending on the stimulus received from the
environment, however, this basic electrical signalling can change.
Numerous different kinds of electrical signals are produced for
codifying the stimuli received and participate in the coordination
of the responses to them. These signals range from the well-
known action potentials to other less acknowledged such as
system potentials (Fromm and Lautner, 2007; Zimmermann
et al., 2009, 2016; Vodeneev et al., 2016). Electrical signals
are of paramount importance to plants and they are related
to a myriad of physiological processes, such as inducing
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transcription of genes, mounting defence responses, activating
photosynthesis, synthesising hormones, etc. (de Toledo et al.,
2019; Sukhov et al., 2019).

Electrical signalling is a hallmark of life itself. It manifests
from the basic level of cell (or even organelles) to the level
of an entire organism (De Loof, 2016). For referring to the
totality of the electrical activity occurring in any organism or
part of it during an amount of time, De Loof (2016) coined the
term “electrome” inspired by the other “omic” sciences, such
as genomics, transcriptomics, proteomics, and so on. Recently,
Souza et al. (2017) brought to the plant science the term and
some studies have been performed with plants, demonstrating
that they have a lively and extremely active electrome that is
related to many physiological states (Saraiva et al., 2017; Souza
et al., 2017; Pereira et al., 2018; de Toledo et al., 2019; Simmi
et al., 2020). It was demonstrated that the overall electrical activity
of plants changes considerably depending on the stimulus the
plant is receiving (Saraiva et al., 2017; Souza et al., 2017). By
using automatic classification algorithms of machine learning,
it is even possible to find patterns in the electrical response to
many different stimuli, despite the particularity and individuality
of each plant (Pereira et al., 2018; Simmi et al., 2020).

This tight connection of electrical signalling to environmental
stimuli, and to the subsequent changes in other physiological
processes (electrical signals precede many of them) led Debono
and Souza (2019) to propose that the electrome is a pivotal
interface that mediates the external environment with the
internal. It would be a bioelectrical interface between the plant
and the environment (Debono and Souza, 2019).

Here, we studied the species Cuscuta racemosa Mart. There
are few studies on the physiology of this species and they are
focused on the pharmacological properties of this plant (Ferraz
et al., 2010, 2011; Sousa et al., 2012). Besides, as far as we know, no
studies have examined the electrical signalling of a parasitic plant.
Since dodders can cause huge crop losses worldwide (Bewick
et al., 1988; Dawson, 1989; Parker, 1991; Costea and Tardif, 2006;
Mishra, 2009; Goldwasser et al., 2012; Kaiser et al., 2015; Sarić-
Krsmanović et al., 2015) and their control is extremely difficult
after the attachment to their hosts, understanding how they detect
and attach to them may be the key to protect crops against dodder
infestation (Albert et al., 2008; Kaiser et al., 2015; Johnson et al.,
2016).

Based on the ubiquity of electrical signalling in the plant
kingdom and the literature about the foraging behaviour of
Cuscuta, as well as the literature about the limited photosynthesis
in this group of plants, we hypothesised that (1) C. racemosa
would behave differently depending on the host it detects from a
distance; (2) in order to maximise the use of its limited resources,
it would synthesise more photosynthetic pigments (chlorophylls
and carotenoids) only when it does not detect any host in its
vicinity; (3) different hosts would elicit different concentrations
of pigments depending on their viability to the dodder; (4) the
detection of hosts from a distance would alter the electrome
dynamics of C. racemosa; and (5) this alteration is different
depending on the identity of the host detected. Furthermore,
there is a pattern recognisable by machine learning techniques
in the electrome of the dodders presented to different hosts.

MATERIALS AND METHODS

Plant Material
In the spring of 2019, a twig of C. racemosa was collected
from a public flowerbed in central Pelotas, RS, Brazil. It was
brought to the Federal University of Pelotas and cultivated in
greenhouse conditions (mean temperature of 28.5◦C ± 12.9,
natural sunlight) on basil plants (Ocimum sp.) which consisted
in the stock of dodders used in this experiment. The basils were
planted in common plant substrate and twice a week irrigated
with approximately 200 mL of Hoagland and Arnon solution
(Hoagland and Arnon, 1950).

Basic Experimental Setup
All the experiments carried out in this study were variations
from the same basic model. The experimental setup consisted
of a small shelf of polystyrene inserted in boxes with internal
dimensions of 20.0× 25.0× 17.0 cm. The shelf was placed in one
of the box’s extremity 5.0 cm deep inside the box and measured
12.0× 17.0 cm (Figure 1).

It created a pit in the box, under the shelf, where the pot with
the treatment was placed (a pot with a bean or wheat plant, sticks,
or nothing/control). Four twigs of dodder were placed on the
shelf, approximately in parallel among them and with the longest
sides of the box. This setting was chosen for preventing the walls
of the boxes from casting shade on the lateral dodders and not
on the central ones, thus potentially interfering on the results.
Besides, since different hosts have different shapes and chemical
composition, the dodders were placed above them for minimising
the interference of different light qualities transmitted or reflected
by them on the pigment content. With this setting, the amount
of light arriving to the dodders was the same. The apex of
each twig was about 8.0–12.0 cm away from the host. In all the
experiments, the polystyrene box was closed with a transparent

FIGURE 1 | Schematic representation of the experimental setup. The dodder
twigs (yellow) were placed on the shelf, and the host (bean plant, wheat plant,
or wood sticks), inside the pit.
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polyvinyl chloride (PVC) film. Variations of this design were
applied depending on the assay.

To test our hypotheses, experiments were carried out by
presenting to the dodder plants different kinds of hosts (viable
living, unviable living, and unviable dead hosts), as follows:

Viable Living Host (Bean Plant)
Bean plants (Phaseolus vulgaris L. cv. BRS-Expedito) were used
as viable living hosts because dodders successfully parasitise these
plants. They were sowed in Gerbox R© boxes on Germitest R© paper
moistened with distilled water and kept under artificial lighting
(a row of four white LEDs, 50 W, approx. 5,000 lm placed
70.0 cm above), photoperiod of 12.0 h and constant temperature
of 25◦C ± 2. About 4 days after sowing the seedlings were
transferred to polystyrene pots of 120.0 mL filled with 150.0 g
of sand. Then, they were brought to a greenhouse and daily
irrigated with Hoagland and Arnon solution at half concentration
(Hoagland and Arnon, 1950). When the plants were in the stage
V2 of development, with the first trifoliolate leaf developing (de
Oliveira et al., 2018), they were used in the experiments.

Unviable Living Host (Wheat Plant)
Wheat (Triticum aestivum L. cv. BRS-Parrudo) was chosen as
the unviable living host, for it is known that dodders cannot
parasitise these plants (Costea and Tardif, 2006; Albert et al.,
2008). Indeed, if another host is offered to the dodders, they avoid
wheat (Runyon et al., 2006). The same process for sowing and
planting applied to the beans was applied to the wheat plants.
They were used in the experiments when the third leaf was
emerging after germination.

Unviable Dead Host (Wood Sticks)
For the unviable dead host, three bamboo sticks were vertically
placed in a polystyrene pot with 120.0 mL of volume and filled
with 150.0 g of sand. These were the same conditions as the pots
with the beans and wheat.

Experiment 1: Influence of Different
Hosts on the Growth and Pigment
Content of C. racemosa
This assay was designed to test hypotheses 1–3. Dodder twigs
were collected from the C. racemosa stock and trimmed for all
of them have 10.0 cm of length, measured from the basis of
the node. Normally, these nodes present one main stem, one
secondary stem, and one bud. The stems were excised and the
buds were left. The node was left in the apical extremity of the
twig. All the twigs used in this assay had masses ranging from
100.0 to 130.0 mg. Before being placed in the box, the length of
the buds was measured.

The twigs were placed in the box’s shelf, in parallel and
approximately equidistant between them (Figure 1). The pot
containing the treatment (bean, wheat, sticks, or nothing) was
put inside the box’s pit. Each pot containing the treatment was
inside a Gerbox R© opened. Before the polystyrene box being
closed with the PVC film, the host plants in each treatment were
irrigated with 50.0 mL of Hoagland and Arnon nutrient solution
(Hoagland and Arnon, 1950). For keeping humidity in the air

of all the boxes, an equivalent amount of Hoagland and Arnon
solution was poured inside the Gerbox R© boxes of the treatments
without living plants.

The polystyrene boxes were closed with the PVC film
and left in the laboratory’s growing room for 1 week,
under artificial lighting (a row of four white LEDs, 50 W,
approx. 5,000 lm placed 50.0 cm above), 12.0 h photoperiod,
and constant mean temperature of 25.0◦C ± 2. After this
period, the twigs were taken from the boxes. Their fresh
masses and the length of the new shoot were measured.
Then, the content of chlorophyll a, chlorophyll b, lycopene,
and β-carotene was quantified (modified from Nagata
and Yamashita, 1992). By the end of the test, some of
the new shoots touched the host plant but did not coil
nor set haustoria.

Experiment 2: Influence From a Distance
of Different Hosts on the Electrome of
C. racemosa
With Experiment 1, we observed that the content of pigments in
the dodders change depending on the host they are perceiving.
It suggests that the dodder’s perception of the host, from a
distance, influences its internal physiology. Experiment 2 was
designed to go deeper into the investigation of this perception
and test hypotheses 4 and 5. For verifying whether the dodder can
distinguish between hosts at the level of electrome (i.e., the sum
of all its electrical activity, from cell to whole plant—or part of it),
the treatment consisted in presenting to the dodders either a bean
plant or a wheat plant. The control was made by measuring the
electrome before the presentation to the hosts.

The experimental set was brought to a Faraday cage in the
laboratory. It was used the electrophytography (EPG) technique
to observe the dodders’ electrome dynamics (Gensler, 1974;
de Toledo et al., 2019). The bioelectrical data acquisition was
made with the system Biopac Student Lab (BIOPAC Systems R©,
Goleta, CA, United States), model MP36 with four channels with
high input impedance (10 G�). Signals were collected with a
sampling rate of fs = 62.5 Hz amplified with a gain of 1,000-fold.
The protocol used was ECG-AHA (0.05–100 Hz) with a notch
frequency of 60.0 Hz for minimising the influence of the electrical
network. No open electrode was left because it was well described
in previous studies (Saraiva et al., 2017; Simmi et al., 2020). Open
electrode voltage variation has a typical Gaussian noise with a
lower amplitude than the plant signal baseline (Saraiva et al.,
2017). Two needle electrodes (model EL-452, BIOPAC Systems R©,
Goleta, CA, United States) were inserted in the twigs, being one
electrode immediately under the node and the other one inserted
ca. 1.0 cm more basally. The boxes were closed with the PVC
plastic film and let in the laboratory overnight for the acclimation
of the plants. The experimental sets were kept under a white LED
light (100 W, approx. 10.000 lm) with a photoperiod of 12.0 h and
constant mean temperature of 25◦C± 1.

The experimental setup was basically the same described in
Experiment 1. However, here, for allowing the insertion of the
electrodes, the twigs had the highest masses as possible (mean
0.172 mg ± 0.042). Furthermore, the buds were longer than in
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Experiment 1 (mean 0.6 cm ± 0.3) to facilitate the perception of
chemical and light cues.

After acclimation, the electrome of the dodders was recorded
for 2.0 h before the test in the absence of any host. Then,
the box was opened and a host was placed inside the pit.
Immediately after, the box was closed again and the electrome
recorded for 2.0 h more.

Analyses
Growth Analyses
Initial and final fresh mass were measured with a semi-analytical
balance. The shoot length was measured with a ruler. Since the
length of the bud was variable, the initial length of the buds was
subtracted from the final length in an attempt to normalise the
growth of the shoots.

Pigment Analyses
For quantifying the pigment content, the modified protocol
of Nagata and Yamashita (1992) was used. The dodders were
macerated in hexane and acetone in a proportion of 2:3.
Then, they were vortexed for 30.0 s. The supernatant was
transferred to quartz cuvettes and the absorbances were measured
in a spectrophotometer. The results were expressed in mg
100 g−1 of fresh mass. Each box contained four dodders (i.e.,
four observations per treatment). The mean value for all the
treatments was calculated.

Electrophysiological Analyses
We analysed time series of micro-voltage variations as 1V =

{1V1, 1V2, . . . , 1VN} obtained from the EPG, in which 1Vi
is the difference of potential between the electrodes inserted in the
dodder’s twigs, and N is the length of the time series. This length
is derived from a sample of 2 h (7,200 s) of data acquisition, and
using fs = 62.5 Hz, is N = 450,000 points. Each time series was
analysed by the following techniques:

Visual analyses
Firstly, the EPG time series were submitted to visual analyses for
a preliminary search for patterns or alterations in the time series.
Although it is descriptive and susceptible to subjectivity, it allows
a first analysis of the behaviour of the time series, as well as some
comparisons between them. For example, the higher presence of
spikes of voltage variation.

Fast Fourier transform
It demonstrates the frequency with which waves of 1V with
different amplitudes occur. It is important because, in a time
series, different waves and amplitudes are overlapped, which
hinders a visual verification of the dominant frequencies. The fast
Fourier transform (FFT) decomposes the amplitude of waves in
the spectrum of frequencies, evidencing which are the dominant
frequencies of 1V. For example, the alpha, beta, gamma, delta
and theta waves of the brain are detected through this technique.
In the brain, one or other of these waves will be more frequent
depending on what it is experiencing (Michel et al., 1992; Nunez
and Srinivasan, 2006).

Wavelet transform
This technique assembles both what time series and FFT
demonstrate in the same graph. It evidences the occurrence
of dominant frequencies and its amplitudes through time.
This analysis is used in biological research for identifying the
dominant frequencies in a time series because it shows, exactly,
when these frequencies occurred (Akin, 2002; Adeli et al., 2003).
However, this transform compromises the resolution of the
analysis because when the resolution of frequency increases, the
resolution of time decreases, and vice versa. For compensating for
this loss of resolution in the domain of frequencies, it is common
its employment together with the FFT (Whitcher et al., 2005;
Hramov et al., 2015).

Mean of voltage variation
Despite being a rather simplistic measure, the mean of 1V might
offer general information about the electrome’s behaviour. For
example, if it becomes more positive or negative after a stimulus,
it may suggest a polarisation of the signals. Besides, in general,
an increase in the mean suggests an increase in the occurrence
of spikes with higher amplitude (de Toledo et al., 2019). In this
work, the mean was calculated from the 450,000 sampling points
obtained with the protocol adopted.

Histograms
It quantifies with which frequency a variable occurs
within an interval of values. In this case, the variable is
the micro-voltage variations (1V). When the noise is
random, like the one obtained with an open electrode, the
histogram that represents the 1V events shows a typically
Gaussian curve. The histograms generated from the time
series of the electrome of plants usually have longer tails
(for rare events like spikes with high amplitudes occur
more often; de Toledo, 2019). From the histogram, we
quantified some aspects of the distribution of the 1V
events such as the histogram’s asymmetry and kurtosis.
Since histograms alone do not bring much information, we did
not show them here.

Dispersion measures (standard deviation, asymmetry, and
kurtosis)
These measures verify how the values disperse around the
mean. In a general fashion, rare events tend to increase the
standard deviation, making the histogram more asymmetric
and decrease the kurtosis. It happens because the number
of data points is limited (450,000). Therefore, if there is a
dispersion away from the mean, fewer points will “remain”
around the mean and it will cause a flattening of the
histogram (decreased kurtosis). The dispersion can occur to
the right or left side of the histogram, causing an asymmetry.
In these cases, it is said that the asymmetry is positive
or negative, respectively. Rare events such as spikes of 1V
concentrate in the tails of the histogram and the increase in the
frequency of these events causes a decrease in the kurtosis and,
frequently, an increase in the asymmetry (de Toledo, 2019). The
mathematical description of these measures can be found in the
Supplementary Material.
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Autocorrelation function
This function shows how much two events separated in
time are correlated, which enables the verification of patterns
in the repetition of events through time. The greater the
autocorrelation, the greater is the time interval between one event
and another related to it. Thus, it indicates the existence of events
of long duration or a greater persistence of the signals. In short,
it measures how much an event of 1V influences other events
through time in the time series.

Probability density function
This function demonstrates the probability of a variable to occur
in a certain point of the histogram through a regression of
the distribution values. From the probability density function
(PDF), it is possible to verify if there is a function that can
describe the distribution of variables. Some studies in plant
electrophysiology that used this analysis showed that a power
law is the function that best describes the data obtained (e.g.,
Saraiva et al., 2017; Souza et al., 2017; Simmi et al., 2020). It
indicates, for example, that there is no typical frequency, scale or
amplitude for the 1V events. The function of power law can be
identified by the exponent µ of the equation PDF = f (|1V|) ∼
|1V|−µ. When 1 < µ < 3, the function usually describes
a distribution of values related to scale invariance, i.e., no
characteristic size. For mathematical details of this analysis, see
Supplementary Material.

Power spectral density function
This function shows how the spectral energy (the power of
the waves) is distributed per unit of time (frequency). The
power spectral density function (PSD) decays with a frequency f,
generally following an equation that can be described as a power
law such as PSD = 1/f β. Typically, the value of the exponent
β varies between 0 and 3. The name of a colour is symbolically
attributed to the respective kind of noise, depending on the value
of the exponent β. For β = 0, it is said white noise, in reference to
white light, in which all the frequencies have the same energy and
are equally mixed. There is no linear correlation in the signals.
For β = 1, it is said pink noise. This kind of noise is particularly
frequent in high-complexity time series and indicate long-range
correlation, scale-invariance and self-organised criticality (SOC).
When the values of the exponent β lies between 0.5 and 1.5,
it is called as reddened noise, which also present long-range
correlation, though less complex than in pink noise (Cuddington
and Yodzis, 1999). When β = 2, it is said brown noise, for
it describes a pattern in the time series similar to Brownian
moment, which has short-range correlation. Finally, when β = 3,
it is said black noise, which is characterised by higher regularity
and more short-range correlation when compared with β = 2
(Simmi et al., 2020).

A remarkable characteristic of living systems is the SOC. It
indicates, bluntly put, that a dynamic system is in the imminence
of changing its state (Bak, 1996). Generally, when a system
is operating at this point, it is possible to observe interesting
phenomena, such as pink noise, phenomena that occur without a
characteristic scale of occurrence (i.e., scale invariance, fractality),
and phenomena that occur following a power law (de Toledo,

2019). Therefore, the PSD is a good tool for investigating the
complexity of electrical signals in time series.

Approximate entropy and multiscale sample entropy
These analyses provide information about the level of
organisation of the time series. Higher values of Approximate
entropy (ApEn) indicate the existence of more irregular dynamics
(higher complexity), while lower values indicate that the
dynamic is more regular and deterministic (Pincus, 1991, 1995).
Deterministic processes have value ApEn = 0. Measurements
from ApEn and ApEn(s) were developed to evaluate the
level of complexity of real-world time series’ dynamics in
terms of regularity and irregularity—or predictability and
unpredictability. This method is commonly used in physiological
and electrophysiological research and even in medicine (Costa
et al., 2005). Despite being a robust method, ApEn measurements
in a single scale may not be very accurate. This problem is
overcome by the measurement of the ApEn in many scales s,
which is the Multiscale Sample Entropy ApEn(s). With s > > 1,
for stochastic processes (white noise), the elements of the new
time series 1V(s) converge to approximately equal values (single
point in the phase space) and the entropy decreases, as shown
in the Supplementary Figure 1B. When the process is of low
complexity, increasing the size of the scale s, the elements
never converge to a single value and entropy also increases
(Supplementary Figure 1D). This increase is associated with
always having new information on any scale s.

Machine Learning Analyses
For the machine learning analyses, in order to test hypothesis
4, we compared the electrome of the dodders before they were
presented to their respective hosts with the electrome of the
same plants after being presented to their hosts (dodder + bean
before vs dodder + bean after, and dodder + wheat before
vs dodder + wheat after). Then, for testing hypothesis 5 we
compared the treatments between them, i.e., dodder + bean
before vs dodder + wheat before, and dodder + bean after vs.
dodder + wheat after.

All the time series were divided into 10 interchangeable parts
between them with a lag of 30%, meaning that each part overlaps
the other. Then, the FFT, Wavelet Transform, and the PSD
were calculated. From these measures, we calculated the mean,
maximum and minimum value, variance, skewness and kurtosis.
Finally, the principal component analysis (PCA) was calculated
with the features of the FFT, PSD and wavelet in order to obtain
three features: PCA1, PCA2, and PCA3. In the end, we had a
total of four features: PCA1, PCA2, PCA3, and entropy. These
were the features used as input for the machine learning. For
doing the graphs presented in the figures, we used PCA1 and
entropy as coordinates.

Hyperparameters help to adjust the data to the machine
learning technique. Despite the existence of discovery
techniques for some of these hyperparameters, most are
optimised only with trial and error. One of the main
coexisting hyperparameters in every machine learning model
is the division of its data group into training and testing.
For obtaining a cohesive result and avoid overfitting or
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underfitting, we used the StratifiedKFold method, which
separates the data, and the cross_validate method for the
cross verification (Jabbar and Khan, 2014; Bronshtein, 2017).
Then, we obtained a mean result of accuracy for each model,
considering the different configurations of training and
test groups and then eliminating the possibility of chance
interference in our results.

We run 50 different data distribution of training and test for
each treatment (CB-before, CB-after, and CW-before, etc.). Each
round resulted in one different accuracy. Then, we calculated the
arithmetic mean of all the 50 accuracies obtained and assumed
as error the standard deviation. Beyond the accuracy, given in
percentage, the standard deviation is given as a margin of error
for each percentile. We analysed the result of the two best results
obtained. The programming language used was Python, and the
machine learning models were obtained from the open library
Scikit-Learn (2020). The machine learning models used were:

DecisionTreeClassifier
It uses a decision tree as a predictive model for obtaining
information about an item, represented in the branches, and the
conclusions about the value of the target, which is represented in
the leaves. In the decision analysis, a decision tree can be used
to represent visually and explicitly the decisions and decision-
making (Breiman et al., 1984).

SVC
The SVC (Support Vector Classification) derives from the
SVM (Support Vector Machine) and is a model of supervised
associated learning (Hsu et al., 2003). It uses analysis for
classification and regression. An SVM training algorithm builds a
model which attributes new examples to one or another category,
which makes it a linear non-probabilistic binary classifier. An
SVM model is a representation of the examples as points in the
space, mapped for the examples of the separated categories to
be divided by a blank gap the wider as possible. New examples
are mapped in the same space and it is predicted that they
belong to one or another category based in the side of the
gap that they fall.

LinearSVC
It is similar to the SVC, but has more flexibility in the choice of
penalty functions and losses. It must be dimensioned for a large
number of samples. This class bears dense and sparse inputs (Ho
and Lin, 2012).

GaussianProcessClassifier
It implements Gaussian processes (GPs) for regressions. GPs are
a generic method of supervised learning. It was projected for
solving problems of regression and probabilistic classification
(Gibbs and MacKay, 2000).

KNeighborsClassifier
For pattern recognition, the nearest k-neighbours algorithm
(k-NN) is a parametric method used for regression and
classification. In both cases, the input consists of the k examples
of training nearest in the space (Pandya, 2016).

RandomForestClassifier
It is a method of conjoint learning for classification and
regression which operate building many decision trees during
training, and generate the class of individual trees. The decision
forests correct the trend of the trees in adjusting to their training
dataset (Breiman, 2001; Fraiwan et al., 2012).

GaussianNB
Bayes naïve classifiers are a family of simple “probabilistic
classifiers” based on the Bayes theorem. This method
has a major facility in solving the problem of judging
the classes as belonging to one category or another
(Rasmussen and Williams, 2006).

Control
As a control, we used the DummyClassifier method, which
uses different not intelligent strategies for classifying data
(Engemann et al., 2018). Therefore, we have a basis for
comparison. The model which obtains an accuracy close to
the Dummy’s shall be considered as not suited for the dataset
used. After some tests, the best Dummy model was the
dummy_stratified, and therefore we used it as the control for
all the analyses.

Finally, for further visualise the different patterns
in the time series analysed, we made a scatter plot
for the following categories: Cuscuta + bean before
(CB-before) and CB-after, Cuscuta + wheat before
(CW-before) and CW-after, CB-before and CW-
before, and CB-after and CW-after. Two features of
the features set were used for training the machine
learning as coordinates.

Experimental Design and Statistical
Analyses
For Experiment 1, five repetitions were carried out, totalling 20
observations (four twigs of dodder per box). The experimental
design was completely randomised and the data was analysed
with ANOVA. When F was significant the treatments were
compared with Tukey test (p ≤ 0.05).

For Experiment 2, six repetitions with four twigs of dodder per
box were made, totalling 24 observations (24 time series before
and 24 after the stimulus) per treatment. Due to a problem in
one channel during the recording of the data, one observation
for each treatment was discarded. Then, the total of observations
analysed in this work was n = 23. Descriptive and quantitative
analyses of the time series were made, as described in the
previous section.

The mean of the values obtained before and after each
stimulus (dependent variables) was compared by the paired
t-test (p ≤ 0.05). When the data did not show normal
distribution, the Wilcoxon Signed-Rank test (p ≤ 0.05) was
used. For verifying whether the response of the dodders
was different for each treatment (independent variables), the
mean of the values before and after each stimulus was
compared by Student’s t-test (p ≤ 0.05). When the data
did not show normal distribution, the Mann-Whitney U test
(p ≤ 0.05) was used.
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RESULTS

Experiment 1: Influence of Different
Hosts on Growth and Pigment Content in
C. racemosa
The results for the growth analyses of the dodder’s shoot in the
presence of different kinds of hosts are presented in Table 1.
There was no significant difference (p≤ 0.05) in any of the growth
parameters, except for the dodders presented to the wheat, in
which the shoot was significantly (p ≤ 0.05) shorter than the
shoot of the dodders presented to the bean and the control
treatment. Nevertheless, there was no difference in the length of
the shoot between the dodders presented to wheat and the sticks.

The values for the content of pigments in the dodders are
shown in Table 2. The control treatment, with no host, was the
one which led to the highest accumulation of chlorophyll a, b,
and β-carotene. There was no significant difference (p ≤ 0.05) in
the content of lycopene between the treatments.

Experiment 2: Influence From a Distance
of Different Hosts on the Electrome of
C. racemosa
Electrophysiological Analyses
The EPG of the dodders presented to both hosts changed
considerably, especially in those presented to the beans. The most
noticeable change was the appearance of an undulating pattern in
the time series, which oscillated around the mean in the form of
long waves of voltage variation (Figures 2, 3 and Supplementary
Figures 2, 3). These waves appear with more or less intensity in 20
out of 23 series analysed for the beans (86.9% of the observations).
For the wheat, they appeared in 14 of the 23 time series analysed
(60.7% of the observations).

The FFT analyses showed that, in both cases, in general,
there was a decrease in the values of the dominant frequencies
accompanied by an increase in their amplitude after the

presentation to the hosts (Figures 2, 3 and Supplementary
Figures 2, 3). What was observed in the time series and by
the FFT analysis also is confirmed by the wavelet transform, in
which lower frequencies with higher amplitudes appeared more
frequently through the time in the presence of viable hosts. The
constant frequency of 5.0 Hz observable in all the FFTs is mostly
an artefact caused by the intrinsic and extrinsic noise of the
experimental system (Kay, 2012).

The values obtained for the mean of the time series 1V =

{1Vi, i = 1, . . . , N}, the skewness (α), kurtosis (κ), the average
correlation time L, the exponent β of the PSD, the exponent µ

of the PDF and the ApEn(s = 1) are presented in Table 3. There
was a significant increase (p ≤ 0.05) in the average values of the
voltage variation after presenting the dodders to the hosts, which
raised from −148.0 to 457.0 µV in the dodders presented to
bean, and from 138.0 to 697.0 µV in the ones presented to wheat.
There were no significant changes (p≤ 0.05) in the skewness and
kurtosis in both cases.

The analysis of the voltage variation events distributed on the
PDF [f (|1V|) ∼ 1/|1V|−µ] demonstrated that a power law is
the function that suits to most of the cases for tail the PDF (11
time series for dodders presented to the beans, and 15 for dodders
presented to the wheat). The other time series did not fit into any
known PDF. In average, there was no difference in the values of
the PDF exponent before and after presentation to the dodders.

After being presented to the hosts, the autocorrelation
function (correlation time L) increased dramatically in both
cases, bouncing from 37.139 ± 2.757 to 179.273 ± 13.028 in the
bean treatment and from 42.739 ± 5.353 to 117.086 ± 16.445 in
the wheat treatment.

The values of the exponent β of the Power Spectral Density
(PSD ∼ 1/f β) was β = 1.19 ± 0.05 before and β = 1.24 ± 0.05
after the presentation to the host in the bean treatment, but
this difference was not significant (p ≥ 0.05). However, in the
wheat treatment, the values significantly increased (p ≤ 0.05)
from 1.28 ± 0.3 to 1.41 ± 0.3 after the presentation to the wheat.
Since all the values are close to β = 1, it can be described as a

TABLE 1 | Initial fresh mass (IFM), final fresh mass (FFM), and shoot length (SL) of the twigs of C. racemosa presented to different hosts.

Control C. + bean C. + sticks C. + wheat

IFM (g) 0.116 ± 0.004 A 0.116 ± 0.006 A 0.113 ± 0.004 A 0.119 ± 0.005 A

FFM (g) 0.078 ± 0.009 A 0.078 ± 0.011 A 0.078 ± 0.009 A 0.078 ± 0.007 A

SL (cm) 13.18 ± 0.601 A 13.150 ± 0.717 A 12.670 ± 0.884 AB 12.503 ± 0.700 B

Values represent the mean + standard deviation (n = 20). Means followed by the same capital letter, in the line, did not differ significantly (p ≤ 0.05) by the Tukey test.
C. + bean: Cuscuta + bean; C. + sticks: Cuscuta + sticks; C. + wheat: Cuscuta + wheat; and Control: Cuscuta presented to no host.

TABLE 2 | Chlorophyll a, chlorophyll b, lycopene, and β-carotene content in dodders presented to different hosts.

Control C. + bean C. + stick C. + wheat

Chlorophyll a 6.303 ± 0.495 A 5.184 ± 0,515 B 5.515 ± 0.692 B 2.555 ± 0.296 C

Chlorophyll b 2.185 ± 0.257 A 1.829 ± 0.201 B 1.809 ± 0.290 B 0.849 ± 0.051 C

Lycopene 0.617 ± 0.187 A 0.494 ± 0.185 A 0.566 ± 0.196 A 0.537 ± 0.041 A

β-carotene 12.446 ± 0.659 A 11.563 ± 0.611 B 11.647 ± 0.444 B 7.11 ± 0.356 C

Values represent the mean + standard deviation (n = 20). Means followed by the same capital letter did not differ significantly (p ≤ 0.05) by the Tukey test. C. + bean:
Cuscuta + bean; C. + sticks: Cuscuta + sticks; C. + wheat: Cuscuta + wheat; and Control: Cuscuta presented to no host. All the values are expressed in mg 100 g−1.

Frontiers in Plant Science | www.frontiersin.org 8 March 2021 | Volume 12 | Article 594195

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-594195 March 12, 2021 Time: 16:15 # 9

Parise et al. Detection Hosts Alters Bioelectrical Cuscuta

FIGURE 2 | Time series, fast Fourier transform in log-linear scale, and wavelet transform for the dodder’s electrome before (A) and after (B) being presented to the
bean plant.

signal with pink-like noise, meaning that the signals obtained
have long-range correlation, are highly complex and organised,
and are scale-invariant, having information in all the levels of
organisation (He et al., 2010; He, 2014).

In average, the Approximate Entropy ApEn(s = 1) decreased
from 1.56 ± 0.05 to 1.09 ± 0.10 after the stimulus in the bean
treatment (see Figure 4A), and from 1.55 ± 0.06 to 1.35 ± 0.07
after the wheat treatment (Figure 4B), indicating a decrease in
the complexity (irregularity) of the signals and an increase in the
organisation (in terms of regularity). This decrease in the entropy
values was observed for all the 50 scales of the ApEn(s) in the
dodders presented to bean plants and only until scale 37 in the
dodders presented to wheat plants (Figure 4).

The mean of all the parameters before and after the stimulus
was compared between treatments (values for dodder + bean
before were compared with dodder + wheat before, and values
for dodder + bean after were compared with dodder + wheat
after). As expected, there was no significant difference (p ≤ 0.05)
in both treatments before the stimulus. However, a significant
difference (p ≤ 0.05) was observed between the treatments in
three parameters: autocorrelation, exponent β of the PSD, and the
ApEn(s) (in the wheat treatment, only until scale 37).

Machine Learning Analyses
Cuscuta + bean before vs Cuscuta + bean after
Here, Cuscuta + bean before (CB-before) was compared with
Cuscuta + bean after (CB-after). The accuracy measure for all

the models employed are shown in Figure 5. An accuracy of
90.01% ± 5.44 was obtained with the model Linear SVC for
separating these groups. When compared to the Dummy, which
had an accuracy of 56.36% ± 13.16, it can be said that the
result is excellent. Figure 6 shows the classification strategy used
by each model. Four features of the total dataset were used
for the training, and two were used as coordinates. There is a
clear distribution of the groups, which contributed to the great
performance of the machine learning (Figures 5, 6).

The results for all the models and their respective margin
of error are presented in Supplementary Table 1. The models
Gaussian Process and Random Forest obtained an accuracy
very similar. However, we considered Random Forest as the
second better model because of its smaller standard deviation.
For the most efficient models, we analysed the Sensitivity and
Precision using the True Positive and False Positive metrics for
the choices of each group. This result is shown in Supplementary
Table 2, which shows that Linear SVC obtained 86.95% against
Random Forest’s 84.78% in Sensitivity. Nevertheless, Random
Forest obtained a Precision rate higher than 92.85%, against
88.88% of Linear SVC’s. A perfect result would be 100% in
both rates, which would indicate that the machine learning
has learned to classify the samples perfectly. However, a
perfect machine learning is hardly feasible. Therefore, it can
be said that both models obtained an excellent success rate.
With their accuracies, they learned to classify the groups CB-
before and CB-after.
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FIGURE 3 | Time series, fast Fourier transform in log-linear scale, and wavelet transform for the dodder’s electrome before (A) and after (B) being presented to the
wheat plant.

Cuscuta + wheat before vs Cuscuta + wheat after
Here, Cuscuta + wheat before (CW-before) was compared with
Cuscuta + wheat after (CW-after). With the Random Forest
method, we obtained an accuracy of 75.21% ± 7.41. The results
for the accuracy models for all the models analysed are shown
in Figure 7. Dummy obtained 56.08% ± 10.21 of accuracy. The
results for all the models and their respective margin of error
are presented in Supplementary Table 3. If we take into account
the margin of error, Random Forest still is better than Dummy.
The result of the machine learning was fairly good, considering
that the model which does not learn had a worse result than the
models which learn. The results of Sensitivity and Precision were
quite expressive (Supplementary Table 4) and revealed that even
with a smaller accuracy, both methods demonstrated that the
features used were a good parameter for recognition. However,
in one model there was a drop in Sensitivity, and in the other,
in Precision, which resulted in smaller accuracy. The groups
classification by the machine learning are shown in Figure 8.

Cuscuta + bean before vs Cuscuta + wheat before
The groups were divided into CB-before and CW-before.
Supplementary Figures 4, 5 show how near the accuracy
and data distribution is. Both groups cluster in the inferior

region of the plot, which makes classification, in this case,
extremely difficult. This is evidenced by the accuracy of only
60.45% ± 7.86 for the Random Forest model. There is no
significant difference with Dummy’s accuracy of 56.08%± 10.21.
Sensitivity and Precision demonstrate that the results obtained
by the best methods were bad. It evidences that the models
were not able to classify the groups. Supplementary Table 5
shows the accuracy for each model and their margin of error,
and Supplementary Table 6 shows Sensitivity and Precision of
Random Forest and SVC.

Cuscuta + bean after vs Cuscuta + wheat after
The groups were divided into CB-after and CW-after and
compared between them. The best model was the Gaussian
Process, which obtained an accuracy of 76.73% ± 8.16, followed
by SVC (74.79% ± 5.30) and Random Forest (74.70% ± 0.43).
Dummy obtained only 56.08% ± 10.21 (Figures 9, 10 and
Supplementary Tables 7, 8). In short, the machine learning was
successful in distinguish group CB-after from CW-after.

Cuscuta + bean vs Cuscuta + wheat
Here we combined all the before and after samples for
considering two groups into the wider categories: Cuscuta + bean
(CB) and Cuscuta + wheat (CW). Random Forest model
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TABLE 3 | Evaluated parameters of the electrical signal time series acquired in the experiment 2.

Treatments

Wheat Bean

Before After Before After

Asymmetry1
−0.5062 ± 11.3357 −0.9695 ± 9.0661 −2.3578 ± 12.6820 0.4750 ± 11.4266

p-value = −0.875 = 0.311

Kurtosis2 172.7551 159.3833 165.8386 53.7678

p-value = 0.659 = 0.354

1µV3 138.0 697.0** −148.0 457.0**

p-value = 0.002 = 0.009

Average correlation time L4 36.50 127.19** 36.03 196.920**

p-value ≤ 0.001 ≤ 0.001

ApEn5 1.6058** 1.1835 1.5678** 0.9040

p-value ≤ 0.001 ≤ 0.001

PSD6
−1.2794 ± 0.2958 −1.4142* ± 0.2515 −1.1871 ± 0.2318 −1.2418 ± 0.2632

p-value = 0.001 = 0.323

PDF7
−4.7085 ± 1.2900 −4.5678 ± 1.2740 −4.8653 ± 1.2337 −4.5576 ± 0.9237

p-value = 0.764 = 0.604

Means followed by * differ significantly according to paired t-test (p ≤ 0.05). Values represent the mean ± SD. The Wilcoxon Signed Rank Test (p ≤ 0.05) was used for
data that did not show a normal distribution. Medians followed by ** differ significantly. The values represent the medians. Before: without treatment; After: with treatment.
1(n = 23). 2(n = 23). 3Voltage variation (n = 23). 4(n = 23). 5Approximate entropy (n = 23). 6Exponent β of the Power Spectral Density (n = 23). 7Probability density function
(n = 11).

FIGURE 4 | Multiscale entropy [ApEn(s)] values of the dodders’ electrome before and after being presented to their hosts. In (A), for the bean treatment, the entropy
[ApEn(s = 1–50)] reveals that the system was in a higher complexity state before the stimulus. After the presentation to the host, the system organises itself internally,
reducing its complexity (in terms of randomness) by decreasing the entropy in all the scales. However, from scale 18 onward, there is a remarkable similarity with the
pink (1/f) noise. In the dodders presented to the wheat plants (B), the effect of the stimulus was less strong and, from scale 37 onwards, not significant. The bars
represent standard error.

presented a low accuracy rate (margin of error ± 6.60%, see
Supplementary Table 9). However, when compared to Dummy
(accuracy of 53.80%± 1.97), we can say that the machine learning
had reasonable learning (Supplementary Figure 6).

Sensitivity and Precision (Supplementary Table 10) were not
good, which demonstrates that the learning was from reasonable
to bad within these groups.

Scatter plots
The scatter plots showed particular patterns for each stimulus.
In CB-before and CB-after (Figure 11A), two groups can be

neatly distinguished in the graph. For CW-before and CW-after
(Figure 11B), this distinction is less clear, although existent. In
CB-before and CW-after (Figure 11C), the points are utterly
overlapped and scattered through the space, which immensely
impairs its separation in groups. Finally, in CB-after and CW-
after (Figure 11D), it is possible to see a separation of the dots in
two different groups. Figure 11E shows the comparison between
all the data for CB and CW. The accuracy of these measures is
given in Figure 12, in which CB-before and CW-before is the
group with the smaller accuracy, and CB-before and CB-after, the
group with the highest accuracy.
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FIGURE 5 | Accuracy for machine learning models for the dodders before and after being presented to the bean plant (CB-before vs CB-after).

FIGURE 6 | Machine learning classification results for each model in the dodder presented to beans. Red colour represents the dodders before being presented to
the bean, and blue, after. Paler shades represent less accuracy for the classification.

DISCUSSION

The results of Experiment 1 showed that C. racemosa can perceive
different hosts from a distance and changes its survival strategy
depending on the specific host presented to it. The nutritional
reserves of a Cuscuta twig detached from its host are limited and
the plant cannot “afford” to waist them. Supposedly, if the dodder
detects a host at a distance, there would be no need of synthesising
so many pigments because it “foresees” there is a host ahead.

On the other hand, if the dodder does not detect any host, it
will need to prolong its survival, and activating photosynthetic
pathways could be an alternative for it. Experiment 1 aimed to
test this hypothesis.

In the total absence of hosts, the plants accumulated more
photosynthetic pigments, which corroborates hypotheses 1 and
2. This increase in chlorophyll synthesis might be related to a
need for photosynthesising more in order to avoid losing biomass
through respiration. Our results add to the old and not solved
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FIGURE 7 | Accuracy for the machine learning models (CW-before vs CW-after).

FIGURE 8 | Machine learning classification results for each model in the dodder presented to wheat plants. Red colour represents the dodders before being
presented to the wheat, and blue, after. Paler shades represent less accuracy for the classification.

discussion on whether photosynthesis has an important role to
the life of Cuscuta (Peirce, 1894; MacLeod, 1961; Zimmermann,
1962; Pizzolongo, 1963; Pattee et al., 1965; Baccarini, 1966; Laudi,
1968; Laudi et al., 1974; Lyshede, 1985; Machado and Zetsche,
1990; Dinelli et al., 1993; Hibberd et al., 1998; Choudhury and
Sahu, 1999; McNeal et al., 2007). Besides, we could say that the
synthesis of different amounts of pigments depending on the host
detected is a choice of the plant because it did it after processing
information from the environment and not by an immediate
mechanistic reaction. It changed its behaviour in a goal-oriented,
non-automatic manner. Presumably, as a strategy for increasing

its probability of survival (Trewavas, 2016; Calvo et al., 2020).
Recent studies with climbing plants have been confirming that
plants are deeply aware of their environment. Plants act with
the available environmental cues and make choices and behave
in goal-oriented manners to increase their chances of survival
(Gianoli and Carrasco-Urra, 2014; Guerra et al., 2019; Ceccarini
et al., 2020).

Unexpectedly, the treatment which led to the smallest content
of chlorophylls was the wheat treatment. It also resulted in the
smallest shoot length. It makes us wonder whether, in this case,
the wheat is inhibiting the synthesis of photosynthetic pigments
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FIGURE 9 | Accuracy for the machine learning models (CB-after vs CW-after).

FIGURE 10 | Machine learning classification results for each model in both treatments after the presentation to the hosts. Red colour represents the dodders after
being presented to the bean, and blue, after being presented to wheat. Paler shades represent less accuracy for the classification.

in some unknown interaction from a distance, perhaps for
protection, although we cannot speculate more without further
tests. We also were surprised by the fact that the dodders
presented to the sticks and the beans accumulated similar
amounts of pigments. Anyhow, the dodder plants used in this
experiment seem to be able to detect different kinds of hosts and
respond according to each kind with physiological adjustments.
It, at least partially, supports our third hypothesis.

With the electrophysiological results, we corroborated
hypotheses 4 and 5. The dynamic in the dodders’ electrome
before and after they were presented to different hosts changed

consistently, and the changes were distinguished for each kind
of host. Besides, it seems that the undulating pattern of the time
series is a characteristic response of the dodder plant used in this
experiment when presented to their hosts, especially a viable one.

The changes in the electrome dynamics were enabled by
the presence of the host, and not by other factors such as
manipulation of the boxes or the change of air when the boxes
were opened. The new dynamic (undulating) appeared minutes
after introducing the host in the box (about 15–20 min later).
Otherwise, the changes in the electrome would be immediate. If
the VOCs of the host were causing this change in the electrome,
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FIGURE 11 | Scatter plots for the different time series analysed. (A,B): red dots represent the values before the presentation to the host; blue dots represent the
values after the presentation to the host. (C–E): red dots represent dodders presented to beans, blue dots represent dodders presented to wheat plants.

maybe a certain amount of time is required for they accumulate
in concentration enough to cause the observed changes.

The drastic increase in the average correlation time L in both
treatments (but, especially, in the dodders presented to the viable
host) was accompanied by a general decrease in the ApEn(s)

values and the value of the β exponent of the PSD (not significant
for the viable host). This means that the signals became more
regular and organised, which can explain the increase in the
autocorrelation. It suggests a higher “coordination” of the
electrical signals (Saraiva et al., 2017).
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FIGURE 12 | Accuracy for all the machine learning comparisons performed.

Normally, decreases in the complexity of the signals—verified,
e.g., by an increase in the β exponent of PSD—suggest sick plants
or plants under strong stress. Souza et al. (2017) showed that in
soybean plants, low light, cold, and hydric stress by mannitol
caused an increase of the β exponent from approximately
1.51 ± 0.21 (a reddened noise) to 1.96 ± 0.30 in plants under
low light, 2.85± 0.69 in plants under cold stress, and 2.58± 0.34
in plants under osmotic stress (Souza et al., 2017). The first case
describes a noise next to brown (β = 2) and the second and
third, a noise next to black (β = 3). In another study, Saraiva
et al. (2017) observed that soybean plants had an exponent β

of 1.5 ± 0.3 before, and 2.6 ± 0.2 after being stressed with
mannitol. Consonant with these studies, dodders presented to
wheat showed the major decrease in the β exponent, which could
suggest that they were under tougher stress than those presented
to the bean plants.

On the other hand, when the stimulus is subtle and non-
destructive, the complexity of the signals seems to increase.
Simmi et al. (2020) studied tomato plants infected by the powdery
mildew (Oidium sp.), a biotrophic fungus. The value of the β

exponent before the inoculation of the fungus was 2.13, which
indicates a brown noise, and decreased to β = 1.95 after the
inoculation, presenting higher complexity and more information
organised in higher temporal scales.

In the present study, interestingly, the mean value of the β

exponent for the signals recorded from the dodders was fairly
close to the 1/f noise (pink noise), especially before the stimulus.
As a matter of fact, the β exponent before the stimulus was
the closest from the pink noise than in any of the studies cited
before. This kind of noise is the most related to highly organised,
complex, scale-invariant and critically self-organised processes

(He et al., 2010; He, 2014). It must be noted, however, that
this does not represent the typical “basal” noise of the dodders,
but rather the noise of plants detached from their hosts and
severely pruned. That is, under strong stress. The ApEn(s) also
corroborates this finding. A decrease in the complexity of the
electrome in the first 10 scales before the presentation to the
hosts indicates that, in terms of organisation and complexity, the
system is already compromised in lower scales.

The results with the ApEn and the ApEn(s) demonstrate
that there is a decrease in the electrome’s complexity after the
presentation to the hosts. Before this stimulus, both curves had
the same shape, slope and values, indicating that the electromes’
dynamics were equivalent between treatments. However, when
the dodders were presented to the beans, the decrease in the ApEn
values was significant in all the scales. For the dodders presented
to the wheat, it was only significant until scale 37 (Figure 4). It
demonstrates that, especially in the bean treatment, the presence
of the host is affecting the dodders’ electrome dynamics in all the
scales. The subtle slope depicted in the graphs also evidences a
tendency toward the 1/f noise (pink noise), especially in higher
scales, which corroborate the results obtained by the calculation
of the β exponent of the PSD. Interestingly, in the bean treatment,
the shape of the graph from scale 18 to upper scales indicates an
undeniable similarity with 1/f noise (Costa et al., 2005).

The decrease of complexity verified by the decrease of the
exponent β and the ApEn(s), accompanied by an increase in the
correlation time L suggests that there was a higher regularity in
the voltage variation runs. It makes us hypothesise that, after
being exposed to a host in potential, dodders coordinate their
bioelectrical activity, focusing on the stimuli coming from a likely
source of resources. It can be suggested that the plant is “paying
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attention” to an informative environmental cue that did not exist
before and, suddenly, came to exist. Furthermore, the dodder is
coordinating a response to this specific cue (which is suggested
by the higher values of the average correlation time L). We know
that, in the long term, the dodder will change its behaviour
depending on the kind of host perceived, not only thanks to the
studies of pioneering researchers (Kelly, 1990, 1992; Koch et al.,
2004; Benvenuti et al., 2005; Runyon et al., 2006) but also by the
results obtained with Experiment 1 in the present work.

By “attention” in plants, we mean what was proposed by
Marder (2012, 2013). It is a “disproportionate investment of
physical or mental energy by an organism, tissue, or cell into a
particular activity or into the reception of a singled-out stimulus or
set of stimuli.” (Marder, 2013, our emphasis). Our results on the
electromic responses of C. racemosa when looking for a host, as
far as we know, could be the first empirical evidence for a process
of attention in plants, involving higher regularity (focusing) on
plant bioelectrical activity.

The investment of physical energy by the dodders manifested
in the highest 1V and in the increase of the average correlation
time L of the 1V events, the higher regularity of them, and
in its proximity to noises of high complexity and levels of
information suggest that dodders indeed perceive a potential host
and change their bioelectrical behaviour accordingly. Moreover,
the significant differences (p ≤ 0.05) in correlation time L,
ApEn(s) and the exponent values β of the PSD suggest that, in
fact, the dodder recognises different kinds of hosts and reacts to
them differently, already in the electrophysiological level. It was
also corroborated by the results of the machine learning analyses,
which will be discussed ahead.

More recently, Grondin (2016) defined attention in a similar,
although less precise, way: attention is “the process allowing to
become aware of a few things and to capture a part, admittedly
very limited, of what is going on around.” (Grondin, 2016). Plants
are aware of their environment (Trewavas, 2016; Guerra et al.,
2019; Calvo et al., 2020; Ceccarini et al., 2020) and they must
be if they are to survive in an ever-changing environment where
different parameters fluctuate over time. Attention is especially
necessary for unattached parasitic plants because their nutrition
normally comes from one single source. For autotrophic plants,
the process of attention might be more diffused and difficult to
observe empirically because each module is focusing on the most
important cue or signal for them at the moment (Trewavas, 2003;
Lüttge, 2019). So, dodder plants, and other parasitic plants, can be
a good model for studying the phenomenon of attention in plants.

The results obtained with the analyses by machine learning of
the time series also corroborated the hypotheses 4 and 5. They
clearly demonstrate that the electrical signalling of the dodders
(which was indistinguishable between the treatments before the
stimuli) changed considerably when the plants detected a host
nearby. As for the electrophysiological analyses, the response of
the dodders presented to the beans—the viable hosts—were much
more intense and precise, thus easily recognisable for the machine
learning with the highest accuracy. The pattern of the time series,
or “electrical signature” (Simmi et al., 2020) of the dodders was
clearly different depending on the species of the host presented.
It demonstrates that the dodder recognises different species of

hosts from a distance. The accuracy in separating the groups
CB-after from CW-after was even higher than the accuracy for
the separation of the groups CW-before from CW-after. In this
case, the electrical activity of the dodder is not so different when
presented to the wheat. This milder activity was also detected by
the electrophysiological analyses. However, it was enough for the
machine learning to learn how to differentiate both groups.

Machine learning techniques have been increasingly used for
studying plant physiology and behaviour (e.g., Ma et al., 2014;
Shaik and Ramakrishna, 2014; Behmann et al., 2015; Singh
et al., 2016). It is also an excellent technique for helping to
understand the meaning of the diverse patterns of the electrome
that emerge when the plant is interacting with different aspects
of its environment (Pereira et al., 2018; Simmi et al., 2020). This
study supports the machine learning as a valid tool for studying
the ecology and physiology of plants and demonstrates that even
interactions from a distance are enough for causing drastic effects
in the electrical signalling dynamics.

The results of this study also corroborate the claim that the
interface between the internal and external environment of the
dodders is, indeed, an electrical interface as suggested by Debono
and Souza (2019). After all, most of what a plant perceives is,
somehow, mediated by some kind of electrical signalling (Fromm
and Lautner, 2007; Huber and Bauerle, 2016; Canales et al., 2018;
Debono and Souza, 2019). Furthermore, our results suggest that
the “preuptake mechanism” proposed by Koch et al. (2004), and
the process of choosing in Cuscuta, have a bioelectrical basis, for
the earlier sign of host detection, before any other phenotypic
and/or behavioural change, were the alterations in the electrome.

It was not the aim of this work to individualise the means
by which dodders perceive the hosts. However, according to the
literature available, it seems plausible to us that the main way by
which the dodders perceived the hosts was by VOCs (Runyon
et al., 2006). It led us to speculate how the VOCs mediating the
interaction of the plants would cause the observed alterations
in the electrome.

It is known that P. vulgaris emits constitutively at least two
different VOCs: (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT)
and (Z)-3-hexenyl acetate (Wei et al., 2006; Sufang et al.,
2013). In a study with tomato plants (Solanum lycopersicum
L. cv. Micro-Tom)—a plant from the same order of the
dodders (Solanales)—exposure to (Z)-3-hexenyl acetate caused
depolarisation of the mesophyll’s cell membranes and led to
the accumulation of cytosolic Ca2+ (Zebelo et al., 2012).
Additionally, a study with Arabidopsis [Arabidopsis thaliana (L.)
Heynh.] demonstrated that the perception of the VOC (E)-4,8-
dimethyl-1,3,7-nonatriene [(E)-DMNT] caused an accumulation
of apoplastic Ca2+ in the cytosol (Asai et al., 2009). In
both studies, the responses to VOCs are directly related to
the mechanisms of generation and propagation of electrical
signals in plants (de Toledo et al., 2019). Hence, it could
be hypothesised that there are membrane receptors for these
and, maybe, other VOCs which trigger electrophysiological
responses, such as those reported here. It could be the first step
in an explanation for how VOCs alter the internal electrical
signalling of dodders. This opens a worthwhile avenue of
future investigation.
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Furthermore, other means of perception are worthy of being
explored. Light cues are recognised as important for dodder
foraging (Orr et al., 1996; Benvenuti et al., 2005; Wu et al., 2019).
Additionally, in recent years, Haberlandt’s plant ocelli hypothesis
has been revisited with new pieces of evidence (Haberlandt,
1905; Baluška and Mancuso, 2016; Mancuso and Baluška, 2017).
Parasitic plants rely on its senses for detecting hosts, and perhaps
vision or some analogue sense could be of use. By combining
the methodology used in this work with experiments devoted to
testing the plant ocelli hypothesis, dodder plants may stand as a
good plant model for advancing in this new research field.

Concluding, the interaction from a distance with other
plants caused changes in the physiology of the parasitic plant
C. racemosa. When they detected a host, the dodders refrained
themselves of synthesising chlorophylls, thus changing its
survival strategy. Besides, it challenges the idea that the low
content of chlorophylls in the dodders is due to photodestruction,
which was proposed years ago (Choudhury and Sahu, 1999;
Sahu and Choudhury, 2000). This work also found empirical
evidence for a process of attention in a plant, which deserves
to be better studied in the future. Electrophysiological analyses
seem promising as a tool for investigating this phenomenon in
plants. Finally, perhaps more complex processes, mediated by
electrical signals among others, are taking place in the plant,
driving foraging strategies. The path to be followed invites us to
seek an understanding of how these two levels, the bioelectrical
and behavioural ones, are connected between them. There is still
so much to learn from the behaviour of these fascinating plants.
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