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Molecular marker technology is used widely in plant variety discrimination, molecular
breeding, and other fields. To lower the cost of testing and improve the efficiency
of data analysis, molecular marker screening is very important. Screening usually
involves two phases: the first to control loci quality and the second to reduce loci
quantity. To reduce loci quantity, an appraisal index that is very sensitive to a specific
scenario is necessary to select loci combinations. In this study, we focused on loci
combination screening for plant variety discrimination. A loci combination appraisal
index, variety discrimination power (VDP), is proposed, and three statistical methods,
probability-based VDP (P-VDP), comparison-based VDP (C-VDP), and ratio-based VDP
(R-VDP), are described and compared. The results using the simulated data showed
that VDP was sensitive to statistical populations with convergence toward the same
variety, and the total probability of discrimination power (TDP) method was effective
only for partial populations. R-VDP was more sensitive to statistical populations with
convergence toward various varieties than P-VDP and C-VDP, which both had the
same sensitivity; TDP was not sensitive at all. With the real data, R-VDP values for
sorghum, wheat, maize and rice data begin to show downward tendency when the
number of loci is 20, 7, 100, 100 respectively, while in the case of P-VDP and C-VDP
(which have the same results), the number is 6, 4, 9, 19 respectively and in the case
of TDP, the number is 6, 4, 4, 11 respectively. For the variety threshold setting, R-VDP
values of loci combinations with different numbers of loci responded evenly to different
thresholds. C-VDP values responded unevenly to different thresholds, and the extent
of the response increased as the number of loci decreased. All the methods gave
underestimations when data were missing, with systematic errors for TDP, C-VDP,
and R-VDP going from smallest to biggest. We concluded that VDP was a better loci
combination appraisal index than TDP for plant variety discrimination and the three
VDP methods have different applications. We developed the software called VDPtools,
which can calculate the values of TDP, P-VDP, C-VDP, and R-VDP. VDPtools is publicly
available at https://github.com/caurwx1/VDPtools.git.
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INTRODUCTION

Plant breeding materials in the hands of breeders and newly bred
varieties in the market have emerged in large amounts along
with the development of breeding technology, improvement of
industry regulations, and industrialization of seed businesses
(Yang et al., 2014, 2020). This has resulted in an increased demand
for methods that can distinguish plant varieties for application in
molecular plant breeding, new plant variety protection, value for
cultivation and use tests, seed market management, and rights-
defending or anti-counterfeiting activities of breeders (Varshney
et al., 2006; Bonow et al., 2009; Julier et al., 2018). Thanks
to the advancement of biology, molecular marker technology
is now featured with a short testing period, fast processing of
high-throughput samples, and stable results and has become
a major mainstream method for plant variety identification
(Wang et al., 2018). International Union for the Protection
of New Varieties of Plants (UPOV) has raised three models
of distinctness, uniformity, and stability (DUS) tests by using
molecular marker data. Model 1 is to use functional molecular
markers that are linked to morphological characters to predicate
the phenotypic data; model 2 is to set up an application model
that combines both morphological characters and molecular
markers by analyzing the relationship between the two; model
3 is to set up a brand new and independent appraisal system
with molecular marker characteristics (International Union for
the Protection of New Varieties of Plants, 2011). By raising these
models, UPOV confirmed that molecular markers could play a
positive role in examining DUS.

Currently, simple sequence repeats (SSR) and single
nucleotide polymorphisms (SNP) are the two most frequently
used DNA markers. The increased availability of reference
genomes of many plant species and the lowering sequencing
costs have allowed the discovery of large numbers of SSR and
SNP loci (Chen et al., 2014; Zhang et al., 2015; Vieira et al.,
2016; Liu et al., 2017). To keep low cost and high throughput of
sample processing, it is common to use capillary electrophoresis
(e.g., ABI3730 DNA analyzer) as SSR genotyping platforms
and Kompetitive Allele-Specific PCR (e.g., LGC SNP Line) as
SNP genotyping platforms. However, these platforms usually
require the number of loci to be controlled at the order of
magnitude from E+1 to E+2, and that is why we need to use the
method of molecular marker screening to determine a smaller
but highly effective group of markers (Semagn et al., 2014).
Molecular marker screening refers to the screening of candidate
loci that share a certain type of molecular marker. Such screening
usually involves two phases: the first to control loci quality and
the second to reduce loci quantity. The traditional method of
molecular marker screening for plant variety discrimination is to
generate fingerprint data of all candidate loci of representative

Abbreviations: PVP, plant variety protection; VCU, value for cultivation and use;
UPOV, International Union for the Protection of New Varieties of Plants; SSR,
simple sequence repeats; SNP, single nucleotide polymorphisms; DP, probability of
discrimination power; TDP, total probability of discrimination power; VDP, variety
discrimination power; P-VDP, probability-based variety discrimination power;
C-VDP, comparison-based variety discrimination power; R-VDP, ratio-based
variety discrimination power; VDD, variety difference degree.

samples, calculate appraisal indices such as position on the
genetic map, genetic diversity, polymorphism information
content, and minor allele frequency, and then set the sequence
and threshold for the molecular markers based on these indices
to decide the final loci combinations (Chakraborty et al., 1988;
Yamasaki et al., 2005; Yoon et al., 2007; Kavakiotis et al., 2015).
In previous research, the performance of loci combinations
was usually appraised by randomly selecting different sizes of
SNP panels, calculating the genetic distance matrices of the
various panels and then conducting correlation analyses of such
matrices (Chen, 2016; Liu et al., 2017). There has not been any
systematic description of loci combination appraisal methods.
The fast development of molecular biotechnology has made
available many recently discovered molecular markers with high
quality, which makes it less efficient to screen out a few target
loci by simple methods such as ranking or threshold setting.
Thus, the traditional method mentioned earlier is sufficient for
the first phase of screening (control of loci quality) but not the
second phase (reduction of loci quantity, or we may call it “loci
combination screening”), which is especially important to lower
the cost of acquiring DNA fingerprint data and to improve the
efficiency of data analysis.

Loci combination screening aims to optimize the number
of qualified loci combinations and screen for combinations
fit for specific application scenarios but with fewer loci that
collectively provide an equivalent or improved outcome. In
previous research, this issue was converted to a response
matrix constructed by markers and varieties, and then, some
algorithms such as an integer linear programming formulation
were proposed to determine the minimum loci combination, but
when the response matrix became very large, the computational
complexity of the algorithms would rise sharply, eventually
leading to no calculation results (Gale et al., 2005; Fujii et al.,
2013). In case there is a large number of loci or samples, we
can achieve such an aim by using a combinatorial optimization
algorithm (Rousselle et al., 2015; International Union for the
Protection of New Varieties of Plants, 2018, 2019). In this
algorithm, an appraisal index is needed as its fitness function,
and the fitness function shall be a converging one. In terms
of plant variety discrimination, the appraisal index refers to
a calculation method that describes the capability of a loci
combination to distinguish different varieties. It works mainly as
the fitness function of a combinatorial optimization algorithm,
which can be used to screen out targeted loci combinations with
fewer loci. In previous research, some calculation methods of
fitness function have been mentioned. For example, the standard
deviation of the scaled physical distance and genetic distance
intervals between selected markers can be used to evaluate SNP
panels, but the method requires a lot of genetic background
information of loci and has high time complexity (Rousselle et al.,
2015). Another example is using the number of varieties showing
unique genotypes to evaluate SNP combinations, but the method
did not provide a clear definition and statistics for its important
parameter, unique genotypes, and has never proved its validity
systematically (Du et al., 2019). In this study, we looked for a
loci combination appraisal index that was not only suitable for
the overall appraisal of loci combinations but also sensitive to
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plant variety discrimination to act as the fitness function of the
algorithm to screen loci combinations. Such an appraisal index
would become the base and prelude of further research, such
as selecting a subset of markers using an optimal combination
algorithm. From the aspect of methodology and computer
science, we believe that the appraisal index should: (1) make no
reference to the genetic background information of the loci; (2)
take no account of linkages or associations between loci; and (3)
require relatively low computational complexity, especially as low
time complexity and space complexity as possible.

Appraisal indices to meet similar targets have been used
in other scientific fields. For example, the Simpson index is
an appraisal index for community diversity in ecology and is
the first statistical index to use probability theory to describe
individual similarity (Simpson, 1949). This index evolved into
the Gini–Simpson index, which describes the probability of
interspecific encounters in ecology (Lyons and Hutcheson,
1979; Caso and Gil, 1988). Subsequently, the Gini–Simpson
index has been applied widely in other scientific fields and
has evolved further into various professional appraisal indices
that use similar statistical methods (or equations; McIntosh,
1967; Hunter and Gaston, 1988; Dillon et al., 1993; Gorelick,
2006). Another example is the probability of discrimination
power (DP), a statistical index initially proposed to describe
individual differences using human blood types (Jones, 1972).
DP evolved into an appraisal index that describes individual
differences using a single genetic marker and is used in grapevine
varietal identification and human forensic identification (Tessier
et al., 1999; Pitterl et al., 2010; Butler, 2014). Total probability
of discrimination power (TDP) is a comprehensive capability
appraisal index used to identify individuals by multiple loci.
DP indicates the probability of different molecular marker
genotypes of two individuals randomly selected in a group,
whereas TDP provides a comprehensive appraisal of multiple
molecular markers using a multiplication law on the basis of
DP (Jones, 1972). Although TDP addresses issues similar to
plant variety discrimination, there are two main problems in
applying this index for plant variety discrimination. First, TDP
is fundamentally a DP based on a single locus and thus is not
efficient in appraising the overall performance of a combination
of multiple loci. Second, the TDP results quickly approach the
maximum value as the number of loci increases, which leads
to very subtle differences among TDP results for combinations
with loci above a certain number. This tendency makes TDP a
non-efficient appraisal index as the fitness function of optimal
combination algorithm to screen a subset of loci.

In this study, we defined three variety discrimination power
(VDP) statistical methods for plant variety discrimination
according to the characteristics of loci combination screening.
Simulated data were used to analyze the sensitivity of TDP and
the three VDP methods to various types of variety differences.
Then, real sorghum, wheat, maize, and rice genotype data were
used to verify the effectiveness of these statistical methods on loci
combinations with different numbers of loci and determine the
universality of VDP for different species and different molecular
marker types. Finally, we compared the influence of different
variety threshold settings and missing data on these statistical

methods. The aim was to transform the convergence of the fitness
function for combinatorial optimization algorithms to obtain the
very high variety discrimination sensitivity needed for appraisal
indices. We found that the constructed VDP appraisal index was
very efficient for plant variety discrimination.

MATERIALS AND METHODS

Analysis Methods
Variety Discrimination Power
The integrity of multiple loci or loci combinations was appraised
using VDP, a simple but effective statistical index, as the criterion
to evaluate the capability of each loci combination to discriminate
all given plant varieties. VDP uses a statistical method based on
the idea that the genotype of a loci combination can be used to
identify specific plant varieties. Theoretically, when a certain loci
combination can distinguish all given varieties, the VDP of such
a loci combination is 1; otherwise, it is 0. If only partial varieties
can be distinguished, the VDP shall be a value between 0 and 1,
representing a different degree of discrimination capability. Note
that VDP is not a binary value. The method uses a statistical
inference definition according to genotype differences among
all given varieties so that the distinguishing capability of a loci
combination can be calculated using simple statistics with no
need to study the detailed genetic information of each locus.

Variety discrimination power is calculated in three steps. First,
the genotypes of loci combinations are used to determine the
difference between two randomly given samples by calculating
several different loci, percentage of different loci, or genetic
distances (Nei and Roychoudhury, 1974; Nei, 1978). The
calculation method is chosen according to the types of molecular
markers used or the order of magnitude of loci quantity. Second,
the threshold value of variety genotype difference (hereafter
referred to as “variety threshold setting”) is defined, and the two
given samples are classified as the same variety or not the same
variety, according to the difference value calculated in the first
step. The variety threshold value of genotype difference is set
based on the genetic background of each species (Heckenberger
et al., 2002) or by referring to the current standards of the species.
Taking plant variety protection as an example, the calculation
method of its variety threshold setting can refer to Model 2 raised
by UPOV, i.e., “Calibration of threshold levels for molecular
characteristics against the minimum distance in traditional
characteristics” (Achard et al., 2020). Third, the efficiency of the
loci combinations in distinguishing the varieties is evaluated by
statistical analysis and normalization of the threshold defining
results. For statistical purposes, we tested the following research
hypothesis for VDP values of loci combinations: when all given
samples belong to different varieties and the loci combination
can correctly describe such phenomenon, the statistical value of
VDP shall be its theoretical maximum value. The null hypothesis
shall then be: when all given samples belong to different varieties,
but the loci combination identifies all samples as one variety, the
statistical value of VDP shall be its theoretical minimum value.
The statistical method used in this step is the key to the VDP and
is the focus of this study. We proposed three statistic methods for
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VDP: probability-based VDP (P-VDP), comparison-based VDP
(C-VDP), and ratio-based VDP (R-VDP).

Probability-Based Variety Discrimination Power
Probability-based variety discrimination power uses the
principles of permutation and combination and calculates
the probability of selecting two samples that belong to
different varieties after two times of random sampling without
replacement. Samples identified as the same variety according to
the genotypes of loci combinations and variety threshold results
are classified into one repeated group (t groups in total); then,
groups with the same number of samples are further classified
into one category (n categories in total). The number of samples
in a group is Ri, which also indicates the repeated times that the
samples are identified as the same variety. P-VDP was calculated
as follows:

P-VDP = 1−

∑n
i=1

(
C2

Ri
× C1

Ti

)
C2∑n

i=1 RiTi

(1)

where n is the total number of categories, Ri is the number
of samples in one group in category i, Ti is the number of
groups in category i,

∑n
i =1 Ti = t, C2

Ri is the combined number
of picking two unordered outcomes from Ri possibilities, C1

Ti
is the combined number of picking one unordered outcome
from Ti possibilities,

∑n
i =1 RiTi is the total number of all

samples, and C2∑n
i =1 RiTi

is the combined number of picking two
unordered outcomes from all samples. Ri is a positive integer
≥1. For example, if Ri = 1, then each group from category i
contains one sample; if Ri = 2, then each group from category
i contains two samples.

When a given loci combination has missing genotype data,
the variety threshold cannot be used to determine if the samples
belong to the same variety, so Ri and Ti cannot be calculated
precisely. Therefore, P-VDP will not be effective for evaluating
loci combinations with missing data.

Comparison-Based Variety Discrimination Power
Comparison-based variety discrimination power uses global
traversal to compare two samples and calculates the proportion
of pairs of samples out of all pairs compared that were
identified as different varieties according to the genotypes of loci
combinations and variety threshold defining results. C-VDP was
calculated as follows:

C-VDP =

∑m
i=1
∑m

j=1 dij

m(m− 1)
, (i 6= j) (2)

where m is the total number of samples and dij is the comparison
result; dij = 1 when samples i and j are determined as two
different varieties; otherwise, dij = 0. Note that samples i and j
are always different samples; that is, the value of i is never equal
to the value of j.

Ratio-Based Variety Discrimination Power
Ratio-based variety discrimination power uses the principle of
Occam’s razor (Thorburn, 1915) and calculates the proportion

of the number of groups with samples identified as different
varieties according to the genotypes of loci combinations and
variety threshold defining results out of the total number of
samples. R-VDP was calculated as follows:

R-VDP =
D+

∑p
k=1 Gk

m
(3)

where D is the number of groups that contain only one sample,
which was not identified with any other sample as the same
variety, p is the total number of categories in which a group
contains two or more samples, Gk is the number of groups in
category k, and m is the total number of samples. D+

∑p
k =1 Gk

is the total number of groups, equivalent to
∑n

i=1 Ti in Eq. 1.

Data Sources and Processing
Dataset 1 contained simulated data of variety difference degree
(VDD). VDD is generally determined by the diversity of varieties
in a sample population; thus, statistical populations with different
quantities of varieties can be used to represent those with gradient
VDD. We simulated genotype data of 10 multiallelic SNP loci
of statistical populations with different quantities of varieties.
A multiallelic locus means that the locus contains four types of
allelic variation. Gradient VDD simulated four arrays of data
through arithmetic progression with a single increment variable.
Each array comprised 21 statistical populations with a fixed
size of 206 samples in a population. The variable referred to
the two independent variables of P-VDP, namely the number
of samples in one repeated group (Ri) and the corresponding
number of repeated groups (Ti). In the first array, statistical
populations with a convergence of multiple samples to a certain
variety were simulated by an arithmetic progression of Ri; and in
the other three arrays, statistical populations with a convergence
of multiple samples to multiple varieties were simulated by an
arithmetic progression of Ti with fixed Ri. The fixed Ri was
increased gradually from the second to the fourth array. The
specific variable settings of the four arrays of simulated data
are shown in Table 1, and the simulated data are given in
Supplementary Tables 1–4. Supplementary Table 5 showed
real genotype data of sorghum (Casa et al., 2005) and wheat
(Hao et al., 2011) samples based on SSR loci, as well as real
genotype data of maize (Tian et al., 2015) and rice (Zhao
et al., 2010) samples based on SNP loci. To provide qualified
genotype data for TDP and the VDP statistic methods, we
randomly extracted 20 loci from SSR and 100 loci from SNP
with no missing data to form a new set of real genotype data,
which we call dataset 2 (Supplementary Table 6). Dataset 2
contained data of the four species as mentioned earlier with
101, 250, 96, and 391 samples. It is possible to discriminate
1.05E+6 or 1.27E+30 varieties with 20 or 100 loci when the
allele number of each locus equals 2. However, in dataset 2,
the allele number of each SSR locus is always larger than
2, so theoretically speaking, 20 loci from SSR is sufficient to
evaluate the variety discrimination rate of the samples even if
all the samples belong to different varieties. Dataset 3 contained
simulated genotype data derived from dataset 2 with different
rates of missing genotype data. Missing data of each sample were
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TABLE 1 | Variable settings of SNP simulated data of gradient variety
difference degree.

No. Data array 1 Data array 2 Data array 3 Data array 4

D Ri Ti D Ri Ti D Ri Ti D Ri Ti

1 204 2 1 204 2 1 201 5 1 206 10 0

2 196 10 1 196 2 5 196 5 2 196 10 1

3 186 20 1 186 2 10 186 5 4 186 10 2

4 176 30 1 176 2 15 176 5 6 176 10 3

5 166 40 1 166 2 20 166 5 8 166 10 4

6 156 50 1 156 2 25 156 5 10 156 10 5

7 146 60 1 146 2 30 146 5 12 146 10 6

8 136 70 1 136 2 35 136 5 14 136 10 7

9 126 80 1 126 2 40 126 5 16 126 10 8

10 116 90 1 116 2 45 116 5 18 116 10 9

11 106 100 1 106 2 50 106 5 20 106 10 10

12 96 110 1 96 2 55 96 5 22 96 10 11

13 86 120 1 86 2 60 86 5 24 86 10 12

14 76 130 1 76 2 65 76 5 26 76 10 13

15 66 140 1 66 2 70 66 5 28 66 10 14

16 56 150 1 56 2 75 56 5 30 56 10 15

17 46 160 1 46 2 80 46 5 32 46 10 16

18 36 170 1 36 2 85 36 5 34 36 10 17

19 26 180 1 26 2 90 26 5 36 26 10 18

20 16 190 1 16 2 95 16 5 38 16 10 19

21 1 205 1 6 2 100 6 5 40 6 10 20

D, number of distinct samples; Ri , number of samples in one repeated group; and
Ti , number of repeated groups.

created randomly with proportions that increased progressively
by 10% applied to the genotype data subsets in dataset 2 (of
only sorghum and maize samples), which had no missing data.
The rate of missing data was increased gradually from 0 to 50%
(Supplementary Tables 7,8).

Targeting at TDP and the three VDP methods, we used dataset
1 and dataset 2 to analyze the different sensitivity of variety
discrimination of these methods, dataset 2 (only sorghum and
maize samples) to analyze the sensitivity on variety threshold
setting, and dataset 3 to analyze the stability in case of missing
data. Sensitivity analysis on variety discrimination indicated how
sensitive the output value was to the input value of variety
difference. Sensitivity analysis on threshold settings evaluated the
influence of different variety threshold settings on the output
value. Stability analysis on missing data indicated the adaptability
of the methods on the general assumption that some genotype
data of the given loci combination are missing.

The statistical differences between the analysis results under
different conditions were all analyzed by the Jonckheere–Terpstra
test, one of the rank-based nonparametric tests by SPSS software
(IBM Corp. Released 2017. IBM SPSS Statistics for Windows,
Version 25.0. Armonk, NY, United States: IBM Corp.). For
the three datasets, the difference between two randomly given
samples was calculated by the number of different loci in the
first step of the three VDP methods. In the second step, the
variety threshold was set as “different variety when number of
different loci of samples was≥1” for sensitivity analysis on variety

discrimination and missing data, and “different variety when
number of different loci of samples was≥M” (M is 1, 2, 3, or 4) for
sensitivity analysis on variety threshold setting. We developed the
software called VDPtools, which can calculate the values of TDP,
P-VDP, C-VDP, and R-VDP. The types of molecular markers
supported by the data file include SSR and SNP. Variety threshold
setting methods that can be freely changed by users include the
number of different loci and the percentage of different loci.
VDPtools is publicly available at https://github.com/caurwx1/
VDPtools.git.

RESULTS

Sensitivity Analysis of Four Loci
Combination Appraisal Methods to
Simulated Data of Gradient Variety
Difference Degree
Statistical populations were used to simulate gradient VDD
to verify the variety discrimination sensitivity of the appraisal
methods with different loci combinations. The results for the four
simulated data arrays are shown in Figure 1 and Supplementary
Table 9. For all the simulated data, the proportion of repeated
samples in the group shall grow with the sequence number of
the calculated groups (i.e., the value of x-axis), so theoretically,
the calculation results (i.e., the value of y-axis) of an appraisal
method shall keep going down. The more even and remarkable
such downward tendency is, the more sensitive the appraisal
method is in terms of variety discrimination. When the trend
of the appraisal results changes in a linear regression model,
the slope rate of a univariate linear equation can be used to
estimate variety discrimination sensitivity. In Data Array 1,
repeated samples were those that converged toward the same
variety. Figure 1A shows that with the rise of the proportion
of repeated samples, the differences between the TDP values
and 1 dropped very gradually from level E-10 to E-3 for
the first 16 statistical populations, and the TDP values of the
next four statistical populations (17–20) dropped dramatically
from 0.987 to 0.794, then to 0.09 for the last population. The
estimated VDP values of all three methods dropped evenly
from 1 to 0. The P-VDP values were equivalent to the C-VDP
values, with the trend lines of both close to a univariate
quadratic linear equation; the trend lines of R-VDP sloped down
as a univariate linear equation with a slope rate of -0.0487.
These results show that for Data Array 1, TDP had low and
uneven variety discrimination sensitivity, whereas the three VDP
methods all had a high sensitivity. In Data Array 2, repeated
samples were those that converged toward various varieties.
Figure 1B shows that with the rise of the proportion of repeated
samples, all four methods showed a univariate linear equation
trend with increasing slope rates of -0.0242, -0.0002, -0.0002,
and -7E-11 and minimum estimated values of 0.515, 0.995,
0.995, and 0.999999993 for R-VDP, P-VDP, C-VDP, and TDP,
respectively. For Data Array 2, R-VDP had the highest variety
discrimination sensitivity, P-VDP and C-VDP had very low
sensitivity, and TDP showed no sensitivity. Data Arrays 3 and 4
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FIGURE 1 | Sensitivity of four loci combination appraisal methods on simulated data of gradient variety difference degree. (A) In Data Array 1, repeated samples
were those that converged toward the same variety. (B–D) In Data Array 2, 3, and 4, repeated samples converged toward various varieties but with decreasing
numbers of repeated groups.

had the same type of repeated samples as Data Array 2 but
with decreasing numbers of repeated groups. Figures 1C,D
show that R-VDP had decreasing slope rates of -0.0386 and -
0.0437 and minimum estimated values of 0.223 and 0.126 for
Data Arrays 3 and 4, respectively. The estimated values of
P-VDP and C-VDP were equal, with slightly decreasing slope
rates of -0.0009 and -0.0021 and minimum values of 0.981
and 0.957 for the two arrays. TDP maintained horizontal slope
rates of -5E-8 and -5E-6 and minimum values of 0.999998
and 0.99990, respectively. The Jonckheere–Terpstra tests showed
statistically significant differences in estimated values between
different appraisal methods, and the p-values of Figures 1A–D
were 9.11E-8, 1.19E-18, 1.22E-18, and 1.31E-15, respectively.
These results show that for Data Arrays 3 and 4, R-VDP had
the highest variety discrimination sensitivity and was evenly
affected by different degrees of convergence; that is, the sensitivity
increased when the degree of convergence increased. P-VDP and
C-VDP showed slowly increasing sensitivity and were slightly
affected by different degrees of convergence, and TDP showed

an increasing sensitivity trend and was little affected by different
degrees of convergence.

Sensitivity Analysis of Four Loci
Combination Appraisal Methods on
Genotype Data of Different Plant
Species, Different Molecular Marker
Types, and Different Numbers of Loci
For a certain fixed sample population, the capacity of a loci
combination to discriminate different varieties weakens when the
number of its loci reduces. Therefore, data of loci combinations
with different numbers of loci can also be used to test the variety
discrimination sensitivity of the different appraisal methods.
To highlight the relationship mentioned earlier between loci
combination’s discrimination capacity and its loci number, we
used the four groups of real data in dataset 2 as four fixed sample
populations and gradually reduced the number of loci in them by
nested inclusion. In this way, we got four groups of gradient data.
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We then calculated the estimated values of the four groups of
data by the four appraisal methods and compared their changing
tendency to evaluate the sensitivity of the four methods, as shown
in Figure 2. The X-axis in Figure 2 represents the different
number of loci, and the Y-axis represents the values calculated
by the four appraisal methods. Variety threshold setting has
a direct influence on the analysis results, so the thresholds
of different species were preset uniformly as “different variety
when number of different loci of samples was ≥1,” to highlight
and compare the different trends shown when we use different
appraisal methods with varied statistical principles to evaluate
data of different species. The more remarkable the downward
tendency is, the more sensitive the appraisal method is. Data
of sorghum (Figure 2A) and maize (Figure 2C) show great
similarity: when the R-VDP line drops dramatically in an arc to
0.1, lines of the other three methods stay stable for a long time
and then drop slightly to 0.8. For wheat data (Figure 2B), when
the R-VDP line stays stable, the lines of the other three methods
also stay stable; when the R-VDP line drops quickly to 0.1, the
lines of the other three methods drop slowly to 0.8. For rice data

(Figure 2D), when the R-VDP line drops from 0.92 to 0.01 in
slope, P-VDP and C-VDP lines drop to 0.46 in an arc, and the
TDP line drops to 0.45 in an arc after keeping stable (>0.99)
for a while. The sensitivity level of each method is measured by
order of magnitude of the difference between 1 (the theoretical
maximum value) and the calculated value. The bigger the order of
magnitude is, the more sensitive the method is and vice versa, as
shown in Supplementary Table 10. When the order of magnitude
reaches E-2, we can see a trend of changes in Figure 2, so we use
E-2 as the threshold setting value that triggers a turning point
when using the four methods to analyze the data of different
species: TDP lines for sorghum, wheat, maize, and rice data begin
to show downward tendency when the numbers of loci are 6, 4,
4, and 11, respectively, whereas in the case of P-VDP and C-VDP
(which have the same results), the numbers are 6, 4, 9, and 19,
respectively, and in the case of R-VDP, the numbers are 20, 7, 100,
and 100, respectively. It can be concluded that the R-VDP line
drops first, followed by P-VDP and C-VDP lines, and then the
TDP line at the last. What is more, there is a common rule among
the four species: when the order of magnitude of the sensitivity

FIGURE 2 | Sensitivity of four loci combination appraisal methods on real data of gradient loci numbers. Real data contained genotype data of (A) sorghum samples
based on SSR loci, (B) wheat samples base on SSR loci, (C) maize samples based on SNP loci, and (D) rice samples base on SNP loci.
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level of TDP reaches E-4, that of R-VDP can reach E-1 (with that
in the case of wheat reaches E-2 as an exception), and those of
P-VDP and C-VDP stay in between. The Jonckheere–Terpstra
tests of sorghum, maize, and rice showed statistically remarkable
differences between the four appraisal methods, with a p-value
of 7.79E-9, 2.19E-13, and 7.36E-10, respectively, whereas the
Jonckheere–Terpstra test of wheat showed the opposite, with a
p-value of 0.39. In all cases, R-VDP had the greatest sensitivity,
followed by C-VDP, P-VDP, and TDP.

Relationship Between Probability-Based
Variety Discrimination Power and
Comparison-Based Variety
Discrimination Power
The results in section “Sensitivity analysis of four loci combination
appraisal methods to simulated data of gradient variety difference
degree” and “Sensitivity analysis of four loci combination appraisal
methods on genotype data of different plant species, different
molecular marker types, and different numbers of loci” showed
that P-VDP and C-VDP produced the same results despite
the different equations they used. To explain these results, the
equation for C-VDP was examined using comparison rules to
help clarify the relationship between these two methods.

In practical applications, a “discrimination chain” often occurs
when judging if two samples belong to the same variety. For
example, after random selection and comparison, if samples A
and B are identified as the same variety, meanwhile samples B
and C are also identified as the same variety, then it stands to
reason that samples A and C can be classified as the same variety.
If comparisons of any two of all the samples show the same
“discrimination chain” characteristic, C-VDP can be converted
to calculate the number of pairs of samples that are identified as
the same variety as follows:

C-VDP = 1−
2
∑n

i=1

(
C2

Ri
× C1

Ti

)
m(m− 1)

(4)

where m is the total number of samples, n is the total number of
categories, Ri is the number of samples in one group in category
i, Ti is the number of groups in category i, C2

Ri is the combined
number of picking two unordered outcomes from Ri possibilities,
and C1

Ti is the combined number of picking one unordered
outcome from Ti possibilities. In Eq. 1,

∑n
i =1 RiTi is the multiply

accumulated result of Ri and Ti, equaling m the total number of
all samples. Thus, it can be deduced that Eq. 1 is equivalent to
Eq. 4, so C-VDP is equivalent to P-VDP when a “discrimination
chain” occurs in sample comparisons.

Loci combinations with no missing genotype data were picked
randomly from dataset 2 to verify the relationship between the
comparison results of any two samples and the “discrimination
chain,” taking the calculation of VDD by the number of different
loci as an example. When samples perfectly matched the variety
threshold, that is, when the number of different loci was 0,
the samples were defined as the same variety. When samples
only partially match the variety threshold, that is, when the
number of different loci was less than L (L > 1), the samples

can also be defined as the same variety. Thus, when the variety
threshold was set as “perfect match,” the comparison results of
any two samples followed the “discrimination chain,” rendering
C-VDP equivalent to P-VDP, but when the variety threshold was
set as “partial match,” some of the comparison results did not
follow the “discrimination chain” because of the inconformity
of different loci within the threshold, rendering C-VDP not
equivalent to P-VDP. For P-VDP, samples are identified as “the
same variety,” so when there is a “partial match,” there will be
samples identified as “the same variety” that do not conform
with the “discrimination chain”; therefore, the variety threshold
of P-VDP must be set as “perfect match.”

Influence of Different Variety Thresholds
on Different Marker Genotype Data Used
to Evaluate Variety Discrimination Power
According to the definition of DP, the genotype frequency used
in TDP makes the situation equivalent to that when the variety
threshold is set as a “perfect match.” Because, for P-VDP, the
samples are identified as “the same variety,” the variety threshold
must be set as “perfect match.” Therefore, the variety threshold
parameter influences only the output values of C-VDP and
R-VDP, so this setting was evaluated for C-VDP and R-VDP
using dataset 2 (of only sorghum and maize samples). The
sensitive zone of the variety threshold setting was determined by
calculating the difference in VDP values on the same number
of loci with adjacent threshold settings and then comparing
the differences with different numbers of loci. As shown in
Figure 3, lines of four different colors represent the influence
of four threshold settings on C-VDP or R-VDP. The titles (i.e.,
C-VDP:M) referred to “different variety when the number of
different loci of samples was≥M (M is 1, 2, 3, or 4).” For sorghum
data, Figures 3A,C showed that change of variety threshold value
could have a dramatic influence on C-VDP in partial range
and even influence on R-VDP in full range. Differences among
C-VDP values calculated with different threshold settings at more
than 10 loci were limited within 0.1, and differences among
C-VDP values at less than 10 loci were up to 0.8. An increase
of one locus in the minimum value of variety threshold value
could bring a decrease of 0.15 in the R-VDP value. For maize
data, Figures 3B,D showed that change of variety threshold value
could have a dramatic influence on both C-VDP and R-VDP in
partial range. When analyzing the different values of a certain
statistical method with the same number of loci but different
threshold values, we found that: for C-VDP, the difference was
less than 0.01 when the number of loci is larger than 20, less than
0.1 when the number of loci is between 10 and 20, and 0.5 at a
maximum when the number of loci is smaller than 10; for R-VDP,
the difference was less than 0.1 when the number of loci is larger
than 27, and 0.6 at maximum when the number of loci is smaller
than 26. The threshold setting thus has an influence on VDP
values to an extent; however, the Pearson correlation coefficient
between values calculated by the same statistical method for the
same dataset under different threshold settings is always larger
than 0.9. These results showed that the output value of R-VDP
was more influenced by the variety threshold than the output
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FIGURE 3 | Influence of different variety thresholds on estimated C-VDP and R-VDP values. Genotype data of sorghum samples based on SSR loci is used to
evaluate the influence of different variety thresholds on (A) C-VDP and (C) R-VDP. Genotype data of maize samples based on SNP loci is used to evaluate the
influence of different variety thresholds on (B) C-VDP and (D) R-VDP. Suffix number after C-VDP or R-VDP indicates the threshold setting. For example, C-VDP:1
means the variety threshold of C-VDP was set as “different variety when number of different loci of samples was ≥1.”

value of C-VDP, and the same statistical method showed similar
trends on different varieties or different molecular markers.

Stability Analysis of Three Loci
Combination Appraisal Methods on
Datasets With Missing Data
Genotype data with missing loci combinations frequently occur
in molecular tests, so for practical application, the stability of
different appraisal methods on datasets with missing data should
be determined. We used dataset 2 (of only sorghum and maize
samples) and dataset 3 with missing data rates of 10, 20, 30,
40, and 50%, which is derived from dataset 2, to estimate the
stability of TDP, C-VDP, and R-VDP in case of missing data.
The stability of each appraisal method in case of missing data
was measured using the correlation coefficient between the value
for complete data and the values for different missing data rates;
a small coefficient indicates low stability and vice versa. For

TDP, the values for both molecular markers overlapped for all
the datasets tested, as shown in Figures 4A,B. The correlation
coefficients for the SSR and SNP loci with 50 and 0% missing
data rates were 0.9973 and 0.9999, respectively, which indicated
TDP was remarkably stable in missing data and different numbers
of loci. For C-VDP, the values for both molecular markers for
the datasets with missing data rates of 30% or less and loci
numbers more than 10 were similar, which indicated C-VDP
had high stability within this scope, as shown in Figures 4C,D.
However, the correlation coefficients for SSR and SNP loci
with 50 and 0% missing data rates were 0.8091 and 0.8994,
respectively, and the average differences of C-VDP values were
0.0491 and 0.0091, respectively, which indicated C-VDP had
medium-level stability when missing data rates were more than
30%, and loci numbers were less than 10. For R-VDP, the values
for both molecular markers at the different missing data rates had
very little overlap, and the differences were greater than they were
for C-VDP, as shown in Figures 4E,F. The average differences
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FIGURE 4 | Influence of different missing data rates on the stability of three loci combination appraisal methods. Genotype data of sorghum samples based on SSR
loci is used to evaluate the influence of different missing data rates on the stability of (A) TDP, (C) C-VDP, and (E) R-VDP. Genotype data of maize samples based on
SNP loci is used to evaluate the influence of different missing data rates on the stability of (B) TDP, (D) C-VDP, and (F) R-VDP. Suffix number after TDP, C-VDP, or
R-VDP indicates the missing rate of a dataset. For example, TDP:0.5 means a dataset with missing data rates of 50% was used to estimate the stability of TDP.

were 0.0934 and 0.0382 for the SSR and SNP loci, respectively.
The correlation coefficients between SSR loci were 0.9804 with
10 and 0% missing data and 0.8375 with 50 and 0% missing data.
For the SNP loci, the correlation coefficients were 0.9973 with

10 and 0% missing data and 0.7577 with 50 and 0% missing data,
which indicated that R-VDP was very unstable in missing data
with all the datasets tested. Overall, these results showed that SSR
loci had lower stability in missing data than SNP loci, and TDP
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was the most stable, followed by C-VDP and R-VDP, which was
the most unstable.

DISCUSSION

Deduction of and Comparison Between
Different Statistic Methods of Loci
Combination Appraisal Indices
In the individual discrimination rules of human forensic
identification, DP and TDP are used to evaluate the capability
of a genetic marker system to discriminate unrelated individuals.
Molecular marker screening for plant variety discrimination
potentially could use TDP to evaluate loci combinations.
However, our results showed that TDP had very low sensitivity
to discriminate plant variety differences and thus cannot be
used to screen loci combinations. The main aim of screening
is to find loci combinations which contain loci with orders of
magnitude from E+1 to E+2 to replace those which contain loci
with orders of magnitude from E+3 to E+4. To do this, a new
index is needed to evaluate the performance of loci combinations
to help optimize them. We proposed VDP as an appropriate
appraisal index for loci combination screening for plant variety
discrimination. The index uses combinations of multiple loci
to calculate the performance of each loci combination in every
sample. The results showed that VDP had high sensitivity to plant
variety differences, which confirmed VDP as the fitness function
of optimal combination algorithm to screen a subset of loci for
plant variety discrimination.

Genotype data of loci combinations have two dimensions,
samples and loci. We proposed three statistical methods of
VDP to analyze the data specifically from the dimension of
samples. P-VDP was based on probability theory and the most
rigorous method in a mathematic sense. Although P-VDP shares
a similar mathematic principle with the Gini–Simpson index
(Caso and Gil, 1988) or DP, it uses combinations of multiple
loci as the subjects of statistics and hence has higher variety
discrimination sensitivity than TDP, an index derived from DP.
To transform plant variety discrimination into a mathematic
issue, P-VDP requires two criteria: the variety threshold must be
set as a “perfect match,” and no genotype data are missing in any
sample. In practice, these assumptions become major limitations.
C-VDP was based on computer graph theory. Although the
analysis results and deduced equation for C-VDP showed it
was equivalent to P-VDP under the same assumptions, C-VDP
can still be used when these assumptions are not met. Thus,
C-VDP breaks the limitations of P-VDP and can be used
in practical applications to replace P-VDP partially. However,
our analysis showed that both these statistical methods lacked
effective variety discrimination sensitivity for molecular marker
screening of populations in which samples converged to multiple
varieties. R-VDP was based on the principle of parsimony,
which simplified the calculation and modified the equation with
the diversity of convergence varieties. Our results showed that
R-VDP had the highest variety discrimination sensitivity but
was highly sensitive to missing data. Thus, we propose using

P-VDP and C-VDP when variety discrimination sensitivity is
not essential and using R-VDP when variety discrimination
sensitivity is essential.

Variety Discrimination Power as an
Appraisal Index Compatible With
Different Molecular Markers and Species
and Adaptable to Diversified Appraisal
Demands
Variety discrimination power, as a broad concept of loci
combination appraisal indices, can be applied to many fields.
First, the types of molecular markers of loci combinations
used in VDP appraisal need not be limited to the SSR
and SNP codominant molecular markers listed in section
“Sensitivity analysis of four loci combination appraisal methods
on genotype data of different plant species, different molecular
marker types, and different numbers of loci.” The method
to calculate VDD can be adjusted according to the type of
molecular markers adopted so that VDP can be adapted for loci
combinations with either dominant or codominant molecular
markers. Second, the samples evaluated by VDP need not
be limited to the four plant species (sorghum, wheat, maize,
and rice) discussed in section “Sensitivity analysis of four loci
combination appraisal methods on genotype data of different
plant species, different molecular marker types, and different
numbers of loci.” Variety thresholds can be set according to
the plant species of interest, making VDP applicable to all
plant species with various differences after breed improvement
by a human. Third, the samples evaluated by VDP need
not be limited to any particular type. Samples can be from
a single plant or multiple plants or from inbred lines or
hybrids, and VDP could still be used to evaluate their loci
combinations. The type of samples will influence only the
representativeness of the analysis results so that VDP can be
adapted to population materials. Fourth, VDP is not limited
to plant variety discrimination. VDP also could be used to
evaluate loci combinations for diversity evaluation of germplasm
resources, specificity appraisal by DUS tests in variety protection,
and background selection in molecular breeding. In terms
of DUS tests for variety protection, it was mentioned in
UPOV’s document that “discrimination power of the method”
is one of “important considerations for choosing DNA profiling
methods that generate high-quality molecular data” and that
discriminative capacity is the primary criterion to determine
a DNA marker set (International Union for the Protection of
New Varieties of Plants, 2020). In this sense, VDP can provide
theoretical reference and methodological basis for the research,
as mentioned earlier.

Variety Threshold Setting and Missing
Data as Two Main Factors for Estimated
Variety Discrimination Power Values
The variety threshold setting influences estimated VDP values.
The genetic background of different plant species can be
so different than the threshold to reflect differences between
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varieties should be set according to specific situations. We listed a
variety of threshold settings as a separate step in the calculation of
VDP and analyzed the influence of different threshold settings on
VDP evaluation. P-VDP, by definition, can only have a threshold
setting of “perfect match,” so the setting does not influence the
estimated VDP values. For C-VDP and R-VDP, the threshold
settings are adjustable so that they can influence the VDP values.
Generally, for different numbers of loci, the higher the number
of loci is, the lower the VDP value is. The setting has the smallest
influence on values closest to the maximum and minimum values
and the biggest influence on values in the middle level. Therefore,
the variety threshold setting is an important open parameter for
VDP because it can greatly influence the estimated VDP values.
The efficiency of loci combination screening can be improved by
adjusting this parameter.

Missing data also can influence estimated VDP values.
In practical applications, missing genotype data of loci
combinations commonly occur. Only overlapping loci with
no missing data in two samples can be used to calculate the
variety difference between the samples, so biased estimates of
VDP values can occur when data are missing. We analyzed
the influences of missing data on the three VDP methods. By
definition, P-VDP cannot be used for loci combinations with
missing data. For C-VDP and R-VDP, the subjects were samples
of “different varieties” or samples with a variety difference that
was bigger than the variety threshold value. Although blocking
loci with missing data may cause the actual variety difference to
be bigger than the variety threshold value and the actual number
of samples of “different varieties” to be greater than the statistic
number, this system error will lead only to underestimation
of the results but will not influence the threshold settings of
samples already included in the statistic number. That is to say,
blocking loci with missing data will cause a type II error. The
results in section “Stability analysis of three loci combination
appraisal methods on datasets with missing data” confirmed that
the bigger the missing data rate is, the bigger the system error is.
Therefore, missing data are the main factor for system error in
VDP. The missing data rate can be controlled within a certain
error tolerance degree according to the actual need.

CONCLUSION

To meet the requirements of molecular marker screening in the
second phase of plant variety discrimination, we proposed VDP
as a new appraisal index for loci combination screening, defined
three statistic methods of VDP, and verified the effectiveness
of the appraisal index and the three methods by variety
discrimination sensitivity analysis with three types of datasets.
Based on results from the sensitivity analysis, the most sensitive
statistical method was R-VDP, followed by C-VDP, P-VDP,
and TDP. When different variety threshold settings were used,
R-VDP had a greater sensitivity compared with C-VDP. Finally,
R-VDP was the most sensitive method to missing data, followed
by C-VDP and TDP. Although VDP was relatively sensitive to
the variety threshold setting and missing data, it was generally
more suitable than TDP as the fitness function of optimal
combination algorithm to screen a subset of loci for plant

variety discrimination. The three statistic methods of VDP can
be applied as follows: R-VDP for minimal missing data and
high requirement for variety discrimination sensitivity; C-VDP
for uncontrollable missing data and low requirement for variety
discrimination sensitivity; and P-VDP for theory deduction
from the VDP method.
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