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Multiple “omics” approaches have emerged as successful technologies for plant

systems over the last few decades. Advances in next-generation sequencing (NGS)

have paved a way for a new generation of different omics, such as genomics,

transcriptomics, and proteomics. However, metabolomics, ionomics, and phenomics

have also been well-documented in crop science. Multi-omics approaches with high

throughput techniques have played an important role in elucidating growth, senescence,

yield, and the responses to biotic and abiotic stress in numerous crops. These omics

approaches have been implemented in some important crops including wheat (Triticum

aestivum L.), soybean (Glycine max), tomato (Solanum lycopersicum), barley (Hordeum

vulgare L.), maize (Zea mays L.), millet (Setaria italica L.), cotton (Gossypium hirsutum

L.), Medicago truncatula, and rice (Oryza sativa L.). The integration of functional

genomics with other omics highlights the relationships between crop genomes and

phenotypes under specific physiological and environmental conditions. The purpose of

this review is to dissect the role and integration of multi-omics technologies for crop

breeding science. We highlight the applications of various omics approaches, such

as genomics, transcriptomics, proteomics, metabolomics, phenomics, and ionomics,

and the implementation of robust methods to improve crop genetics and breeding

science. Potential challenges that confront the integration of multi-omics with regard

to the functional analysis of genes and their networks as well as the development of

potential traits for crop improvement are discussed. The panomics platform allows for

the integration of complex omics to construct models that can be used to predict

complex traits. Systems biology integration with multi-omics datasets can enhance our

understanding of molecular regulator networks for crop improvement. In this context,

we suggest the integration of entire omics by employing the “phenotype to genotype”

and “genotype to phenotype” concept. Hence, top-down (phenotype to genotype)

and bottom-up (genotype to phenotype) model through integration of multi-omics with

systems biology may be beneficial for crop breeding improvement under conditions of

environmental stresses.
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INTRODUCTION

Various promising omics technologies have emerged over
the last few decades. These omics-based approaches have
proved themselves to be valuable for exploring the genetic and
molecular basis of crop development through modifications
in DNA, transcript levels, proteins, metabolites, and mineral
nutrient against a backdrop of environmental and physiological
stress responses (Muthamilarasan et al., 2019). Several omics
approaches, such as genomics, mutagenomics, transcriptomics,
proteomics, metabolomics, phenomics, and ionomics, have
revealed each corresponding molecular biological facet
integrated with plant systems (Salt et al., 2008; Houle et al., 2010;
Talukdar and Sinjushin, 2015; Wu et al., 2017; Muthamilarasan
et al., 2019). The advent of next-generation sequencing
(NGS) technologies has led to high throughput and rapid data
generation for genomes, epigenomes, transcriptomes, proteomes,
metabolomes, and phenomes (Großkinsky et al., 2018). The
integration of multiple omics approaches could elucidate gene
functions and networks under conditions of physiological and
environmental stress (Singh et al., 2013). Comprehensive multi-
omics approaches with robust techniques have been used to
identify and decipher essential components of stress responses,
senescence, and yields in various economically important crops
including wheat, soybean, and millet (Deshmukh et al., 2014;
Talukdar and Sinjushin, 2015; Muthamilarasan and Prasad, 2017;
Shah et al., 2018; Yadav et al., 2018).

In this review, we discuss multi-omics approaches, their
applications, and anticipated implementations in crop science
to improve crop yields and enhanced biotic and abiotic stress
tolerance (Figure 1). We propose that the integration of entire
omics approaches could provide a basis to improve genetic
development, crop yields, crop breeding science, and crop
resistance to physiological and environmental stress (Figure 2).

OMICS TECHNOLOGIES FOR CROP
IMPROVEMENT

Genomics
Genomics deals with the study of genes and genomes and focuses
on the structure, function, evolution, mapping, epigenomic,
mutagenomic, and genome editing aspects (Muthamilarasan
et al., 2019). Genomics can play an indispensable role in
elucidating genetic variation, which may enhance crop breeding
efficiency and subsequently result in the genetic improvement
of crop species. Structural genomics encompasses sequence
polymorphism and chromosomal organization and enables the
construction of physical and genetic maps to identify traits of
interest for plant biologists. In contrast, functional genomics
provides insights into the functions of genes with regard to
the regulation of the trait of interest. When epigenetic changes
occur in the form of histone modifications, DNA, or small RNA
methylations at the genomic level, the phenomenon is known
as epigenomics. Mutagenomics deals with mutational events
orchestrating genetic modification in mutant traits. However,
pangenomics defined as sum of a core genome, shared by
all individuals, plus a dispensable genome partially shared or

individual specific (Tettelin et al., 2005). Mutagenomics and
pangenomics have emerged as recent omics approaches focused
onmutagenesis and the pangenome in crop sciences, respectively
(Golicz et al., 2016a; Goh, 2018; Muthamilarasan et al., 2019).

Structural Genomics
Structural genomics depends on molecular markers that may
be useful for tagging and mapping genes of interest and their
subsequent deployment in crop breeding programs. The marker
techniques can be categorized into classes. The first one is
non-PCR-based techniques which include restriction fragment
length polymorphisms (RFLP). Restriction fragment length
polymorphism detects DNA polymorphism through hybridizing
labeled DNA probe to a Southern blot of DNA digested by
restriction enzymes and resulting in differential DNA fragment
profile (Agarwal et al., 2008). The second one is PCR-based
techniques for markers such as, random amplified polymorphic
DNA (RAPD), amplified fragment length polymorphisms
(AFLP), and single nucleotide polymorphisms (SNPs) (Williams
et al., 1990; Vos et al., 1995). The RAPD markers are PCR-
based amplification of random DNA segments using single
primer of arbitrary nucleotide sequence (Rabouam et al., 1999).
Amplified fragment length polymorphisms is also the PCR-
based technique which conducts selective PCR amplification
of restriction fragments from a total digest of genomic DNA
(Vos et al., 1995). Single nucleotide polymorphisms defined as
single nucleotide variations in genome of an individual or an
organism. The SNP may be performed through sequencing of
genomic PCR products derived from varied individuals (Appleby
et al., 2009). Whereas, the diversity arrays technology (DArT)
a high-throughput technique which is based on microarray
hybridization involving genotyping of numerous polymorphic
loci spread over the genome (Jaccoud et al., 2001). The
identification and usage of SNPs became possible with the advent
of NGS.

Approaches utilized to understand and study the multiple
traits in crops are quantitative trait loci (QTL) mapping and
genome-wide association studies (GWAS). Quantitative trait loci
mapping is a statistical method which assists in linking two
types of data, i.e., complex phenotypes with genotypes. Molecular
markers such as SNPs and AFLPs are commonly utilized for
mapping QTLs, and then these may be correlated with observed
phenotypic data (Kearsey, 1998; Challa and Neelapu, 2018).
However, GWAS could identify variants associated with traits.
Genome-wide association studies may also identify correlation
between the genetic variants/phenotypes in a population of any
organism based on SNPs in the sequence data (Challa and
Neelapu, 2018).

The role of GWAS in genomics approaches is indispensable
for enhancing the tolerance of crops to abiotic stress [e.g., the
use of GWAS to evaluate how multiple abiotic stressors affect
the oil content in sunflowers (Helianthus annuus L.) (Mangin
et al., 2017)]. Previously, GWAS identified 48 QTLs related to
the yield of maize crop under heat and water stress (Millet
et al., 2016). Genome wide associations with environmental
variables were used to predict the SNPs in sorghum (Sorghum
bicolor) that were associated with drought stress (Lasky et al.,
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FIGURE 1 | Overview of multi-omics approaches for crops. Genomics reflects DNA the genetic information contains five aspects including structural, functional,

epigenomics, mutagenomics and pangenomics. Transcriptomics denotes the mRNA (transcript) the carrier of genetic information for translation. Proteomics

symbolizes the protein the expression of genetic information. While, metabolomics and ionomics are linkage between proteomics and phenomics. Phenomics displays

the phenotype of crop traits. The green asterisk indicates the abiotic and biotic factors influence the multi-omics.

2015). Another GWAS identified 213 unique genomic regions
associated with drought tolerance in sorghum (Spindel et al.,
2018). Genome-wide association studies have also identified the
(drought resistance) DR-related loci in rice crop (Guo et al.,
2018). Moreover, numerous SNPs associated with drought-
responsive TFs have been identified using GWAS of maize crop
(Shikha et al., 2017). In addition, structural variants (SVs) play a
vital role in the genetic control of agronomically essential traits
in crops. The association of SVs with agronomical traits has been
reported in GWAS of B. napus (Gabur et al., 2018), maize (Lu
et al., 2015), and soybean (Zhou et al., 2015).

Breeders are now capable of enhancing hybrid breeding
through marker-assisted selection (MAS) with genotyping-
by-sequencing (GBS) to increase crop quality and yield (He
et al., 2014). Multiparent mapping, in particular multiparent
advanced generation intercrosses (MAGIC) and nested
association mapping (NAM) in model plants and crops
(Yu et al., 2008; Kover et al., 2009), has been able to expose
the large amount of phenotypic diversity that may be achieved
through experimental studies. The MAGIC population is
ideal for breeding improvement. Analyses of the relationships
between genotypes and phenotypes are able to identify QTLs
that may be subsequently authenticated utilizing functional
genomics approaches.

Functional Genomics and Mutagenomics
The vast resources and information provided through
structural genomics will ultimately be utilized by functional

genomics. Functional genomics refers to development of global
experimental approaches to assess the function of gene (Hieter
and Boguski, 1997). Numerous biotechnological tools have been
developed to identify and isolate genes of interest, to clone
and characterize those genes, and to overexpress or knock-out
lines for functional transgenic analyses (Muthamilarasan et al.,
2019). Prior to genome sequencing approaches, the identification
of candidate genes involved arduous procedures including
suppression subtractive hybridization (SSH), expressed sequence
tag (EST), and cDNA-AFLP-sequencing. Subsequently, the
tediousness of these approaches decreased with the introduction
of NGS (Muthamilarasan et al., 2019).

The access to crop genome sequencing has identified
genes that play their role in disease resistance, stress
resistance, and yield determination. Furthermore, authentic
genome engineering has been envisaged to improve crops by
utilizing genome editing tools such as the clustered regularly
interspaced short palindromic repeats (CRISPR/Cas9 system)
and transcription activator-like effector nuclease (TALEN)
(Rinaldo and Ayliffe, 2015). Genome editing tools without the
insertions of foreign DNA could possibly enhance yield via
the introduction of pest and disease resistance in genetically
modified crops. Using TALEN and CRISPR/Cas9 technologies,
a bread wheat mildew resistance locus o (TaMlo) mutant was
generated (Wang et al., 2014). Similarly, the same technique
was adopted with tomato crop to create an SlMlo mutant
(Nekrasov et al., 2017). Genome editing with the CRISPR/Cas9
system has already been reported for numerous important crops
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FIGURE 2 | Integration of multi-omics model linking genotype to phenotype

and phenotype to genotype concept with systems biology. Genomics indicates

the genotype which determines phenotype traits (crop breeding improvement)

via transcriptome, proteome, and metabolome. While, proteome, metabolome,

and ionome are supposed to be a molecular phenotype. Environmental factors

may trigger the regulatory events through epigenetic regulation of genome.

including soybean, rice, maize, and sorghum (Jiang et al., 2013;
Lawrenson et al., 2015; Li et al., 2015; Svitashev et al., 2015). Virus
induced gene silencing (VIGS) is a reverse genetic technique to
analyze the functions of genes that manifest in tomato crop in
response to biotic and abiotic stress (Saand et al., 2015). Through
comparative genomics, various mutants have been identified that
are related to crop growth, development, and stress tolerance in
rice, maize, wheat, and barley (Talukdar and Sinjushin, 2015).
A soybean mutation has been found to alter the transcriptomic
profiling of GmNARK (Glycine max leucine-rich repeat receptor
kinase) rhizobia independent nodulation through the jasmonate
pathway (Pathan and Sleper, 2008).

Mutagenomics emerged as a modern omics approach
which enables to study mutational events orchestrating genetic
modification in mutant traits. Such mutational events may be
characterized by using high-throughput genomics technologies
including serial analysis of gene expression (SAGE), high
resolution melt (HRM), Targeted Induced Local Lesions IN
Genomes (TILLING), and microarray analysis (Penna and
Jain, 2017). Targeted Induced Local Lesions IN Genomes
(McCallum et al., 2000) in functional genomics has characterized

mutagenesis and offers high throughput mutations in crops
(Henikoff et al., 2004; Mba, 2013). Initially, TILLING technology
was developed as a functional genomics strategy, but soon, it
became a useful tool for crop breeding as an alternative to the
transgenic approaches (Kurowska et al., 2011). The feasibility
of using this technique has been documented in numerous
essential crops, such as soybean wheat, rice, tomato, rapeseed
(Brassica napus), and sunflower (Kurowska et al., 2011; Witzel
et al., 2015). Thus, this technique has proved to be a potential
method for functional genetics as well as a valuable tool to
improve crop breeding (Chen et al., 2014). Mutants controlling
the seed oil composition were screened through the reverse
genetics technique TILLING (Knoll et al., 2011; Kumar et al.,
2013). For example, mutants rich in oils, isoflavones, and oleic
acids (FAD2 and FAD2-1B) have also been isolated in soybean
crop (Pathan and Sleper, 2008). TILLING has also been applied to
detect mutations in numerous crops including rice (Suzuki et al.,
2008), maize (Till et al., 2004), wheat (Dong et al., 2009), barley
(Caldwell et al., 2004), tomato (Minoia et al., 2010), and soybean
(Cooper et al., 2008).

Several microarray analyses showed that plant mutagenesis
could induce more transcriptomic changes compared with those
due to transgene insertion (Varshney et al., 2010). Mutagenesis
constitutes a vital technique to identify gene functions and
develop countless agronomic traits with desirable variations
(Henikoff et al., 2004; Varshney et al., 2010). Approximately 3,000
mutant varieties of various crops have been developed globally,
of which 776 mutants ensure nutritional quality (Jain and
Suprasanna, 2011). With improvements in functional, biological,
and breeding tools, the mutagenomics has ensured induced
mutagenesis in crops. However, various mutant traits have
been identified in crop plants in perspective of global impact
of mutation-derived varieties on food production and quality
enhancement (Ahloowalia et al., 2004).

Mutagenomics through reverse genetic approaches have
provided opportunity to silence and interrupt the candidate
genes to investigate the function of gene. The specific reverse
genetic techniques utilized to screen/induce mutations for crops
that include, RNA Interference (RNAi) and (VIGS). When
mutant alleles are not available, the reverse genetic techniques
can be used to knockdown or silence the phenotype of gene,
allowing analysis of gene function (Talukdar and Sinjushin,
2015). Furthermore, those reverse genetic approaches have been
utilized to screen for mutations in wheat, rice, maize, barley,
tomato, sunflower, cotton, chickpea (Cicer arietinum L.), pea
(Pisum sativum L.), and soybean crops including RNAi and gene
silencing technologies (Dwivedi et al., 2008; Gupta et al., 2008;
Tomlekova, 2010).

As such, both functional genomics and mutagenomics have
been found to be useful for improving crop growth, yield, and
stress resistance.

Epigenomics
The epigenetics refers to heritable changes other than those in the
DNA sequence. These epigenetic changes brought about through
DNA methylation and post-translational modification (PTM) of
histones (Strahl and Allis, 2000; Novik et al., 2002). The merger
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of epigenetics and genomics is known as epigenomics which
has arisen as new omics technique in order to understand the
genetic regulation and its contribution to cellular growth and
stress responses (Callinan and Feinberg, 2006). Unlike genomics,
epigenomics may be influenced by environmental factors,
including abiotic and biotic stress. Nevertheless, genome level
studies could be conducted to analyze these epigenetic events at
any developmental stage or to evaluate abnormalities due to plant
disease (Muthamilarasan et al., 2019). The bisulfite sequencing
technique can identify the DNA methylation status of the
genome (Cokus et al., 2014) and has been successfully validated
in tomato, maize, and soybean crops with regard to DNA
methylation and chromatin regulated genes (Gent et al., 2013;
González et al., 2013; Schmitz et al., 2013). The quantification
of DNA methylation in the genome through a methylation-
sensitive amplified polymorphism (MSAP) approach is common
and has been performed in wheat and foxtail millet crops
under salinity stress (Zhong et al., 2009; Pandey et al., 2017).
Moreover, chromatin immunoprecipitation sequencing (ChIP-
Seq) is a unique approach for the analysis of histone proteins and
DNAmethylation (van Dijk et al., 2010) and has been used in rice
crop under drought stress (Zong et al., 2013). DNA methylation
studies have been carried out with epigenome modifications
associated with ripening in tomato and tissue cultured stable
epigenome changes in rice crop (Stroud et al., 2013; Zhong
et al., 2013). One epigenomic study found this approach to be
beneficial for identifying histone modifications associated with
photosynthesis in maize (Offermann et al., 2006).

Recently, an epigenome wide association study identified
the MANTLED locus responsible for the mantled phenotype
(hypomethylation) in the oil palm (Elaeis guineensis) (Ong-
Abdullah et al., 2015). Karma (LINE) retrotransposon
methylation was linked with normal fruit yield clones compared
to mantled clones (Ong-Abdullah et al., 2015). Whole-genome
bisulfite sequencing (WGBS) identified ncRNAs in cotton crop
under drought stress (Lu et al., 2017). Taken together these data
indicate that applications of epigenomics could play important
role in crops improvement in response to environmental stresses.

Pangenomics
The pangenome concept refers to the full genomic makeup
of a species, which can be divided into a set of core and
dispensable genes. The sets of core genes are shared by all
individuals, whereas, set of dispensable genes (also known as
accessory genes) are individual-specific and/or present in some
individuals but not all (Tettelin et al., 2005). Advancements in
sequencing technology and analysis tools have made it possible
to sequence several accessions of crop species (Golicz et al.,
2016a). A wave of pangenomic studies in crops including rice
(Schatz et al., 2014; Wang et al., 2018; Zhao et al., 2018),
soybean (Li et al., 2014), wheat (Montenegro et al., 2017),
maize (Hirsch et al., 2014), Brassica napus (Hurgobin et al.,
2018), and Brassica rapa (Lin et al., 2014) have revealed that
dispensable genes play important roles in maintaining crop
diversity and improving quality. A pangenomic study using
nine morphologically diverse Brassica oleracea varieties and
a wild relative demonstrated that several variable genes were

annotated with functions related to major agronomic traits, such
as glucosinolate metabolism, vitamin biosynthesis, and disease
resistance (Golicz et al., 2016b). Numerous methodologies have
been used to generate pangenomes in crops and their wild
relatives, such as comparative de novo, iterative assembly and
“map-to-pan.” Comparative de novo approaches have been
conducted with soybean and rice and their wild relative in order
to analyze the genetic variation and agronomic traits (Li et al.,
2014; Zhao et al., 2018). While an iterative assembly approach
was performed with B. oleracea (Golicz et al., 2016b), bread wheat
(Montenegro et al., 2017), and B. napus (Hurgobin et al., 2018),
and a “map-to-pan” approach was used with rice (Wang et al.,
2018).

Pangenomic studies have recently been investigated to
evaluate the genetic diversity of crop species. Comparatively
dispensable genes tend to be more variable than core genes.
For example, higher densities of SNPs and insertions/deletions
(InDels) have been found in sets of dispensable genes when
compared to those in sets of core genes in Brachypodium
distachyon (Gordon et al., 2017), rice (Wang et al., 2018), and
soybean (Li et al., 2014). The dispensable genes of a pangenome
are determined by structural variation (Xu et al., 2012;Mace et al.,
2013), and dispensable genomes have been found to be enriched
with genes related to disease resistance in crops such as maize
(Zuo et al., 2015) and rice (Fukuoka et al., 2009) and abiotic
stress in barley (Francia et al., 2016) and sorghum (Magalhaes
et al., 2007). Furthermore, pangenomics may be used to improve
crops. Multiple crop wild relatives (CWRs) have been used in
breeding programs specifically for their quantitative and adaptive
traits. Traits associated with yield and its components (e.g., grain
size) were subject to intensive selection during domestication and
breeding improvement in crops including rice (Xiao et al., 1998),
sorghum (Tao et al., 2017, 2018), and wheat (Huang et al., 2003).
Several wild relatives have also been found to be able to contribute
genes to improve traits, such as grain quality (Campbell et al.,
2016) and biotic/abiotic stress resistance in crops (Zhang et al.,
2006; Ram et al., 2007; Cao et al., 2011; Huang et al., 2013). Thus,
pangenomic studies could be used to mine elite genes in CWRs
for crop improvement.

Transcriptomics
Transcriptomics deals with transcriptome that refers to the
complete set of RNA transcripts which are produced by
genome of an organism in a cell or tissue (Raza et al.,
2021). Transcriptome profiling is dynamic and has emerged
as a promising technique to analyze gene expression in
response to any stimuli over a certain time period (Duque
et al., 2013; El-Metwally et al., 2014). This strategy helps the
researcher to observe the differential expression of genes in
vitro to understand the first layer function of a particular
gene. Initially, transcriptome dynamics were analyzed using
traditional profiling, cDNAs-AFLP, differential display-PCR
(DD-PCR), and SSH, but these techniques provided low
resolution (Nataraja et al., 2017). Soon after, the introduction of
robust techniques made it possible for RNA expression profiling
utilizing microarrays, digital gene expression profiling, NGS,

Frontiers in Plant Science | www.frontiersin.org 5 September 2021 | Volume 12 | Article 563953

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yang et al. Role of Multi-Omics for Crop Improvement

RNAseq, and SAGE (Kawahara et al., 2012; De Cremer et al.,
2013; Duque et al., 2013).

Microarray analysis has revealed the differentially expression
of genes in soybean and barley during developmental and
reproductive stages, respectively, under drought stress (Guo
et al., 2009; Le et al., 2012). Similarly, the differential expression
of genes was identified in soybean under dehydration stress
using an Affymetrix GeneChip array (Khan et al., 2017). The
expression of genes has been found to alter various TFs in
Arabidopsis, soybean, and rice crops in response to abiotic stress
(Xiong et al., 2002; Wohlbach et al., 2008). The novel TFs, Cys-
2/His-2-type zinc finger (C2H2-ZF) TF and drought and salt
tolerance (DST), were found to control stomatal aperture in
response to salt and drought stress in rice crop (Huang et al.,
2009). Another, study demonstrated the function of WRKY
TFs in response to abiotic stress in wheat (Okay et al., 2014).
Although phytohormones, non-coding RNAs, and small peptides
regulate the expression of genes and are considered to be key
components that execute gene functions in response to abiotic
stress conditions in Arabidopsis and model crops including
rice, tomato and wheat (Matsui et al., 2008; Chekanova, 2015;
Bashir et al., 2019). Various phytohormone-independent abiotic
stress responses are regulated by several TFs, such as DRE-
/CRT-binding protein 2 (DREB2) and dehydration-responsive
element/C-repeat (DRE/CRT), in rice crop (Todaka et al., 2015).

Transcriptome studies in sorghum revealed a set of
differentially expressed (DE) genes in response to drought,
heat, and osmotic stress as well as hormone treatment (Dugas
et al., 2011; Johnson et al., 2014). Similarly, differential expression
patterns of OsMADS genes were found in developing rice crop in
response to drought stress (Jin et al., 2013). These transcriptome
sequencing analyses have shown differential expression during
growth and in response to stress and may be useful for functional
analyses. Therefore, these reports demonstrate the role of
transcriptomics in terms of stress responses and development
for crops.

Novel advancements in transcriptomics have been brought
about through in situ RNA-seq (i.e., in situ ligation), in which
RNA is sequenced in living cells or tissues (Ke et al., 2013).
Spatially resolved transcriptomics is another technique that
detects gene expression with spatial information within cells
or tissues to provide a comprehensive molecular description of
physiological processes in organisms (Burgess, 2015). Numerous
RNA-seq analyses have unveiled tissue-specific expression in
response to abiotic and biotic stress in foxtail millet and
sweet potato (Impomoea batatas L.) crops (Qi et al., 2013;
Hittalmani et al., 2014; Bonthala et al., 2016; Li et al., 2017).
Total RNAseq has shown DE genes and SSR markers during
the development of cowpea (Vigna unguiculata L. Walp.)
crop (Chen et al., 2017). Thus, RNA-seq has proved to be
one of the better techniques of transcriptomics to develop
genic-SSR markers that can be linked to phenotypic traits
connected with the candidate genes. Moreover, various studies
utilizing RNA-seq technique have been conducted in rice, maize,
and rapeseed oil to identify drought stress responsive genes
(Kakumanu et al., 2012; Huang et al., 2014; Bhardwaj et al.,
2015).

Comparative transcriptomics is another means to understand
differential expression profiles in response to stress in different
crop species. Comparative transcriptomic analysis has identified
sixteen common genes in rice, wheat, and maize compared with
those in switch grass in response to heat stress (Ding et al.,
2013; Li et al., 2013). Comparative transcriptome and microarray
analyses of biotic and abiotic stress and hormonal treatments
have revealed multiple cross-talk pathways in cotton and potato
(Solanum tuberosum L.) crops (Massa et al., 2013; Zhu et al.,
2013). As such, these regulatory networks among stress tolerance
genes might be beneficial for improving crops.

Recently, an alternative splicing (AS) transcriptomics
approach was launched to generate multiple transcripts in
response to abiotic stress conditions (Laloum et al., 2018). This
method has been applied in crops including rice, maize, and
sorghum in response to heat and drought stress (Zhang et al.,
2015). Hence, AS transcriptomic analyses demonstrated the role
for splicing factors controlling abiotic stress responses in crops.
Collectively, these all transcriptomic techniques could play a
vital role in the regulation of gene expression leading to the
improvement of crop species.

Proteomics
Proteomics is a technique involved in the profiling of
total expressed protein in an organism and is divided into
four different parts including sequence, structural, functional,
and expression proteomics (Mosa et al., 2017; Aizat and
Hassan, 2018). Sequence proteomics determines the amino acid
sequences that are usually identified sequentially utilizing high
performance liquid chromatography (HPLC; Twyman, 2013).
Structural proteomics deals with the structure of proteins to
understand their putative functions. Structural proteomics can
be analyzed through several approaches, such as computer
based modeling, and experimental methods including nuclear
magnetic resonance (NMR), crystallization, electronmicroscopy,
and the X-ray diffraction of protein crystals (Sali et al.,
2003; Woolfson, 2018). Functional proteomics determines the
functions of a protein, and those functions are examined through
various methods, such as yeast-one or two hybrids and protein
microarray profiling (Lueong et al., 2014).

Advancements in protein extraction and separation have
contributed to the rapid improvements of plant proteomic
research, at both sample and genome-wide scales (Nakagami
et al., 2012). Conventional proteomics are chromatography based
techniques; which include exchange chromatography (IEC), size
exclusion chromatography (SEC), and affinity chromatography.
However, western blotting and enzyme-linked immunosorbent
assay (ELISA) could be used for selective proteins analysis.
Later, some more advanced techniques such as SDS-PAGE, two-
dimensional gel electrophoresis (2-DE), and two-dimensional
differential gel electrophoresis (2D-DIGE) were developed
and used through gel based techniques for separation of
proteins. Simultaneously, for rapid protein expression analysis
the protein microarrays/chips have been devised for detection
of small amount of protein sample. Moreover, stable isotope
labeling with amino acids in cell culture (SILAC), Isotope-
coded affinity tag (ICAT) labeling and isobaric tag for relative
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and absolute quantitation (iTRAQ) have been developed
as advanced techniques for quantitative proteomic analysis.
Recently, two major high-throughput approaches including X-
ray crystallography and NMR spectroscopy have been developed
for three-dimensional structure determination of proteins that
may be useful to understand the biological function of
proteins (Aslam et al., 2017). Applications and importance
from conventional to modern proteomic approaches have been
discussed below.

Two-dimensional gel electrophoresis and SDS-PAGE are
required to identify the proteins and measure the quantitative
parameters of protein content, respectively (Eldakak et al., 2013).
Henceforth, the identified proteins are used to analyze the
molecular mass of peptides with mass-spectrometry (MS), ion
trap-mass spectrometry (IT-MS), or liquid-chromatography (LC;
Fournier et al., 2007). Additionally, the molecular weights of
proteins have been identified using MALDI-TOF, electrospray
ionization (ESI), and collision-induced dissociation (CID;
Tanaka et al., 1988; McLuckey and Stephenson, 1998; Baggerman
et al., 2005).

Functional proteomics approaches have identified ROS
scavengers including quinone redcutase, γ-glutamylcysteine
synthetase, dehydrins, and dehydroascorbate reductase in tomato
and sunflower crops (Shalata et al., 2001; Di-Baccio et al., 2004;
Mittova et al., 2004). Meanwhile, molecular chaperones, such as
heat shock proteins, have also been identified during proteome
analyses in wheat and sugarcane (Demirevska et al., 2008;
Jangpromma et al., 2010). Various drought sensitive and tolerant
rice cultivars have been identified through comprehensive
proteomics studies (Salekdeh et al., 2002; Rabello et al., 2008;
Muthurajan et al., 2011; Maksup et al., 2014). Therefore,
functional proteomics studies depict their significant role in crop
defense response.

In quantitative proteomics, the iTRAQ method has
demonstrated the differential expression of proteins in potato
crop under abiotic stress (Liu et al., 2015). Recently, an iTRAQ-
based comparative proteomic analysis of two coconut varieties
identified numerous stress-responsive DEPs in two varieties
of coconuts (Yang et al., 2020). In addition, iTRAQ-based
proteomic analysis has provided new insights into somatic
embryogenesis in cotton crop (Zhu et al., 2018). Thus, iTRAQ-
based quantitative proteomic studies also play important role for
crops against abiotic stresses.

A proteomics approach in response to the presence of
pathogens was established with Vitis species (Basha et al., 2010).
A post-iTRAQ-based comparative proteomic analysis was used
to identify translational modifications (e.g., phosphorylation
and ubiquitination) and protein–protein interactions that
occur in biological or molecular mechanisms within cells.
Phosphoproteomics intends to analyze protein phosphorylation
through detecting phosphoproteins and their phosphorylated
amino acid residues in a quantitative or qualitative manner
(Mosa et al., 2017). In addition, phosphoproteomics has also been
associated with protein functions, and thus it may play a role in
the identification of pathways involved in various cell functions
(Mosa et al., 2017). Phosphoproteomics, along with proteins have
revealed large numbers of drought stress-related proteins in two

wheat crop cultivars (Zhang et al., 2014a). Further, proteomics
and phosphoproteomics have been combined to investigate
diverse functions in crops [e.g., wheat and grapevine (Vitis
vinifera L.)] in response to phytoplasma and (Septoria tritici)
fungal pathogen (Margaria et al., 2013; Yang et al., 2013). The
wheat varieties against both drought and phytoplasma stresses
showed resistant (Yang et al., 2013; Zhang et al., 2014a), whereas,
grapevine was susceptible to phytoplasma infection (Margaria
et al., 2013). Thus, phosphoproteomics could be helpful in
order to identify resistant and/or susceptible crop cultivars
against various stresses. Moreover, a combined proteomics and
metabolomics approach with functional genomics in legumes has
provided an understanding of the stress biology of these crops
and the identification of molecular markers for legume smart
breeding programs (Ramalingam et al., 2015). Hence, proteomics
plays a vital role in deciphering functional mechanisms in
crop science against diverse stresses and can help to improve
crop yields.

Using LC-MS/MS, one proteomic study identified 75
differentially expressed proteins (DEPs) in a dehydration-
sensitive chickpea cultivar (Subba et al., 2013). The majority
of DEPs were involved in molecular chaperons, cell signaling,
gene transcription, and regulation and ROS catabolic enzymes
(Subba et al., 2013). Comparative proteomics and gene
expression analyses using 2-DE along with LC-MS/MS have
also identified DEPs associated with abiotic stress responses
in chickpea (Arefian et al., 2019). By applying non-gel-based
LC-MS/MS approaches, a large number of nodule proteins
were identified in response to drought stress in Medicago spp.
(Larrainzar et al., 2007). Later, the same method was used for
the relative quantification of root nodule proteins in Medicago
spp. (Larrainzar et al., 2009). Furthermore, using 2D-GE and
ESI-LC-MS/MS approaches, numerous DEPs were identified
in response to abiotic stress in legume crops, such as chickpea,
common bean, and M. truncatula (Ramalingam et al., 2015).
Several proteomics approaches, such as MALDI-TOF, SDS-
PAGE, MS, 2-DE, and PMF have been applied in rapeseed,
soybean, wheat, sugarcane, and cotton to determine stress-
response pathways (Demirevska et al., 2008; Toorchi et al., 2009;
Jangpromma et al., 2010; Nouri and Komatsu, 2010; Deeba et al.,
2012; Mohammadi et al., 2012). These proteomics techniques
have been implemented in plants under drought stress (Ghosh
and Xu, 2014). However, 2-DE and SDS-PAGE proteomics
techniques have been implemented in plants under drought
stress (Ghosh and Xu, 2014). Importantly, numerous techniques
(i.e., 2D-GE, MALDI-TOF, SDS-PAGE, ESI-IT- LC-MS/MS, and
iTRAQ) used for cereal crops such as barley, maize, pearl millet,
rice, sorghum, and wheat under drought stress response have
been reviewed comprehensively by Ghatak et al. (2017). Hence,
such proteomic studies revealed their role for crops in response
to diverse abiotic stress conditions.

Metabolomics
Metabolomics defined as the comprehensive study of metabolites
which participate in different cellular events in a biological
system. However, metabolome denotes the complete set of
metabolites synthesized via metabolic pathways in plant system
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(Fiehn, 2002; Baharum and Azizan, 2018). Next-generation
sequencing technologies have emerged as promising tools in
order to understand the regulation of gene expression and
molecular basis of cellular responses which occur in crops in
response to biotic and abiotic stresses (Abdelrahman et al., 2018).
However, metabolomics in combination with NGS has provided
a basis to predict an initial metabolic network from a genome
sequence of an organism (Weckwerth, 2011b). The genome
sequencing approach (NGS) and quantification of metabolites
(through MS) integrated the information in order to develop
strategies for crop-improvement (Pandey et al., 2016).

Metabolites may be viewed as the end products of gene
expression that display the biochemical phenotype of the cell
(Weckwerth and Fiehn, 2002). Proteomics recognizes only gene
products, whereas metabolomics may determine the expression
of proteins metabolically and identify the biochemical processes
that play important roles in gene functioning (Weckwerth and
Morgenthal, 2005; Lindon and Nicholson, 2008).

Metabolites possess different chemical and physical
properties; hence, separation and analytical techniques are
required to generate metabolic profiles of a given plant sample
(Jogaiah et al., 2013). Several analytical techniques have
been implemented in plant systems to quantify metabolites
including thin layer chromatography (TLC), gas/liquid-
chromatography-mass spectrometry (GC/LC-MS), liquid
chromatography-electrochemistry-mass spectrometry (LC-
EC-MS), NMR, direct infusion mass spectrometry (DIMS),
Fourier-transfer infrared (FT-IR), and capillary electrophoresis-
liquid- chromatography mass spectrometry (CE-MS; Fiehn
et al., 2000; Weckwerth, 2003; Moco et al., 2007; Allwood and
Goodacre, 2010; Saito and Matsuda, 2010; Duque et al., 2013;
Jogaiah et al., 2013). The CE-MS, GC-MS, LC-MS, and NMR
techniques are the most frequently used in plant metabolomics
(Fiehn, 2002; Kikuchi and Hirayama, 2007; Moco et al., 2007;
Allwood and Goodacre, 2010; Weckwerth, 2010; Kim et al.,
2011). These techniques depend on the selectivity, sensitivity,
speed, and accuracy of the approach. NMR is fast and selective,
although mass spectrometry techniques (CE-MS, GC-MS, and
LC-MS) are suitably sensitive and selective but supposed to be
time consuming (Sauter et al., 1991; Sumner et al., 2003).

Annotation and reporting of metabolomics data is an
important in order to identify and analyze metabolites properly.
However, recently, Alseekh et al. (2021) reported guidelines
for annotation and quantification of LC/GC-MS-based
metabolomics data reporting. Their recommended guidelines
(i.e., sample preparation, sample replication and randomization,
quantification, recovery and recombination, ion suppression,
and peak misidentification) could be an effective tool/method
for acquisition and reporting of metabolite data. Nonetheless,
workflow for sampling, quenching, metabolite extraction,
and storage has also been elucidated. The adopting certain
recommendations may avoid misinterpretation of metabolite
data and ensure the reporting transparency in LC/GC-MS-based
metabolomics-derived data (Alseekh et al., 2021).

Plants have large chemically complex machinery that they
employ as a major defense system against abiotic stress and
pathogens. The mechanisms of plant metabolic responses to

stress depend on plant–stress or pathogen interactions. The
pivotal role of metabolites in cereal crops, such as rice, maize,
and barley, has been identified in the presence of various biotic
stressors (Balmerl et al., 2013). The metabolic profiles of three
rice varieties have identified several metabolites or biomarkers
against the gall midge biotype 1 (GMB1) pathogen using GC-MS
(Agarrwal et al., 2014). Similarly, a number of metabolites were
identified in rice crop in response to Xanthomonas oryzae pv.
oryzae (Xoo; Sana et al., 2010). Another study demonstrated that
the use of GC-MS could identify the accumulation of numerous
metabolites in rice and barley crops against Magnaporthe oryzae
(Parker et al., 2009). Meanwhile, phenylpropanoid and phenolic
metabolites have been reported in wheat crop in response to
biotic stress (Gunnaiah et al., 2012).

Metabolomics is particularly important in plant systems
because plants produce more metabolites than either animals
or microbes. The secondary metabolites produced by plants
are helpful in responses to environmental stress. Thus,
environmental metabolomics is a promising area in stress-
physiology during that plant response to numerous abiotic
stresses in relation to their metabolite changes (Brunetti et al.,
2013; Viant and Sommer, 2013). Polyamine metabolites have
been found in rice crop under drought stress conditions by
applying GC-TOF-MS method (Do et al., 2013). In addition,
a similar technique was used in rice, and the results identified
salt tolerant cultivars (Liu et al., 2013; Gupta and De, 2017).
Moreover, many metabolite analyses have been conducted in
wheat, maize, tomato, and soybean crops in relation to drought,
cold, and heat stress (Semel et al., 2007; Bowne et al., 2012;
Silvente et al., 2012; Witt et al., 2012; Sun et al., 2016; Le et al.,
2017; Paupiere et al., 2017). Several metabolomics techniques
including LC/GC-MS, GC/EI-TOF-MS, HPLC, and NMR have
been widely used in crop species such as, rice, tomato, maize
and soybean in response to abiotic (drought, salt, oxidative, and
temperature) and biotic stress conditions (Ghatak et al., 2018).
Plant metabolite changes via certain pathways have been found
to improve the nutritional value of genetically modified rice by
the accumulation of β-carotene in the endosperm (Paine et al.,
2005). Anthocyanin (a secondary metabolite) production was
enhanced using metabolic engineering in tomato crops (Butelli
et al., 2008). Therefore, metabolomics, coupled with other omics
like genomics, transcriptomics, and proteomics, provide an
integrated portrait of various functions ranging from the genome
to metabolome as well as phenotypic characteristics (Weckwerth,
2011a). Strong correlations among these integrated omics have
been identified in the responses of crops and plants to abiotic
stress (Urano et al., 2010; Duque et al., 2013; Jogaiah et al., 2013).

Ionomics
Ionomics deals with the ionome, whereas ionome refers to
the total mineral nutrient and trace elemental composition
and represents the cellular inorganic components of plant
systems (Salt et al., 2008; Satismruti et al., 2013). Ionomics
comprises the quantitative measurement of the elemental
composition of an organism and identifies the changes in mineral
composition triggered by various physiological stimuli, genetic
modifications, or developmental conditions. It is a dynamic
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approach that is able to analyze the functions of genes and
gene networks that characterize the ionome in response to
physiological and environmental stress (Baxter, 2010). Ionomics
acquisition by high throughput elemental profiling in plants
has been conducted using different analytical tools including
inductively coupled plasma-mass/optical emission spectroscopy
(ICP-MS/OES), neutron activation analysis (NAA), and X-ray
crystallography (Salt et al., 2008; Kumari et al., 2015). Inductively
coupled plasma-mass spectroscopy technique is cheaper and
can run hundreds of samples daily with excellent sensitivity
to determine the elements. Nonetheless, ICP-OES may detect
elements high throughput technique at the cost of some elements
and sensitivity compared to ICP-MS. The XRF is faster to localize
the elements but little cost than both ICP-MS/OES. Whereas,
NAA is costly, slow and can detect more than 30 elements
possible simultaneously (Salt et al., 2008).

In addition, the leaf ionome has been analyzed to identify
the plant ionomic regulatory networks involved in iron and
phosphorus homeostasis (Baxter, 2015). Using ICP-MS, the leaf
and grain ionomes have been analyzed to generate genetic maps,
identify QTLs, and detect mineral element genetic diversification
in rice crop (Norton et al., 2010; Zhang et al., 2014b; Pinson et al.,
2015).

Moreover, seed ionome analysis has found differential gene
expression, improved symbiotic responses to mycorrhizal fungi,
and altered growth phenotypes under phosphate starvation in
maize crop (Mascher et al., 2014). Single seed-based ionomic
profiling in maize crop may be influenced by environmental
and genetic factors that affect seed ionome accumulation (Baxter
et al., 2014). Comprehensive, elemental profiling has revealed the
QTLs responsible for grain mineral accumulation and yield in
maize crop (Gu et al., 2015). Additionally, one ionomics study
elucidated the relationships and responses of elements, minerals,
and metabolites in barley under salt stress (Wu et al., 2013).
Following this, the ionomic screening was performed in mutant
lines of soybean crop which altered seed ionomic composition.
They determined elemental concentration by applying ICP-MS
method (Ziegler et al., 2013). Elemental profiling analysis has also
been conducted in tomato cultivars to observe the concentrations
of micro- and macro-nutrients under water stress (Sanchez-
Rodríguez et al., 2010). Similarly, ionomic profiling has been
performed to analyze the nutrient balance in some fruit species
including kiwifruits, oranges, mangos, apples, and blueberry
(Parent et al., 2013). Therefore, those ionomic studies suggest the
important role for crop improvement and responses to various
abiotic and biotic stimuli.

In light of these results, the integration of ionomics with other
omics, such as genomics or metabolomics, could serve to identify
potential genes and their networks that improve crop resistance
in response to physiological and environmental stress (Singh
et al., 2013; Wu et al., 2013; Huang and Salt, 2016; Guo et al.,
2017).

Phenomics
Phenomics defined as the characterization of phenotypes through
the acquisition of high-dimensional phenotypic data on an
organism-wide scale (Houle et al., 2010). However, phenome

refers to the phenotype as a whole and plant phenome can be
determined by genome (G), environment (E), and management
(M) interactions (Gjuvsland et al., 2013; Großkinsky et al., 2018),
thus phenomenon is also referred to as genotype–phenotype–
envirotype (G–P–E) interactions (Zhao et al., 2019).

Precise phenotyping is very accurate for the gene and QTL
mapping of particular traits of interest to identify their roles
via forward and reverse phenomics applications for the genetic
improvement in crop plants (Kumar et al., 2015b). In both
cases, the “best of the best” or the “best varieties of the best”
germplasm lines could be detected through automated high-
through put imaging technologies. These non-invasive imaging
approaches allow for rapid phenotyping of the traits (phenes)
through color imaging of the biomass, far infrared imaging of the
canopy, lidar (light detection and ranging) to measure growth
parameters, and magnetic resonance imaging to analyze root
systems in crops (Finkel, 2009; Berger et al., 2010; Furbank and
Tester, 2011). Furthermore, roots could be imaged in laboratories
and greenhouses without damaging plant samples. For example
electrical resistance tomography, electrical capacitance, X-ray
computed tomography, and positron emission tomography were
used to image root system for soil-grown plants and crops
(McGrail et al., 2020). Red, green, blue (RGB) imaging, based
on visible light, is a phenotyping tool used to estimate canopy
and root systems (Großkinsky et al., 2018). Several studies
have applied visible light imaging techniques through RGB set-
ups in order to determine crop phenotyping parameters. For
example, an RGB imaging setup scanned root system forTriticum
durum grown in soil-filled rhizoboxes (Bodner et al., 2017),
plant pthosystem, and disease symptoms were assessed through
RGB color-based imaging (Mahlein, 2016) and RGB digital
imaging method was used to analyze plant shoots phenotyping
under various stress responses (Humplík et al., 2015). Using
infrared thermography, one study confirmed the role of stomatal
conductance under salinity stress in young barley and wheat
seedlings (Sirault et al., 2009). Chlorophyll fluorescence imaging
has also been applied to screen for abiotic stress responses
in tobacco, canola, and cotton crops using pulse amplitude
modulated (PAM) instruments (Saranga et al., 2004; Baker,
2008). Furthermore, digital imaging methods have quantified
boron toxicity under abiotic stress in form of the mapping of
wheat and barley populations (Schnurbusch et al., 2010). With
regard to the responses to biotic stress, similar method has been
applied to detect and quantify the disease symptoms caused by
pathogens in barley crop (Swarbrick et al., 2006; Chaerle et al.,
2009). Thus, phenomics applications may play a vital role in
order to evaluate the phenotypic parameters in crops under biotic
and abiotic stress conditions.

Phenotyping techniques are more important for analyzing
crops in the field compared to plants in either the laboratory
or greenhouse. Multi and hyperspectral technologies may
be utilized to determine various agronomic characteristics
(Rascher and Pieruschka, 2008). Among these, the laser-induced
fluorescence transient (LIFT) technique is one of the most
robust for analyzing the photosynthetic efficiency of crops in
the field (Pieruschka et al., 2010). Access to wireless sensor a
network aids in the phenotyping of crop traits and enables the
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accumulation of valuable data for breeding science (Ruiz-Garcia
et al., 2009). Phenomics also offers various platforms connected
with computational systems to analyze the phenotyping data
including support vector machines (SVMs), artificial neural
networks (ANNs), and principal component analysis (Karkee
et al., 2009; Yang et al., 2009). So far, the major challenge in plant
phenomics is to organize information systems to store datasets
of phenotyping/traits so that they may be reanalyzed to generate
new ideas (Cabrera-Bosquet et al., 2012).

The combination of GWAS and a high through-put rice
phenotyping facility (HRPF) has resulted in the identification
of 15 agronomic traits and 25 associated loci corresponding
to the Green Revolution semi-dwarf gene (SD1) in rice (Yang
et al., 2014). The multifunctional phenotyping technique was
based on rice automatic phenotyping (RAP) and the yield
traits scorer (YTS), which paved the way for high throughput
phenotyping (HTP) methods to replace traditional phenotyping
(manual phenotyping) approaches in crop breeding (Yang
et al., 2014). Recently, an ontology-driven phenotyping hybrid
information system (PHIS) has been proposed to assemble
and share multi-scale data and metadata (Neveu et al., 2019).
The ontology-driven PHIS information system is a powerful
tool to integrate, manage data and share multi-source/multi-
scale data (for both greenhouse and filed condition), however,
ontology-driven architecture creates relationships between
objects and enriches datasets with knowledge and metadata
(Neveu et al., 2019). Current research efforts have also presented
the Internet of Things (IoT)-based CropSight system, which
is used to scale and determine both crop phenotyping and
genotype–environment interactions (GxE). Internet of Things
technologies is worldwide network which uses information
and communications technologies for interconnection of
sensing and actuating devices providing the ability to share
information across platforms. This system can carry out
high-quality crop phenotyping and monitor the dynamics of
microclimate conditions and has been applied in field wheat
crop experiments (Reynolds et al., 2019). However, Roitsch
et al. (2019) proposed HTP applications with new generation
sensors for next generation phenomics that would contribute to
improving crop yields, stress tolerance, and management in the
near future.

Overall, phenomics plays an important role in the
development of crop breeding strategies through the integration
of phenomics with other omics, such as genomics, proteomics,
and metabolomics, to provide insights regarding the complex
interactions between phenomes, the genome, and environmental
factors, which will be beneficial for improving crop management.

ROLE OF BIOINFORMATICS WITHIN THE
CONTEXT OF DATABASES AND
SOFTWARE TOOLS FOR CROP OMICS
ANALYSIS

Bioinformatics is an application of computational technology
to handle and analyze the biological data. Bioinformatics
as an interdisciplinary field encompasses computer science,

statistics, mathematics, engineering, molecular biology, and
biotechnology. Bioinformatics helps in order to interpret
biological queries utilizing computational software (Raza et al.,
2021). Notably, the integration of omics approaches (i.e.,
genomics, transcriptomics, proteomics, and metabolomics) has
increased our understanding molecular processes associated with
abiotic stress responses in plants (Cramer et al., 2011; Jogaiah
et al., 2013). Nonetheless, bioinformatics consolidates with these
omics approaches and provides base for collecting information
for plant abiotic stresses (Ambrosino et al., 2020). Thus,
bioinformatics is indispensable for data mining and organization
(data production) in support of different omics technologies
(Ambrosino et al., 2020). Furthermore, bioinformatics interprets
information about the functional system of genes provided by
such robust technologies. Bioinformatics also provides accessible
resources for computational modeling and simulation analysis by
integratingmultiple omics technologies. The bioinformatics tools
utilizing various software packages have been used for analyzing
the multi-omics approaches in crop science. Recently, the
availability and advancements of omics platforms have expanded
remarkably to allow information to be utilized in multi-
dimensional research in the plant sciences. The computational
resources have not only made it possible to store, catalog, and
analyze the available data but have also provided an easy means
to access user friendly databases. Various multi-omics databases
have been developed for the crop sciences (Table 1).

Among these, Gramene, Plant Reactome, GabiPD, KaPPA-
View4 KEGG, and PMND provide multi-omics-based
integration of genomics, transcriptomics, proteomics, and
metabolomics for several crop species. Both KNApSAcK and
KOMICS are useful metabolomics databases that provide
information on abundant metabolites in medical plants
and crop species. The KOMICS contains several databases
for metabolome analysis for example Food Metabolome
Repository that can be used to obtain data from various
Japanese foods using liquid chromatography-mass spectrometry
(LC-MS), KomicMarket database which is used for detected
peaks (known/unknown) in metabolome analysis. Similarly
Metabolonote database available at KOMICS can also be used to
manage “metadata” for experimental 616 data obtained through
the metabolomics studies.

PlantTFDB is a multi-crop species database that predicts
plant TFs. Moreover, single-crop species dedicated databases
of important crops are also available, such as RAP-DB
(rice), TFGD (tomato), SoyKB (soybean), MaizeGDB (maize),
CerealsDB (wheat), RiceXPro (rice), and SiFGD (Foxtail millet;
Table 1). These databases provide comprehensive data on
functional genomics coupled with transcriptomics, proteomics,
and metabolomics and are currently playing pivotal roles in
breeding sciences. Furthermore, there aremore than 50 databases
numerous crops that provide accumulated omics analysis data
(for detailed information see Table 1).

Various software packages have also been developed for multi-
omics analysis. In this regard, various online tools have been
compiled and are presented inTable 2. The software packages are
important to analyze the phenotyping, measurement, and disease
symptoms of leaf such as, BioLeaf and EasyPCC. Whereas,
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TABLE 1 | List of online databases used for crop multi-omics analysis.

S. no. Database Crop species Features and functionality Availability/URL

1 Gramene Multi-species Multi-omics:

comparative functional genomics, transcriptomics, and

metabolic pathways

http://www.gramene.org/

2 Plant Reactome Multi-species Multi-omics:

genomics, transcriptomics, functional proteomics, and

integrated metabolic pathways

http://plants.reactome.org/

3 GabiPD Multi-species Multi-omics http://www.gabipd.org/

4 KaPPA-View4 KEGG Multi-species Multi-omics:

Metabolome integrated transcriptomic and

genomic pathway

http://kpv.kazusa.or.jp/kpv4/kegg

5 KOMICS Multi-species Metabolomics http://www.kazusa.or.jp/komics/en/

6 KNApSAcK Multi- species Metabolomics http://kanaya.naist.jp/KNApSAcK/

Family/

7 PMND Multi-species Multi-omics:

Metabolome integrated transcriptome and

genomic pathway

https://www.plantcyc.org/

8 PlantTFDB Multi-species Transcriptomics:

Predicts plant transcription factors (TFs)

http://planttfdb.cbi.pku.edu.cn/

9 PPDB Multi-species Proteomics http://ppdb.tc.cornell.edu/

10 GrainGenes Multi-species Genomics http://www.graingenes.org

11 PlantGDB Multi-species Comparative genomics http://www.plantgdb.org/

12 PCD Multi-species Genomics-assisted breeding (GAB) https://www.pulsedb.org/

13 RAP-DB Rice Genomics integrated multi-omics http://rapdb.dna.affrc.go.jp/

14 RiceXPro Rice Functional genomics and transcriptomics http://ricexpro.dna.affrc.go.jp/

15 Ricebase Rice Genomics https://ricebase.org/

16 Oryzabase Rice Integrated biological and genome information database https://shigen.nig.ac.jp/rice/

oryzabase/

17 SNP-Seek II Rice SNP-seek database http://snp/seek.irri.org

18 RicyerDB Rice Integrative genomics and proteomics http://server.malab.cn/Ricyer/index.

html

19 RiceVarMap Rice Genomic variation and functional annotation http:/ricevarmap.ncpgr.cn

20 TFGD Tomato Functional genomics, integrated transcriptomics,

and metabolomics

http://ted.bti.cornell.edu/

21 TOMATOMICS Tomato Multi-omics http://plantomics.mind.meiji.ac.jp/

tomatomics/index.html

22 SoyKB Soybean Multi-omics http://soykb.org/

23 SoyBase Soybean Multi-omics https://soybase.org/

24 SoyGD Soybean Genomics http://soybeangenome.siu.edu/

25 SFGD Soybean Multi-omics:

Functional genomics, transcriptomics, and

metabolic pathways

http://bioinformatics.cau.edu.cn/

SFGD/

26 SoyNet Soybean Functional genomics and transcriptomics https://www.inetbio.org/soynet/

27 MaizeGDB Maize Multi-omics https://www.maizegdb.org/

28 MaizeDIG Maize Phenomics and genomics https://maizedig.maizegdb.org/

29 MaizeSNPDB Maize SNPs https://github.com/venyao/

MaizeSNPDB

30 MMAD Maize Microarray http://maizearrayannot.bi.up.ac.za/

31 CSRDB Maize and rice Small RNAs database http://sundarlab.ucdavis.edu/smrnas/

32 RGPDB Maize, soybean

and sorghum

Multi-omics http://sysbio.unl.edu/RGPDB/

33 CerealsDB Wheat Functional genomics http://www.cerealsdb.uk.net/

cerealgeno/mics/

34 WGI Wheat Genomics http://wheatgenome.info/

35 wDBTF Wheat Transcription factors http://wwwappli.nantes.inra.fr:8180/

wDBFT/

(Continued)
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TABLE 1 | Continued

S. no. Database Crop species Features and functionality Availability/URL

36 WheatGPE Wheat Base on phenotype-genotype and environment http://www.wheatdb.org/

37 SiFGD Foxtail millet Functional genomics integrated transcriptomics,

and metabolomics

http://structuralbiology.cau.edu.cn/

SIFGD/

38 CottonFGD Cotton Functional genomics https://cottonfgd.org/

39 CottonGen Cotton Genomics https://www.cottongen.org/

40 CottonQTLdb Cotton QTL analysis http://www.cottonqtldb.org

41 MTGD Medicago

truncatula

Genomics http://www.MedicagoGenome.org

42 CTDB Chickpea Functional genomics and transcriptomics http://www.nipgr.ac.in/ctdb.html

43 ECPD Potato Genomics https://www.europotato.org/

44 BARLEX Barley Genomics http://barlex.barleysequence.org

45 SorghumFDB Sorghum Functional genomics http://structuralbiology.cau.edu.cn/

sorghum/index.html

46 SorGSD Sorghum SNPs http://sorgsd.big.ac.cn/

47 SGH Sugarcane Genomics https://sugarcane-genome.cirad.fr/

48 BRAD Brassica species Genomics and transcriptomics http://brassicadb.org/brad/

49 CropSNPdb Brassica species

and wheat

SNPs http://snpdb.appliedbioinformatics.

com.au/

50 SFGD Sunflower Genomics and transcriptomics https://www.sunflowergenome.org

51 BBDG Blueberry Genomics and transcriptomics http://bioinformatics.towson.edu/

BBGD/

GABI, genomanalyse im biologischen system pflanze; GabiPD, GABI primary database; PMND, plant metabolic network database; SiFGD, Setaria italica functional genomics database;

RAP-DB, the rice annotation project database; TFGD, tomato functional genomics database; TFDB, trancription factors database; PPDB, plant proteome database; PCD, pulse crop

database; RiceVarMap, rice variation map; SoyGD, soybean genome database; SFGD, soybean functional genomics database; SoyNet, soybean network; MaizeGDB, maize genetics

and genomics database; MaizeDIG, database of images and genomes; MMAD, maize microarray annotation database; CSRDB, cereal small RNAs database; RGPDB, root genes and

promoters database; WGI, wheat genome info; wDBTF, wheat database for transcription factor; WheatGPE, Genotype-phenotype and environment; CottonFGD, CottonFGD cotton

functional genomics database; CottonGen, cotton genomics; MtGD, Medicago truncatula genome database; CTDB, chickpea transcriptome database; ECPD, European cultivated

potato database; SorghumFDB, Sorghum functional genomics database; SorGSD, Sorghum genome SNP database; SGH, sugarcane genome hub; BRAD, (Brassica database; SFGD,

sunflower genome database; BBDG, blueberry genomics database.

protein–protein interaction, gene structure analysis can also
predicted in STRING andGSDS, respectively. However, Gromacs
software could be used for simulation of protein and lipids for
crops (for detail see Table 2).

Several softwares can be used as individual omics analysis
such as, phenomics, proteomics, and metabolomics, whereas,
some of them are useful for multi-omics analysis. In detail,
LemnaLauncher, BioLeaf, and EasyPCC are used for phenomics
analysis of crops. For proteome function and interactions,
three important software packages (i.e., STRING, SPPS, and
ProteinProspector) provide vital information. Importantly,
Gromacs and PTools are multi-omics based software for multiple
crop species. In order to analyze structural and comparative
genomics, GSDS, GAP4, and VISTA are accessible tools for crop
omics. Additionally, AMDIS and SIMCA-P 14.0 could be used for
ionome-integrated metabolic component analysis in crop species
(Table 2).

ROLE OF PANOMICS FOR CROP
BREEDING SCIENCE

Panomics provides a platform to integrate complex omics,
such as genomics, epigenomics, transcriptomics, proteomics,
PTM proteomics, metabolomics, and phenomics (Weckwerth
et al., 2020). The concept of panomics was recently proposed

by Weckwerth et al. (2020). The idea of this platform is
to combine different omics and construct models that can
be used to predict complex traits (Weckwerth, 2011a, 2019).
However, coupling phenomics and environmental information
with genomics, transcriptomics, proteomics, and metabolomics
would provide a better understanding of the terroir-phenotype
dependency at a molecular level. The integration of complex
“omics” datasets could also reduce the number of false positives
generated from single data sources for genotype-phenotype
prediction (Ritchie et al., 2015). Panomics and environmental
platforms together with multiple data integration can be used
to identify genes, QTLs, and markers through functional omics
and mathematical models to enhance the tolerance to abiotic
and biotic stress in crop varieties and create elite lines to
improve the germplasm (Weckwerth et al., 2020). To analyze
the integrated data, special tools can be used to merge multi-
omics datasets prior to any interpretation (Kuo et al., 2013)
(e.g., tools such as PAINTOMICS, KaPPA-view, and COVAIN).
PAINTOMICS is web based tool offers integrated visualization
of data of two omics, the transcriptomics and metabolomics
datasets and displays the data on KEGG pathway maps (García-
Alcalde et al., 2011). Another web based tool the KaPPA-view
has been developed for integration of transcript and metabolite
data on plant metabolic pathway maps (Tokimatsu et al., 2005).
Nevertheless, the COVAIN (covariance inverse) tool primarily
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TABLE 2 | List of online software packages used for crop multi-omics analysis.

S. no. Software Crop species Features and functionality Availability/URL

1 LemnaLauncher Multi-species Phenomics: image-based

measurements of length, width, color,

surface of seeds

http://www.plant/image/analysis.org/

software/lemnalauncher

2 EasyPCC Multi-species Phenomics: field crop

canopy measurement

http://www.plant/image/analysis.org/

software/easypcc

3 BioLeaf Multi-species Phenomics: leaf surface and

disease analysis

http://www.plant/image/analysis.org/

software/bioleaf

4 STRING Multi-species Proteomics: predicts protein

interactions containing

functional associations

http://string.embl.de

5 SPPS Multi-species Proteomics: predicts protein–protein

interaction partners

http://mdl.shsmu.edu.cn/SPPS/

6 ProteinProspector Multi-species Proteomics: sequence mining

with MS

http://prospector.ucsf.edu/

7 Gromacs Multiple-species Genomics, proteomics

and metabolomics

https://omictools.com/gromacs/tool

8 PTools Multi-species Multi-omics https://omictools.com/ptools/tool

9 GSDS Multi-species Structural genomics: visualizes gene

structure (exons, introns, and UTRs).

http://gsds.cbi.pku.edu.cn/

10 GAP4 Multi-species Structural genomic

sequence assembly

http://stadensourceforge.net/

overview.html

11 VISTA Multi-species Comparative genomics http://

genome.lbl.gov/vista/index.shtml

12 AMDIS Multi-species Metabolomics: GC-MS

data interpretation

http://www.amdis.net/

13 SIMCA-P 14.0 Multi-species Ionomics integrated with

metabolome: principal metabolic

component analysis

https://umetrics.com/kb/simca/

online/140

SPPS, sequence-based protein partners search, GAP4, genome assembly program; GSDS, gene structure display server.

used for metabolomics data and can support in statistical analysis
of the integrated omics dataset with KEGG pathway and gene
ontology analysis (Sun and Weckwerth, 2012). The integration
of GWAS with panomics has also been used to explain
and understand phenotypic variance in crops. Importantly,
integrating GWASwith omics datasets including transcriptomics
(eQTLS), proteomics (pQTLS), andmetabolomics (mQTLS)may
lead to the identification of novel genes and functional pathways
underlying complex traits (Weckwerth et al., 2020). In this vein,
a combined metabolome-based genome-wide association study
(mGWAS with eQTL) identified metabolite features associated
with kernel weight in maize crop (Wen et al., 2014).

Furthermore, the integration of panomics and genome editing

tools (e.g., TALENs and CRISPR/Cas9) has been proposed as a
model for the development of precision breeding (Weckwerth

et al., 2020). Recently, using MAS and genomic selection
techniques, agronomically important genes have been identified

that only explain ∼40% of the phenotypic variance. Hence,

the proposed methodology of the integration of panomics with
genome editing tools could result in the identification of the

remaining ∼60% of the phenotypic variance and may support
the identification of agronomically important genes in a fast
and effective manner to support precision breeding efforts.
Thus, this methodology will not only be helpful for improving
crops but will also ensure precision in trait optimization in

terms of yield, nutritional value, and plant fitness (Weckwerth
et al., 2020). Hence, genotype to phenotype concept based
on epigenetic regulation (triggered by environmental factors)
through integration of mutli-omics could lead to develop
qualitative and quantitative traits which may be helpful for crop
breeding improvement (Figure 2).

INTEGRATION OF MULTI-OMICS AND
SYSTEMS BIOLOGY APPROACHES FOR
CROP IMPROVEMENT

In order to understand the cellular components and complex
behaviors of biological systems, an integration of the different
omics approaches is required to envisage the responses of
a given organism under a set of conditions. Previously, the
coupling of metabolomics with genomics, transcriptomics,
and proteomics provided an integrated portrait of functions,
spanning the genome to phenotypic interactions with the
environment (Weckwerth, 2011a). Combined omics approaches
have been applied in potato tubers and Arabidopsis to
analyze transcriptomic and metabolomic profiles (Urbanczyk-
Wochniak et al., 2003; Hirai et al., 2004). These studies have
demonstrated that coupling of different omics approaches could
be useful for identifying potential candidate genes for functional
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analysis. Since the advancements in omics technologies and
computational tools, integrative omics approaches have been
implemented in the crop sciences. For example, the epigenetic-
based integration of multi-omics revealed the role of the
regulation of lipid biosynthesis during cotton fiber development
(Wang et al., 2016). The integration of GWAS with metabolite
profiling strategies has proved to be a powerful technique
to dissect the biochemical and genetic processes in several
model crop species including rice, maize, and tomato (Luo,
2015; Matsuda et al., 2015). Importantly, the integration of
omics approaches (i.e., genomics, transcriptomics, proteomics,
and metabolomics) has led to abiotic stress tolerant crop
phenotypes (Jogaiah et al., 2013). Functional genomics and
mutagenomics have been used to identify numerous mutants
with specific variations with regard to growth, development, and
stress tolerance in various crops including rice, maize, wheat,
and barley (Talukdar and Sinjushin, 2015). Combined GWAS
and HRPF approach was able to elucidate agronomic traits
responsible for biomass growth and yield in rice crop (Yang
et al., 2014). This robust technique replaced the traditional
phenomics, providing a powerful tool for crop genetics and
breeding sciences (Yang et al., 2014). Combined GWAS and
high-throughput leaf scoring (HLS) was used to identify new
loci related to the size, shape, and color of leaves in rice crop
(Yang et al., 2015). The performance of QTL mapping combined
with agronomic traits also helped to identify numerous QTLs in
maize crop (Zhang et al., 2017). Hence, genomic information
combined with potential phenotyping approaches can provide
information on complex traits to improve crops (Zhao et al.,
2019). Combined omics approaches could complement each
other when analyzing certain biological processes. This idea has
been validated through the differential regulation of metabolites,
proteins, and ions related to salinity stress in halophytes (Kumari
et al., 2015). Metabolomics is considered to be a link between
genotypes and phenotypes (Fiehn, 2002). Combined ionome and
metabolome techniques were used to suppress photosynthesis
and growth rates in maize crop under alkaline conditions (Guo
et al., 2017). Similarly, the leaf and grain ionome revealedmineral
element genetic diversification in rice crop through genetic
mapping and QTL identification (Norton et al., 2010; Zhang
et al., 2014b; Pinson et al., 2015). Thus, genotype to phenotype-
based integration of multi-omics would provide insights into the
functional mechanisms of genes and their networks to improve
crop science, genetics, growth, yield, and resistance in response
to physiological and environmental stress (Figure 2).

Systems biology attempts to understand the complete
biological system through modeling. It predicts the behavior
of all components and interactions among genes, proteins,
and metabolites with respect to external stimuli (Kumar et al.,
2015a). Systems biology has provided a powerful base to
combine multi-omics to create a holistic understanding of an
organism related to its adaptation and development (Pinu et al.,
2019). Multi-omics approaches have been employed in plant
stress research associated with systems biology (Mosa et al.,
2017). However, comprehensive analyses using three omics
technologies, transcriptomics, metabolomics, and proteomics,
have also increased our understanding of systems biology

associated with abiotic stress responses in plants (Cramer et al.,
2011). Multi-omics integrated with systems biology based on
top-down and bottom-up data reduction approaches, which
employ genomics and/or metabolomics as a foundation, is
able to predict phenotypic responses and metabolic pathways
(Pinu et al., 2019). Another study proposed two system-
based approaches for decoding the complexity of biological
systems. First, top-down or integrative systems biology has
been employed with high-throughput multi-omics data and
data analysis using bioinformatics and systems biology tools to
identify agriculturally important traits. Second, bottom-up or
predictive systems biology in which the properties of genes or
proteins with available quantitative information are utilized to
develop models of well-characterized components of both genes
and proteins has been used to predict the behavior of systems
under different conditions (Kumar et al., 2015a). Hence, a model
needs to be developed and linked to phenotypic traits to allow
for valuable progress with regard to genetic manipulation and
crop production. The integration of multi-omics and systems
biology approaches has resulted in the identification of molecular
regulator networks for salt stress tolerance in grapevine crop
(Daldoul et al., 2014). Moreover, systems biology integrated with
omics approaches for network and testing models has been
proposed for abiotic stress responses in crop plants (Gupta
et al., 2013). In this regard, we proposed top-down (phenotype
to genotype) and bottom-up (genotype to phenotype) model
based on an integration of multi-omics with systems biology in
response to environmental stress, which may also be useful to
improve crop breeding (Figure 2).

CONCLUSION AND PERSPECTIVE

Multi-omics analysis has played an integral role in the
identification of genetic processes, growth, development,
and stress tolerance in various crops. Several omics approaches
including genomics, transcriptomics, proteomics, metabolomics,
ionomics, and phenomics have employed high throughput
techniques to interpret functional analysis, molecular
mechanisms of genes, and gene networks in crop science.
Furthermore, the integration of GWAS with metabolomics,
transcriptomics, and proteomics has proved to be a potential
tool to elucidate biochemical processes and abiotic stress
tolerance in some model crops. The studies have shown that
how the combination of several omics approaches could be
beneficial for identifying potential candidate genes and their
pathways. With advances in high throughput technologies and
computational tools, the integration of some omics approaches
has been possible in the crop sciences. The panomics platform
with integrated multi-omics, such as genomics, epigenomics,
transcriptomics, proteomics, proteomics, metabolomics, and
phenomics, would facilitate the construction of models to
predict agronomically important traits to improve crops
through precision breeding. Importantly, the integration of
systems biology with complex omics datasets has also increased
our understanding of molecular regulator networks for crop
improvement. The studies have revealed the G–P–E interactions
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in crops. Subsequently, integration of functional genomics with
trancriptomics, proteomics, metabolomics, and ionomics may
result in apparent crop quality phenotypic traits under certain
stresses through “genotype to phenotype” concept. From this
perspective, we propose, the integration of multi-omics with
systems biology by top-down (phenotype to genotype) and
bottom-up (genotype to phenotype) model that can be helpful to
develop quality agronomic traits for crop improvements under
environmental stress conditions (Figure 2).
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