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Melatonin has been recently known to stimulate plant growth and induce protective
responses against different abiotic stresses. However, the mechanisms behind
exogenous melatonin pretreatment and restoration of plant vigor from salinity stress
remain poorly understood. The present study aimed to understand the effects of
exogenous melatonin pretreatment on salinity-damaged green mustard (Brassica
juncea L. Czern.) seedlings in terms of oxidative stress regulation and endogenous
phytohormone production. Screening of several melatonin concentrations (0, 0.1, 1,
5, and 10 µM) on mustard growth showed that the 1 µM concentration revealed
an ameliorative increase of plant height, leaf length, and leaf width. The second
study aimed at determining how melatonin application can recover salinity-damaged
plants and studying its effects on physiological and biochemical parameters. Under
controlled environmental conditions, mustard seedlings were irrigated with distilled
water or 150 mM of NaCl for 7 days. This was followed by 1 µM of melatonin
application to determine its recovery impact on the damaged plants. Furthermore,
several physiological and biochemical parameters were examined in stressed and
unstressed seedlings with or without melatonin application. Our results showed that
plant height, leaf length/width, and stem diameter were enhanced in 38-day-old salinity-
stressed plants under melatonin treatment. Melatonin application obviously attenuated
salinity-induced reduction in gas exchange parameters, relative water content, and
amino acid and protein levels, as well as antioxidant enzymes, such as superoxide
dismutase and catalase. H2O2 accumulation in salinity-damaged plants was reduced by
melatonin treatment. A decline in abscisic acid content and an increase in salicylic acid
content were observed in salinity-damaged seedlings supplemented with melatonin.
Additionally, chlorophyll content decreased during the recovery period in salinity-
damaged plants by melatonin treatment. This study highlighted, for the first time,
the recovery impact of melatonin on salinity-damaged green mustard seedlings. It
demonstrated that exogenous melatonin supplementation significantly improved the
physiologic and biochemical parameters in salinity-damaged green mustard seedlings.

Keywords: salinity, melatonin, antioxidant enzymes, photosynthesis, amino acids, phytohormones, green
mustard
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INTRODUCTION

Environmental problems, such as drought, salinity, and the rising
global temperature, cause considerable restraints in agricultural
production and threaten food security worldwide (Tester and
Langridge, 2010). Approximately 20% of farmlands are affected
by salt globally, and each year, this number steadily increases
because of natural causes or irrigation practices, as well as
excessive fertilization and plowing, which result in a decreased
or no plant yield (Deinlein et al., 2014; Ke et al., 2016).
High salt concentrations generate ion toxicity (mainly sodium
ions), osmotic stress, and oxidative damage, and suppress many
biochemical and molecular processes (Chen et al., 2018). Genetic
improvement is a useful strategy for crop enhancement (Ke
et al., 2016; Zhu et al., 2016); however, due to the complex
and controversial issues that are connected to transgenic (GM)
crops (Raman, 2017), a substitute strategy for improving stress
tolerance and prolonging leaf endurance and longevity can result
in important agricultural applications.

Melatonin (N-acetyl-5-methoxytryptamine) is an amphiphilic
low-molecular-weight hormone with an indolic structure (Arnao
and Hernández-Ruiz, 2014; Campos et al., 2019). Melatonin was
originally identified in bovine pineal glands in 1958 (Chowdhury
et al., 2008). This biomolecule influences several biological
functions, such as the sleep–wake cycle, bone metabolism,
innate immune system, seasonal reproduction, and emotional
behavior (Tan et al., 2010; Carrillo-Vico et al., 2013; Shi
et al., 2015a). There has been great progress in understanding
melatonin’s role in plants since its existence was initially
reported in vascular plants in 1995 (Dubbels et al., 1995;
Van Tassel et al., 1995). Several studies on melatonin have
proposed its possible physiologic actions in plants, including
growth-stimulating activity, seed germination, flowering, and
rooting, thereby acting in the same manner as auxin and
indole-3-acetic acid (Arnao and Hernández-Ruiz, 2014; Wei
et al., 2015). Endogenously synthesized melatonin performs a
migratory role in coping with biotic/abiotic stresses. It confers
stress tolerance toward heavy metals, ultraviolet radiation, salt,
drought, and temperature fluctuations (Reiter et al., 2015;
Nawaz et al., 2016). Melatonin also promotes the activity of
scavenging enzymes, which leads to reducing and eliminating
internal and environmental oxidative damages (ROS) (Arnao and
Hernández−Ruiz, 2015; Li et al., 2015). It has been reported that
pretreatment with exogenous melatonin preserves plant integrity;
plays a recovery role in plants under stressful conditions, such as
drought, salinity, heat, chemicals, cold, and oxidation; and retards
natural aging and senescence (Li et al., 2012; Shi et al., 2015b;
Zhang et al., 2015).

Green mustard (Brassica juncea L. Czern.) is widely consumed
all over the world, especially in Asia, as food and spice
(Whitley, 2013). This species of the family Brassicaceae has been
cultivated due to its nutritional and economic values (Ashraf
and Iram, 2005). The leaves and seeds of this plant have been
traditionally used because of its medicinal values mainly for
internal and external diseases, such as rheumatism, skin disease,
and inflammation (Lee et al., 2007). Furthermore, several studies
have characterized the antioxidant, anti-cancer, anti-diabetic,

and antimicrobial effects of green mustard (Sim et al., 2008; Jo
et al., 2018). In case of salinity tolerance in the Brassicaceae
family, B. juncea is relatively sensitive. Its growth and yield
can be markedly reduced under stressful conditions, such as
salinity, drought, and high temperature (Ashraf and Iram, 2005).
Therefore, developing salt tolerance in this species would be
economically valuable.

Salt stress reduction through exogenous melatonin
pretreatment has already been extensively studied (Wang
et al., 2016; Li et al., 2017; Ke et al., 2018); however, only a few
have investigated the effects of melatonin on salt stress recovery.
To fill this gap, we conducted this study to evaluate the effect
of melatonin on the recovery of salt-damaged green mustard
seedlings. Two specific objectives were set. First, we aimed to
characterize the appropriate melatonin concentration that was
efficient against salinity-damaged plants. Second, we intended
to investigate how exogenous melatonin application affects the
physiologic and biochemical characteristics of salinity-damaged
plants by presenting growth changes, photosynthetic rate, plant
hormone contents, amino acid contents, etc.

MATERIALS AND METHODS

Selection of the Appropriate Melatonin
Concentration
Green mustard seeds were provided by Danong Korea Ltd.,
Gyeonggi-do, South Korea. The seeds were surface-sterilized
in 2.5% sodium hypochlorite and tested for viability, according
to a method previously described by Ke et al. (2018). The
germinated seeds were sown in plastic pot trays (28 cm× 54 cm)
filled with horticultural soil (Shinsung Mineral Co., Ltd.,
South Korea). Then, two to three seeds were planted in each
pot. The mustard seedlings were pre-cultivated under natural
light in a greenhouse at Kyungpook National University,
Daegu, South Korea (35.53′◦N, 128.36′◦E), with 46.7% relative
humidity (RH) and 25◦C/19◦C (day/night) temperature,
and the seedlings were watered daily. Furthermore, 3-week-
old seedlings with uniform sizes were transferred to pots
(10 cm × 10 cm) and subjected to different treatments. Pre-
cultivated seedlings were kept for 2 days to allow them to
acclimatize. Then, all mustard seedlings were randomly divided
into two groups: (i) normal control, grown with only distilled
water (100 mL/plant); and (ii) salinity treatment, irrigated with
150 mM NaCl (100 mL/plant). Each treatment contained a
triplicate of 15 plants each. Each group was treated for 7 days.
Afterward, the salinity-stressed seedlings were treated with 0,
0.1, 1, 5, and 10 µM melatonin (100 mL/plant, once a day)
on their roots for 16 days. The melatonin (ChemScene LLC.,
Monmouth Junction, NJ, United States) solution (10 µM,
stock) was prepared by dissolving the solute in distilled
water (2.32 mg × 1,000 mL), followed by dilution with
distilled water to prepare different concentrations. Plants
of each concentration were measured for several plant
growth characteristics. Plant growth parameters, such as
plant height, leaf length, and leaf width were measured after
day 4 (4DAT), day 8 (8DAT), day 12 (12DAT), and day
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16 (16DAT) of treatment. Moreover, the 1 µM melatonin
concentration was found to be the most optimal concentration
for further studies.

Effect of Exogenous Melatonin on
Salinity-Damaged Green Mustard
Plant Material and Growth Conditions
The experiments were performed from December 2018 to
February 2019 in a growth chamber at Kyungpook National
University. The plants were grown under the aforementioned
conditions. Moreover, green mustard seeds were planted in
plastic pot trays containing horticultural soil (Shinsung Mineral
Co., Ltd, South Korea). Seedlings of similar size were selected
after 3 weeks and then transferred to pots (10 cm × 10 cm).
During the experiment, the temperature was maintained at a
constant 22◦C/20◦C (day/night) level, with an RH of 60% and a
light intensity of approximately 200 µmol m−2s−1.

Salinity Stress Pretreatments
In this part of the study, 2 days after transplanting, 3-week-
old seedlings were subjected to different treatments. They were
divided into two groups: the normal control group, irrigated
with distilled water (DW) (100 mL); and the salinity treatment
group, irrigated with 150 mM NaCl (100 mL). Each group was
treated for 7 days, and after which, the groups of unstressed
and salinity-stressed seedlings were subdivided into two groups
with an equal number of seedlings. This contributed to the
formation of four experimental groups: (1) normal control,
irrigated with DW alone (100 mL); (2) normal control, irrigated
with solution containing 1 µM melatonin (100 mL); (3) salinity
pretreated (150 mM NaCl), irrigated with DW (100 mL); and
(4) salinity pretreated, (150 mM NaCl), irrigated with solution
containing 1 µM melatonin (100 mL). Each treatment was
performed in triplicate with 12 plants each. The mustard
seedlings were treated for 8 days, and sampling was performed at
days 4 and 8 in each treatment. After recording the chlorophyll
content, the harvested samples (shoots and leaves) were either
freshly used or rapidly deactivated in liquid nitrogen and
stored at –80◦C.

Assessment of Plant Growth
Characteristics and Chlorophyll Content
To investigate the effects of each treatment on green mustard
seedlings, several plant growth parameters were measured.
These parameters included plant height, stem diameter, and leaf
length/width, which were recorded over a period of 8 days,
specifically on day 0 (0DAT), day 4 (4DAT), and day 8
(8DAT). A digital Vernier caliper and a ruler were used to
measure stem diameter and plant height, respectively. For
estimating the leaf area (length and width), a fully expanded
leaf (beneath the growing point) from each plant was selected
and measured using a ruler. Chlorophyll content in leaves was
examined using a portable CCM-300 Chlorophyll Content Meter
(ADC BioScientific Ltd., Herts, England). Each treatment had
three replicates.

Analysis of Photosynthetic Gas
Exchange Parameters
The photosynthetic rate, stomatal conductance, and transpiration
rate were determined using an LCpro T portable photosynthetic
assay system (ADC Bioscientific Ltd., Herts, England). The plants
were constantly exposed to photosynthetically active radiation
(PAR) 1,500 µ mol m−2s−1. The topmost fully expanded
leaf from each group was selected at the vegetative stage
and measured on day 0 (0DAT), day 4 (4DAT), and day 8
(8DAT). The photosynthetic parameters were taken within the
chamber between 9:00 and 11:00 AM, and each treatment had
three replicates.

Determination of Leaf RWC
Relative water content (RWC) was measured in the stressed and
unstressed plants following the method previously described by
Ahmad et al. (2019). This measurement was conducted for each
treatment on day 4 (4DAT) and day 8 (8DAT). The fresh weight
(FW) of the fourth leaf (counting from the bottom) of mustard
seedlings was immediately recorded after harvesting (between
5:00 and 6:00 PM). Then, the leaf segments were made to float
in DW in a closed container at 25◦C for 15 h in the dark, and
its saturated weight (SW) was determined. After that, the leaf
samples were kept in the oven at 70◦C for 48 h to obtain the
dry weight (DW). Finally, the relative water concentration was
estimated according to the formula RWC (%) = (FW-DW)/(SW-
DW)× 100. Each treatment had three replicates.

Quantitation of ABA Content
Abscisic acid (ABA) content was analyzed according to a
previously described method (Qi et al., 1998; Kim et al., 2014).
Freeze-dried sample of mustard leaves was ground using a
mortar and pestle. The ground sample (approximately 0.1 g) was
extracted with 10 mL of extraction solution. The filtered extract
was concentrated, then dissolved in 5 mL of sodium hydroxide
(1N NaOH), and washed three times with dichloromethane
(10 mL CH2Cl2) to eliminate the lipophilic materials. The pH of
the aqueous phase was adjusted to 3.5 using hydrochloric acid
(6N HCl). Then, ethyl acetate was added to it and mixed by
vortexing. The supernatant, ethyl acetate extract, was evaporated
to dryness and dissolved in phosphate buffer (PH 8.0) to
remove phenolic compounds. PVPP (polyvinylpolypyrrolidone)
was added to the extracted solution (phosphate buffer) and kept
on a shaker for 40 min at 150 rpm. The pH of the phosphate
buffer was brought to 2.5 and partitioned into ethyl acetate.
The ethyl acetate extract was evaporated to dryness. The dried
residue was dissolved in dichloromethane (CH2Cl2), followed by
passing through a silica cartridge (Sep-Pak; Water Associates,
Milford, MA, United States) pre-washed with dichloromethane
and MeOH diethylether (C5H14O2). Finally, the extract was
dried with nitrogen gas (N2), and diazomethane (CH2N2) was
added to it for methylation. ABA content was quantified through
GC–MS (Agilent 6890N Gas Chromatograph, Santa Clara,
CA, United States). A software (ThermoQuset, Manchester,
United Kingdom) was used to observe the responses to ions [m/e
of 162 and 190 for Me-ABA and 166 and 194 for Me-(2H6)-ABA].
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Quantitation of SA Content
Salicylic acid (SA) content was analyzed according to a previously
described method (Enyedi et al., 1992; Seskar et al., 1998). Freeze-
dried sample of mustard leaves was ground to a fine powder
and approximately 0.1 g of it was extracted with methanol
(90 and 100%) by centrifuging (12,000 rpm for 15 min at
4◦C). The combined methanol extracts were vacuum-dried. The
dried residue was dissolved in 5% trichloroacetic acid (TCA)
and centrifuged at 10,000 rpm for 10 min. The supernatant
was partitioned with ethyl acetate/cyclopentane/isopropanol
(49.5:49.5:1, v/v). The top layer of the aqueous solution was
dried and used for SA quantification through high-performance
liquid chromatography.

Measurement of Amino Acid Content
Quantification of amino acid content was carried out according
to the described method of Waqas et al. (2015). Approximately
50 mg of the freeze-dried sample was hydrolyzed in the presence
of hydrochloric acid (6N HCl, 1 mL) for 24 h at 110◦C.
Then, the extraction was concentrated and dried with vacuum
at 80◦C for 24 h. After that, the residue was diluted with
deionized water (2 mL) and evaporated two times. Finally, the
concentrated residue was dissolved with hydrochloric acid (0.02N
HCl, 1 mL) and the mixture was passed through a 0.45-µm filter
membrane. The solution was analyzed using a Hitachi L-8900
amino acid analyzer (Hitachi High-Technologies Corporation,
Tokyo, Japan). Each treatment had three replicates.

Measurement of Soluble Protein Content
Soluble protein content subjected to different treatments was
quantified following the method previously described by Ashraf
and Iram (2005). Fresh plant leaves (0.1 g) were ground to a
fine powder using a mortar and pestle, and then mixed with
1 mL of phosphate buffer (50 mM, pH 7.0). The mixture was
centrifuged at 10,000 rpm for 10 min at 4◦C. Subsequently,
the supernatant was collected and treated with the appropriate
reagent, and the optical density was measured at 595 nm.
Protein content was estimated in all the enzymatic preparations
using the Bradford method (Bradford, 1976) with bovine serum
albumin as standard.

Determination of Enzymatic and
Non-enzymatic Antioxidant Activity
Fresh leaf samples (0.1 g) were homogenized with 1 mL of ice-
cold 50 mM phosphate buffer (pH 7.0, 1 mM EDTA, 1% PVP) and
kept in an incubator at 4◦C for 10 min. Subsequently, the mixture
was centrifuged at 10,000 rpm for 10 min at 4◦C. The supernatant
was used for determining superoxide dismutase (SOD) and
catalase (CAT) activity. SOD activity was measured using a
SOD Assay Kit-WST (Dojindo Co., Ltd., Kumamoto, Japan).
CAT activity was evaluated using the AmplexTM Red Catalase
Assay Kit (Thermo Fisher Scientific Korea Co., Ltd., Gangnam-
gu, Seoul), according to the manufacturer’s instruction. DPPH
radical scavenging activities, flavonoid and total phenolic content
were analyzed by the method of Adhikari et al. (2018).
The mixture activity and absorbance were measured using

the MultiskanTM GO UV/Vis microplate spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States) at a
selected wavelength.

Visualization of ROS by Staining
Accumulation of ROS components was determined based on
the DAB (3,3-diaminobenzidine) staining method (Thordal-
Christensen et al., 1997; Mishra et al., 2017). The third leaves
were cut off on day 4 (4DAT) and day 8 (8DAT), and stained
in the DAB solution (1 mg ml−1, pH 3.8). DAB staining and
vacuum filtration were carried out for 12 h in darkness, followed
by de-colorization of the stained leaves using absolute ethanol for
10 min in a boiling water bath. The leaves were then kept in 60%
glycerol for 1-2 min. Three leaves were used for each treatment.

Determination of ROS Content (H2O2)
H2O2 level subjected to several treatments was determined
according to a previously described method (Jana and
Choudhuri, 1982; Tsai et al., 2005). Third leaves of green
mustard were collected on day 4 (4DAT) and day 8 (8DAT) and
kept in a freezer at –80◦C. The frozen leaves were ground with
liquid nitrogen using a mortar and pestle. The ground sample
(0.3 g) was homogenized with 3 mL of ice-cold phosphate buffer
(50 mM, 1 mM EDTA, 1% PVP, pH 7.0) and centrifuged at
13,000 rpm for 20 min. The supernatant (2 mL) was mixed
with 1 mL of 20% (v/v) H2SO4 containing 0.1% titanium
chloride, and the mixture was centrifuged at 13,000 rpm for
20 min. The supernatant intensity was measured at 410 nm
using the T60 UV-Vis spectrophotometer (PG Instruments Ltd.,
Wibtoft, United Kingdom). H2O2 level was determined using an
extinction coefficient of 0.28 µmol−1cm−1. Three leaves were
used for each treatment.

Statistical Analysis
All experimental data were processed using ANOVA and
Duncan’s multiple range test (p < 0.05) to examine the
significant differences between the mean values. It was run
with three biological replicates using Microsoft Excel 2017
and SAS statistical software (version 9.4, SAS Institute, Cary,
NC, United States).

RESULTS

Effects of Several Melatonin
Concentrations on the Growth of Green
Mustard Seedlings Under Salt Stress
The salinity treatment led to decreased plant height, leaf
length, and leaf width, compared with the control. However,
when salinity-stressed plants received several concentrations of
melatonin (0, 0.1, 1, 5, and 10 µM), they generally showed
alleviation of salt stress in comparison with salinity-stressed
plants alone (Figure 1). Treatment with a lower concentration
of melatonin (0.1 µM) showed no remarkable change, compared
with salinity-stressed plants; or with a higher concentration of
melatonin (10 µM), compared with salinity-stressed plants alone.
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FIGURE 1 | Effect of various melatonin concentrations on the growth of
salt-stressed green mustard seedlings (A,B). Treatment: control + water,
150 mM salt pre-treatment + water, 150 mM salt pre-treatment + 0.1 µM
melatonin, 150 mM salt pre-treatment + 1 µM melatonin, 150 mM salt
pre-treatment + 5 µM melatonin, 150 mM salt pre-treatment + 10 µM
melatonin.

However, salinity-stressed plants at a melatonin concentration
of 1 µM revealed increased plant height (4.3%), leaf length
(13%), and leaf width (11.2%) (p < 0.05) in contrast to salinity-
stressed plants alone (Figure 2). These values showed that
1 µM of melatonin attenuated the suppressive effect of salinity
stress on plant growth. Our findings indicate the necessity
of choosing the appropriate melatonin concentration prior to
application on crops.

Recovery Effect of Exogenous Melatonin
on Green Mustard Seedlings Under
Salinity Stress
Effects of Melatonin on Plant Growth Characteristics
Mustard seedlings were grown and supplemented with 1 µM
melatonin concentration to examine the effects of exogenous
melatonin on plant growth parameters. As shown in Table 1,
no significant difference was observed between melatonin-
treated and -untreated seedlings under normal conditions after
8 days. Salinity stress led to decreased plant height (34%),
leaf length (32%), leaf width (34%), and stem diameter (20%)
(p < 0.05). The growth of salinity-stressed plants with or without
melatonin was inhibited, compared with unstressed plants.
However, in melatonin-treated seedlings, plant height (10%),
leaf length (16%), leaf width (20%), and stem diameter (13%)
were higher than melatonin-untreated seedlings under salinity-
stressed conditions. Our results showed that root application of
1 µM of melatonin improved the plant growth parameters under
salinity stress (150 mM NaCl) conditions (Table 1 and Figure 3).

FIGURE 2 | Effect of various melatonin concentrations on the growth of
salt-stressed green mustard seedlings. The results were calculated from data
for 0 (0DAT), 4 (4DAT), 8 (DAT), 12 (12DAT), and 16 (16DAT) days. Treatment:
control + water, 150 mM salt pre-treatment + water, 150 mM salt
pre-treatment + 0.1 µM melatonin, 150 mM salt pre-treatment + 1 µM
melatonin, 150 mM salt pre-treatment + 5 µM melatonin, 150 mM salt
pre-treatment + 10 µM melatonin. Values show the means ± SE (n = 3) and
significant differences at p < 0.05 in accordance with Duncan’s multiple range
tests.

Effects of Melatonin on Chlorophyll Content
As shown in Figure 4, no significant difference was observed
between melatonin-treated and -untreated seedlings under
normal conditions after 4 days (4DAT) and 8 days (8DAT).
Salinity stress resulted in rapidly increasing chlorophyll content,
compared with water-treated seedlings. Chlorophyll content was
higher in salinity-stressed group plants by 36.5% (4DAT) and
36.4% (8DAT), compared with water-treated group (p < 0.05).
Visual observations of salinity-stressed plants showed a deeper
green leaf color. The root application of melatonin decreased the
chlorophyll content by 11% in salinity-stressed green mustard
seedlings. Our findings revealed that root application of 1 µM
melatonin recovered the chlorophyll content under salinity stress
(150 mM NaCl) conditions (Figure 4).

Effects of Melatonin on Gas Exchange Parameters
A reduction in photosynthetic parameters was observed
under salinity treatment (150 mM). Stomatal conductance,
transpiration rate, and photosynthetic rate decreased significantly
in salinity-stressed plants by 83, 67, and 74% (p < 0.05),
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TABLE 1 | The Effect of melatonin with/without salt stress on growth parameters
in green mustard seedlings.

Treatment Height
(cm)

Leaf length
(cm)

Leaf width
(cm)

Stem
diameter

(cm)

0 DAT

Cont 15.3± 0.4a 10.9 ± 0.2a 7.9 ± 0.1a 5.2 ± 0.1a

Mel 15.3± 0.1a 9.8 ± 0.5b 7.6 ± 0.1a 4.9 ± 0.0b

Salt pretreated Cont 10.1± 0.4b 7.1 ± 0.2c 5.2 ± 0.1b 4.1 ± 0.1c

Salt pretreated Mel 10.0± 0.1b 6.9 ± 0.1c 5.1 ± 0.1b 4.0 ± 0.0c

4 DAT

Cont 19.1± 0.4a 12.8 ± 0.4a 8.4 ± 0.3a 6.1 ± 0.1a

Mel 19.4± 0.8a 13.0 ± 0.3a 8.7 ± 0.1a 6.2 ± 0.1a

Salt pretreated Cont 11.8± 0.2c 8.3 ± 0.2c 5.4 ± 0.1c 4.5 ± 0.1c

Salt pretreated Mel 13.0± 0.3b 9.4 ± 0.3b 6.3 ± 0.1b 4.9 ± 0.1b

8 DAT

Cont 19.2± 0.4b 13.5 ± 0.5a 8.5 ± 0.1a 6.9 ± 0.2a

Mel 20.2± 0.5a 14.1 ± 0.2a 8.4 ± 0.1a 7.0 ± 0.1a

Salt pretreated Cont 13.6± 0.1d 9.4 ± 0.1c 6.1 ± 0.1c 5.2 ± 0.2b

Salt pretreated Mel 14.9± 0.3c 10.9 ± 0.3b 7.3 ± 0.2b 5.9 ± 0.2b

The data were calculated from data for 0 (0DAT), 4 (4DAT), and 8 (8DAT)
days. Treatment: control + water, control + 1 µM melatonin, 150 mM salt pre-
treatment + water, 150 mM salt pre-treatment + 1 µM melatonin. Values indicate
the means ± SE (n = 3). Letters represent significant differences at p < 0.05 in
accordance with Duncan’s multiple range tests.

respectively, compared with control plants (Figure 5). However,
exogenous melatonin (1 µM) alleviated stress in plants grown
under saline conditions. Notable enhancement in stomatal
conductance (51%), photosynthetic rate (79%), and transpiration
rate (32%) was detected when seedlings subjected to 150 mM
salinity stress were treated with 1 µM melatonin over 8 days
(p < 0.05) (Figure 5). Interestingly, the transpiration rate was
higher on day 4 (9.18%) than on day 8 in response to melatonin–
salt treatment. The decreased gas exchange parameters were
alleviated through melatonin treatment in stressed plants over
8 days. Melatonin application particularly lowered stomatal
conductance, photosynthetic rate, and transpiration rate in
unstressed plants. This result indicated that root application
of melatonin attenuated the salinity-induced reduction of
photosynthetic parameters.

Effects of Melatonin on Leaf RWC
As shown in Figure 6, exogenous melatonin application caused
a reduction in RWC of control plants on day 4 (4DAT) and
day 8 (8DAT). A significant decrease (16%) in RWC of salinity-
stressed seedlings was observed, compared with normal seedlings
(Figure 6). On another note, there was a slight improvement
(4.3%) in RWC when seedlings were exposed to 1 µM melatonin
treatment and 150 mM salt stress over 8 days. These values
showed that 1 µM melatonin relieved the suppressive effect of
salt stress on the RWC content of mustard seedlings.

Effects of Melatonin on ABA Content
The endogenous ABA content was investigated over a period
of 4 and 8 days to determine the influence of 1 µM melatonin
treatment on the recovery of salinity-stressed (150 mM) mustard

seedlings. ABA content significantly increased in the salinity-
stressed seedlings, compared with normal seedlings. Whereas, by
observing the ABA content at day 4 and day 8, we can see that
it significantly decreased by 27% in salinity-stressed plants under
1 µM melatonin treatment (p < 0.05). On another note, ABA
content was measured in plants under normal conditions with
or without melatonin treatment. By day 4 (4DAT), ABA content
of normal seedlings under 1 µM melatonin treatment slightly
increased by 33%, compared with normal seedlings under 0 µM
melatonin treatment (Figure 7). However, at the end of 8 days,
ABA level in control plants receiving melatonin were lower than
control plants without melatonin treatment. Our findings showed
that 1 µM melatonin treatment resulted in a reduced ABA level
under 150 mM salinity treatment.

Effects of Melatonin on SA Content
Salicylic acid content in leaves was evaluated to examine whether
melatonin treatment relieved the effects of salinity stress in
mustard seedlings. In salinity-treated plants, SA content in
mustard leaves increased by 106 and 106% on day 4 (4DAT)
and day 8 (8DAT), respectively (Figure 8). As compared with
salinity treatment alone, seedlings that were treated with 1 µM
melatonin and 150 mM salt had elevated SA contents by 14%
(4DAT) and 12% (8DAT) (p < 0.05). Similarly, normal seedlings
that were treated with 1 µM melatonin for 8 days showed a
remarkable 52% increase in SA content, compared with untreated
plants (Figure 8). These values suggested that 1 µM melatonin
application resulted in an increased SA content in seedlings that
were pretreated with or without 150 mM salt.

Effects of Melatonin on Amino Acid Content
Seventeen amino acids were detected with different
concentrations in green mustard seedlings (Figure 9). Salinity
stress increased amino acid content (except for Asp) in mustard
seedlings, compared with seedlings under normal conditions
over 8 days. Proline (Pro) dramatically increased by 128% in
salinity-stressed plants. Additionally, amino acid constituents
were recovered by root application of melatonin (except for Pro)
in salinity-stressed plants on day 8 (8DAT). After 8 days, glutamic
acid (Glu) had the highest value, whereas the lowest value was for
cystine (Cys) (28.27–1.44 ng/g) in salinity pretreated plants
subjected to melatonin treatment (Figure 9). The findings
indicated that 1 µM melatonin application improved amino acid
content under salinity-stressed (150 mM) and normal conditions.

Effects of Melatonin on Soluble Protein Content
Protein content decreased in salinity-damaged mustard over
4 days. By day 8, protein content slightly increased by 3.29%
in salinity-damaged seedlings, compared with the control
(p < 0.05) (Figure 10). During the fourth day, the application
of 1 µM melatonin improved protein content by 19% in
salinity-damaged plants, comparison with untreated salinity-
damaged plants. However, by observing the results of protein
content at day 8, we can see that the protein content decreased
by 10.8% in salinity-damaged plants under 1 µM melatonin
treatment (Figure 10). On another note, the protein content
in control plants receiving melatonin were 6.3% higher than
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FIGURE 3 | Effect of melatonin with/without salt stress on green mustard growth during four (4DAT; A-1–3) and eight (8DAT; B-1–3) days. Treatment:
control + water, control + 1 µM melatonin, 150 mM salt pre-treatment + water, 150 mM salt pre-treatment + 1 µM melatonin.

FIGURE 4 | Effect of melatonin with/without salt stress on chlorophyll content
in green mustard seedlings. The results were calculated from data for 4 (4DAT)
and 8 (8DAT) days. Treatment: control + water, control + 1 µM melatonin,
150 mM salt pre-treatment + water, 150 mM salt pre-treatment + 1 µM
melatonin. Values show the means ± SE (n = 3). Letters represent significant
differences at p < 0.05 in accordance with Duncan’s multiple range tests.

that in control plants without melatonin treatment. Our findings
revealed that exogenous melatonin (1 µM) had a positive
effect on protein accumulation under control and salinity
stress conditions.

Effects of Melatonin on Antioxidant Activity
Compared with seedlings treated with water alone, melatonin
application led to enhancement in antioxidant activity over
8 days (except. Flavonoid). SOD, CAT, DPPH, and total phenolic
contents were raised by 14, 22, 8, and 12.66% in mustard
seedlings under normal condition by the end of experiment
(8DAT). However, flavonoid content in melatonin treated plants
were 22.43% lower than untreated control plants by day 8
(p < 0.05). Additionally, salinity stress led to increase in
SOD (8.4%), flavonoid (59.87%), and total phenolic (63.65%)
contents, compared with untreated plants over 8 days. Whereas,
Salinity stress (150 mM) led to a reduction in CAT (71.5%)
and DPPH (5.54%) activity in mustard seedlings, comparison
with control seedlings (p < 0.05). Compared with the seedlings
treated with salinity alone, melatonin application contributed
to additional increases in CAT and SOD activity by 51.7 and
19%, respectively over 8 days (Figure 11). On the other hand,
total phenolic and flavonoid contents reduced in salinity-stressed
plants receiving 1 µM melatonin treatment (Figure 11). There
were no notable differences among melatonin-treated and -
untreated plants exposed to salinity stress.

Effects of Melatonin on ROS by Use of Staining
ROS accumulation was visualized for each treatment on
day 4 (4DAT) and day 8 (8DAT) through DAB staining
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FIGURE 5 | Effect of melatonin with/without salt stress on photosynthetic
parameters in green mustard seedlings. The results were calculated from data
for 4 (4DAT) and 8 (8DAT) days. Treatment: control + water, control + 1 µM
melatonin, 150 mM salt pre-treatment + water, 150 mM salt
pre-treatment + 1 µM melatonin. Values show the means ± SE (n = 3).
Letters represent significant differences at p < 0.05 in accordance with
Duncan’s multiple range tests.

(Figures 12A-1,B-1). ROS accumulation under melatonin
treatment decreased on day 4 and 8 in salinity-damaged
mustard seedlings, compared with untreated damaged seedlings.
The salinity-damaged plants were thoroughly stained by DAB,
indicating high ROS accumulation. The intense brown color
was higher in salinity-damaged plants, and this color intensity
was clearly reduced in salinity-damaged plants supplemented
with melatonin (Figures 12A-1,B-1). The DAB staining results
unveiled high differences between treatments. The control plants
treated with/without melatonin had less ROS accumulation than

FIGURE 6 | Effect of melatonin with/without salt stress on relative water
content in green mustard seedlings. The results were calculated from data for
4 (4DAT) and 8 (8DAT) days. Treatment: control + water, control + 1 µM
melatonin, 150 mM salt pre-treatment + water, 150 mM salt
pre-treatment + 1 µM melatonin. Values show the means ± SE (n = 3).
Letters represent significant differences at p < 0.05 in accordance with
Duncan’s multiple range tests.

salinity-damaged plants. There were no significant differences
among melatonin-treated and -untreated plants under normal
conditions, and we observed a similar trend for leaf color in both
groups (Figures 12A-1,B-1). Our findings revealed that 1 µM
melatonin application led to decreased ROS accumulation in
salinity-damaged plants.

Effect of Melatonin on ROS Content (H2O2)
The DAB staining results were confirmed by determining the
H2O2 level in green mustard leaves subjected to different
treatments. Our data agreed with the DAB staining results
(Figures 12A-2,B-2). There was no noticeable difference between
control plants with or without melatonin treatment. A slight
decrease (4.9%) was observed in melatonin-treated plants under
normal conditions; however, salinity stress remarkably enhanced
H2O2 level by 49.7% in green mustard leaves, compared with the
control group by the end of 8 days (p < 0.05). Salinity-induced
H2O2 accumulation was decreased by melatonin application.
Compared with the seedlings treated with salinity alone,
melatonin application contributed to H2O2 level reduction by
24% over 8 days. Our results indicated that 1 µM melatonin
application enhances the plants’ recovery from salinity damage
through ROS detoxification in green mustard seedlings.
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FIGURE 7 | Effect of melatonin with/without salt stress on ABA content in
green mustard seedlings. The results were calculated from data for 4 (4DAT)
and 8 (8DAT) days. Treatment: control + water, control + 1 µM melatonin,
150 mM salt pre-treatment + water, 150 mM salt pre-treatment + 1 µM
melatonin. Values show the means ± SE (n = 3). Letters represent significant
differences at p < 0.05 in accordance with Duncan’s multiple range tests.

DISCUSSION

Salinity is one of the major abiotic stresses that affect plant
growth and productivity (Jampeetong and Brix, 2009). Salt
stress interferes with all the physiologic and metabolic processes
in plants, including photosynthesis and protein synthesis
(Passioura, 2010). Plants have established several strategies to
deal with different environmental stresses. Recently, melatonin
has emerged as a research focus due to its potential in plant
physiology. Melatonin is also involved in several stress responses,
such as being a plant growth modulator (Wei et al., 2015).
Previous studies have indicated that exogenous melatonin can
alleviate salt stress in plants (Mukherjee et al., 2014). In the
present study, we examined the positive impacts of exogenously
applied melatonin on the recovery of salinity-damaged green
mustard seedlings.

The efficiency of melatonin has been proven to be
concentration-dependent, and it may present a positive or
negative impact on plants. For instance, drought-stressed
coffee plants showed different responses to different doses of
melatonin (Campos et al., 2019). Chen et al. (2009) reported
that a low melatonin concentration accelerated root growth
in Brassica juncea, whereas a high melatonin concentration

FIGURE 8 | Effect of melatonin with/without salt stress on SA content in green
mustard seedlings. The results were calculated from data for 4 (4DAT) and 8
(8DAT) days. Treatment: control + water, control + 1 µM melatonin, 150 mM
salt pre-treatment + water, 150 mM salt pre-treatment + 1 µM melatonin.
Values show the means ± SE (n = 3). Letters represent significant differences
at p < 0.05 in accordance with Duncan’s multiple range tests.

suppressed it. Our findings showed that salinity-damaged
seedlings supplemented with a melatonin concentration of
1 µM maintained higher plant height, leaf length/width, and
stem diameter in contrast to salinity-stressed plants without
melatonin treatment.

Changes in chlorophyll contents caused by salt stress depends
on crop. Reduction in chlorophyll contents was observed in
sunflower and rice under saline condition (Tatar et al., 2010).
However, chlorophyll contents increased in wheat and several
species of cotton that were exposed to salinity stress (Shah
et al., 2017). Similarly, we observed that chlorophyll content
increased rapidly in salinity-damaged mustard seedlings. This
can be attributed to the adaptive mechanisms of plants to
acclimatize to salinity stress and maintain its photosynthetic
functions (Acosta-Motos et al., 2017). We found that melatonin
treatment resulted in decreased chlorophyll production in
salinity-damaged mustard seedlings during the recovery period.
Considering that salt stress activates senescence in plants,
the reduced chlorophyll content may be attributed to the
protective effect of melatonin against chlorophyll degradation
(Arnao and Hernández−Ruiz, 2009).

Photosynthesis is one of the most important
physicochemical processes that are extremely salt-sensitive
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FIGURE 9 | Effect of melatonin with/without salt stress on amino acid content in green mustard seedlings. The results were calculated from data for 4 (4DAT) and 8
(8DAT) days. Treatment: control + water, control + 1 µM melatonin, 150 mM salt pre-treatment + water, 150 mM salt pre-treatment + 1 µM melatonin. Values show
the means ± SE (n = 3). Letters represent significant differences at p < 0.05 in accordance with Duncan’s multiple range tests.

(Takahashi and Murata, 2008). Salt stress reduces stomatal
opening, which leads to reduced CO2 diffusion to the
mesophyll and impending changes in the photosynthetic
rate. In the present study, we noticed that the photosynthetic
parameters were remarkably lower in salinity-damaged plants,
unquestionably because of stomatal limitations. However,
exogenous melatonin application was found to improve
stomatal conductance, and subsequently, the transpiration
rate, photosynthetic rate, and leaf RWC were also increased
in salinity-damaged seedlings during the recovery period
(Hassanvand et al., 2019). Wang et al. (2016) reported that
melatonin pretreatment of cucumber seedlings effectively
enhanced their photosynthetic capacity under salinity stress.
Similarly, melatonin pretreatment enhanced the salt tolerance
of watermelon seedlings by decreasing stomatal limitation and
increasing the photosynthetic rate (Li et al., 2017). Exogenous
melatonin application generally contributes to a reduction in
stomatal closure, and improvement in photosynthesis and water
holding capacity under salinity stress.

Phytohormones not only influence the growth and
development of plants, but they also effectively protect plants
against biological and non-biological stresses (Hernández-Ruiz
and Arnao, 2018). For instance, SA improved photosynthetic and
growth parameters and antagonized oxidative damage in plants
in response to abiotic stresses (Wani et al., 2017). Several studies

indicated the impact of salt stress on phytohormone content,
including SA and ABA (Zhang et al., 2015; Yang et al., 2017). The
present study showed ABA and SA accumulation in the green
mustard seedlings exposed to salinity stress. The rapid ABA
and SA accumulation and the rapid reduction in stomatal size
and conductance were found to be the bases for plant-induced
tolerance to salt stress (Jakab et al., 2005). Furthermore, our
findings showed that exogenous melatonin application can
enhance the salt tolerance of green mustard by lowering its
ABA content and elevating SA content, which is in accordance
with recent reports (Figures 7, 8). Several studies demonstrate
that exogenously applied melatonin downregulates the genes
involved in ABA biosynthesis and subsequently upregulates
the genes responsible for ABA catabolism/degradation, leading
to a reduced ABA content and enhanced plant growth under
stress conditions (Sharma and Zheng, 2019; Zhan et al., 2019).
Environmental stress triggers the phenylalanine ammonia-lyase
enzymatic pathway, which contributes to the induction and
accumulation of endogenous SA (Wani et al., 2017; Pérez-
Llorca et al., 2019). The increased melatonin levels in plants
leads to enhanced SA levels, since melatonin performs an
upstream of SA synthesis and induces SA biosynthetic genes
(Lee et al., 2015).

Numerous studies have indicated the impact of environmental
stresses on plant proteins (Su et al., 2014). To adjust

Frontiers in Plant Science | www.frontiersin.org 10 April 2021 | Volume 12 | Article 593717

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-593717 April 1, 2021 Time: 12:3 # 11

Park et al. Melatonin Enhances the Tolerance and Recovery Mechanisms in Brassica juncea (L.) Czern. Under Saline Conditions

FIGURE 10 | Effect of melatonin with/without salt stress on protein content in
green mustard seedlings. The results were calculated from data for 4 (4DAT)
and 8 (8DAT) days. Treatment: control + water, control + 1 µM melatonin,
150 mM salt pre-treatment + water, 150 mM salt pre-treatment + 1 µM
melatonin. Values show the means ± SE (n = 3). Letters represent significant
differences at p < 0.05 in accordance with Duncan’s multiple range tests.

the osmotic pressure, plants produce proteins and other
metabolites that maintain cell balance (Kishor et al., 1995).
In the present study, salinity stress caused hypoxia, and the
soluble protein content decreased over 4 days. However, a
slight increase in protein content was observed in salinity-
damaged leaves by the end of experiment. This increase can
be attributed to the plants’ stress response and adaptation
to abiotic stresses (Chi et al., 2019). It has been observed
that melatonin induced protein biosynthesis and prevents
degradation; therefore, it sustains cell balance and physiologic
activities (Chen et al., 2020). By the end of day 8 (8DAT), our
findings showed that melatonin obviously raised the soluble
protein content in green mustard seedlings under normal
conditions. On day 4 (4DAT), we noticed an improvement
in protein content in salinity-damaged plants with melatonin
treatment, whereas, protein content clearly reduced on 8DAT
in damaged seedlings treated with melatonin. This can be
due to the stress-relieving effect of melatonin, which led to
protein catabolism.

Plants usually produce high ROS under salt stress condition,
which consequently causes oxidative damages, impaired
membrane lipid functions, enzyme inactivation, and impeded
metabolic activities (Huang et al., 2019). In the present

study, we observed that H2O2 level were remarkably high in
salinity-damaged plants, which agrees with previous reports.
Exogenous melatonin application obviously mitigated the
high H2O2 level in salinity-damaged plants by the end of
8 days (Figure 12B-2). This indicated that exogenously
applied melatonin may efficiently protect cell membranes
under salinity stress from oxidative damages. Owing to its
solubility in either water or lipid, melatonin can easily cross the
aqueous cytoplasm and lipid membranes, and prevent oxidative
damages by deactivating and scavenging toxic substances
(Venegas et al., 2012).

Plants have developed defensive mechanisms that consist
of antioxidants with enzymatic or non-enzymatic activity
to cope with oxidative damage and reduce excessive ROS
accumulation. Several studies have demonstrated that melatonin
upsurges the activity of enzymatic antioxidants under stressful
conditions (Ahmad et al., 2019; Sharma and Zheng, 2019).
Consistently, our results confirmed these previous works.
Melatonin increased SOD, CAT, and DPPH activities in both
unstressed and stressed seedlings. In the present study, the
activity of CAT and DPPH reduced in the salinity-damaged
plants, whereas flavonoid, SOD, and total phenolic content
increased in the salinity-damaged plants, compared with the
control plants. This shows the capability of antioxidants to
rapidly react toward environmental stresses. Depending on
the concentration of salt, SOD activity may increase, leading
to scavenging excessive ROS and reducing oxidative damages
(Song et al., 2006). Overall, our findings showed that the cross-
talk among melatonin and antioxidants contribute to defer
senescence in plants.

Amino acids directly or indirectly regulate plant responses
to environmental stresses (Ashraf and Harris, 2004). In our
experiment, salinity stress increased the amino acid contents
(Glu, Ser, Thr, Arg, and Pro) in green mustard seedlings. This
accumulation suggests that they have a role in osmotic adaptation
apart from their roles in metabolism (Azevedo Neto et al., 2009).
Several reviews have reported increased amino acid contents
under salt stress (Rare, 1990; Mansour, 2000). Moreover, root
application of melatonin rescued amino acid content in most
cases (except for Pro) in salinity-damaged seedlings during
the recovery period. The highest and lowest peaks belong to
glutamic acid (Glu) and cysteine (Cys), respectively, in salinity-
damaged plants with or without melatonin supplementation.
Glu functions in nitrogen metabolism and is commonly used
as a substrate for amino acid synthesis (Vance and Zaerr,
1990). Moreover, it plays a role in proline synthesis in
response to abiotic stresses (Planchet and Limami, 2015). El-
Shintinawy and El-Shourbagy (2001) found that the changes
in Glu levels are correlated with Cys metabolism in plants
under salt stress condition. These two amino acids act as
a precursor of glutathione, a molecule that plays a crucial
role in preventing ROS accumulation (Noctor and Foyer,
1998). Our results showed that root application of melatonin
rescued Glu and Cys contents in salinity-damaged green
mustard seedlings during the recovery period. This confirms
the influence of melatonin on the metabolic pathways of
these amino acids.
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FIGURE 11 | Effect of melatonin with/without salt stress on antioxidant content in green mustard seedlings. The results were calculated from data for 4 (4DAT) and 8
(8DAT) days. Treatment: control + water, control + 1 µM melatonin, 150 mM salt pre-treatment + water, 150 mM salt pre-treatment + 1 µM melatonin. Values show
the means ± SE (n = 3). Letters represent significant differences at p < 0.05 in accordance with Duncan’s multiple range tests.

The Arg accumulation in green mustard subjected to salinity
stress agrees previous works (Santa-Cruz et al., 1999). Rabe
and Lovatt (1984) indicated that the increased Arg content
in stressed plants can be due to de novo synthesis, because
it is used for ammonia detoxification during reduced growth.
The findings from this study showed that exogenous melatonin
application led to an increased Arg content in salinity-damaged
seedlings. Fan et al. (2015) showed the comprehensive influence
of melatonin on several metabolic pathways (amino acids,
organic acids, and carbohydrates) involved in plant resistance
toward cold stress.

Leucine content decreased in salinity-damaged plants by day
8. El-Shintinawy and El-Shourbagy (2001) hypothesized that the
reduction in leucine content may be due to the suppression
of acetolactate synthase activity under salt stress. Additionally,
previous reports demonstrated that changes in Leu content
have also been correlated with protein catabolism/metabolism
(Raggi, 1994); therefore, a decreased Leu content implies protein

synthesis improvement. The findings from the present study
showed that Leu accumulated in salinity-damaged green mustard
under melatonin treatment (Figure 9). Shi et al. (2015a)
reported Leu enhancement in melatonin-pretreated Bermuda
grass under salt stress.

Several studies have been conducted on Asp accumulation
in several plants species exposed to salt stress. They suggested
that this accumulation can be used in salt-tolerant mechanisms
and biosynthesis of the other amino acids (Azevedo Neto
et al., 2009; Farhangi-Abriz and Ghassemi-Golezani, 2016).
Our findings follow the same trend, as the Asp content
increased in salinity-damaged seedlings for 4 days. After
8 days, the Asp content reduced in salinity-damaged seedlings,
which may be due to the rapid Asp metabolism into the
other products (Queiroz et al., 2012). Asp accumulation
in salinity-damaged green mustard seedlings occurred after
melatonin application. Melatonin-pretreated plant, Cynodon
dactylon, enhanced Asp content under salt stress (Shi et al.,
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FIGURE 12 | Effect of melatonin with/without salt stress on H2O2 content in green mustard seedlings. DAB staining was used to visualize the accumulation of H2O2

in leaves on day 4 (4DAT; A-1) and day 8 (8DAT; B-1) of treatment. The H2O2 contents were calculated from data for 4 (4DAT; A-2) and 8 (8DAT; B-2) days.
Treatment: control + water, control + 1 µM melatonin, 150 mM salt pre-treatment + water, 150 mM salt pre-treatment + 1 µM melatonin. Values represent the
means ± SE (n = 3). Letters represent significant differences at p < 0.05 in accordance with Duncan’s multiple range tests.

2015a). This demonstrates the effect of melatonin on amino
acid metabolism.

A rapid increase was observed in the proline content in
salinity-damaged green mustard, which is in agreement with the
findings of previous studies on several plant species (Khattab,
2007; Bassuony et al., 2008). Accumulation of solutes called
osmoprotectants, such as proline, may be a plant’s strategy
to endure abiotic stresses (Dawood and El-Awadi, 2015; Liu
et al., 2018). The increased proline content has been associated
with enhanced plant performance under environmental stresses
(Nanjo et al., 1999). Furthermore, proline may play a role as
a reservoir of organic nitrogen that can be consumed during
the recovery period to help plants withstand environmental
stresses, such as salinity and drought (Rare, 1990; Sairam
and Tyagi, 2004). In the present study, root application of
melatonin led to a decreased proline content in salinity-
damaged seedlings. Earlier studies indicated improvement
in proline content in plants supplemented with a suitable
concentration of melatonin under abiotic stresses (Liu et al.,
2018; Ahmad et al., 2019). The observed decrease in proline
content may be attributed to proline decomposition due
to the stress-relieving effect of melatonin. Similarly, Zamani

et al. (2019) reported that exogenous melatonin treatment
reduced proline content in fenugreek (Trigonella foenum-gracum
L.) under drought stress. As described previously, proline
degradation is triggered in darkness and during stress relief,
and is catalyzed by PDH (proline dehydrogenase) and P5CDH
(1’-pyrroline-5-carboxylate dehydrogenase). Considering the
alleviating impact of melatonin on oxidative damage caused
by salt stress, proline degradation may be triggered during
stress relief (Antoniou et al., 2017; Zamani et al., 2019).
Additionally, proline degradation is needed to maintain growth
and development under salt stress.

In a nutshell, our results confirmed that almost 5-week-old
(38-day-old) salinity-damaged green mustard seedlings were
recovered significantly by exogenous melatonin application.
Our approach unraveled that exogenous melatonin can
effectively improve performance and yield of mustard seedlings
under either unstressed or stressed (salinity) conditions in
an eco-friendly manner for a more sustainable agriculture.
Future studies are needed to throw light on the genetic
mechanisms and metabolic pathways during the recovery
period in salinity-damaged green mustard plants under
melatonin treatment.
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