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Motivation: Pentatricopeptide repeat (PPR), which is a triangular pentapeptide repeat

domain, plays an important role in plant growth. Features extracted from sequences are

applicable to PPR protein identification using certain classification methods. However,

which components of a multidimensional feature (namely variables) are more effective for

protein discrimination has never been discussed. Therefore, we seek to select variables

from a multidimensional feature for identifying PPR proteins.

Method: A framework of variable selection for identifying PPR proteins is proposed.

Samples representing PPR positive proteins and negative ones are equally split into a

training and a testing set. Variable importance is regarded as scores derived from an

iteration of resampling, training, and scoring step on the training set. A model selection

method based on Gaussian mixture model is applied to automatic choice of variables

which are effective to identify PPR proteins. Measurements are used on the testing set

to show the effectiveness of the selected variables.

Results: Certain variables other than the multidimensional feature they belong to do

work for discrimination between PPR positive proteins and those negative ones. In

addition, the content of methionine may play an important role in predicting PPR proteins.

Keywords: pentatricopeptide repeat, variable selection, variable importance, random forest, model selection,

Gaussian mixture model

1. INTRODUCTION

Pentatricopeptide repeat (PPR), which is a 35-amino acid sequence motif (Chen et al., 2018; Rojas
et al., 2018) and is commonly found in eukaryotes and terrestrial plants (Ruida et al., 2013), plays
an important role in plant growth and development (Qu et al., 2019). PPR proteins, which are
distinguished by the presence of tandem degenerate PPR motifs and by the relative lack of introns
in the genes coding for them, are regarded as an ideal model to study plant cytoplasmic and nuclear
interactions (Wang et al., 2008).

Many prevailing methods or tools (Wei et al., 2017a,b; Tang et al., 2018) can be used to predict
PPR proteins. A feature composed of 188 variables (namely 188D) related to sequence information
and amino acid properties (Zhang et al., 2012; Song et al., 2014; Xu et al., 2014; Li et al., 2019) or
the one including 65 components, i.e., pseudo-amino acid composition which can be abbreviated
as PAAC (Chou, 2001, 2005) is a case in point. In addition, classifiers such as random forest (Lv
et al., 2019; Ru et al., 2019;Wei et al., 2019) and support vector machine (Tang et al., 2016; Tan et al.,
2019) can be applied to the evaluation of extracted features. Commonly, these features represent the
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FIGURE 1 | A framework of variable selection for identifying plant PPR

proteins.

content of certain amino acid, the conversion frequency of its
surface tension, its hydrophobicity, hydrophilicity, and side chain
volume, etc. However, it has never been discussed whether only
some components of a multidimensional feature may work or
not. In other words, which components of an extracted feature
may identify PPR proteins (i.e., distinguish PPR proteins from
non-PPR ones) need to be discussed.

In order to solve this problem, we propose a framework
of variable selection for identifying plant PPR proteins as
shown in Figure 1. First of all, samples are randomly split in
balance within either PPR positive or negative protein group.
Then, multiple rounds of resampling, training and scoring are
implemented on the training set in order to accumulate scores
for each variable. Random forest is presented as the ensemble
classifier to be trained. In each round, the score of a variable is
calculated by making a comparison between classification error
rates before and after one time random permutation of the
remaining sample values on the variable. After enough rounds of
score accumulation, variables with high accumulated scores are
regarded as important variables. Instead of manually choosing
variables with high accumulated scores, we make an automatic
variable selection according to their accumulated scores bymodel
selection based on Gaussian mixture model. After important
variables are selected, qualitative and quantitative measurements
are made on the testing set derived from previous sample
split. Good classification results indicate the effectiveness of the
selected variables which keep certain properties for identifying
PPR proteins.

2. METHOD

First of all, the dataset representing plant PPR is provided (Qu
et al., 2019), which contains 487 PPR positive and 9,590 negative

protein primary sequences. Subsequently, features including
188D and PAAC are extracted, respectively. Commonly, these
features are directly used for distinguishing positive proteins
from negative ones. However, which components of 188D or
PAAC do play a part in this discrimination needs to be further
discussed. Thus, we follow the framework presented in Figure 1

to select key variables for identifying plant PPR proteins. More
details can be seen in the following subsections.

2.1. Sample Split
In order to validate the effectiveness of selected variables, we
make a balanced sample split. Samples within positive or negative
group are equally divided other than splitting negative samples
in 10 sets (Qu et al., 2019), which actually discarded half negative
samples. As a result, 243 positive samples and 4,795 negative ones
are randomly selected as a training set; meanwhile, the remaining
samples are regarded as a testing set.

2.2. Resampling, Training, and Scoring
As illustrated in Figure 1, an iteration is implemented on the
training set for obtaining important variables. Each round of
the iteration includes three steps, i.e., resampling, training, and
scoring. First of all, we randomly choose two-thirds of the
training samples in balance. That is, 162 positive samples and
3,197 negative ones are selected in a randommanner for the next
training step.

Secondly, these selected samples are utilized to train a
classification and regression tree (CART). All the components of
a feature are considered. By recursively splitting data into distinct
subsets, the CART is constructed in a binary-tree form. At each
node of the CART, Gini impurity (GI) is used to choose a variable.
In fact, GI is a measure of how often a randomly chosen sample
point from training set would be incorrectly labeled. It can be
computed by summing all the probability products, each of which
is expressed as a probability of a randomly chosen sample labeled
i (i.e., pi) times the probability 1− pi. That is,

GI =

k∑

i=0

pi ∗ (1− pi), (1)

where k is the number of sample groups in the training set and
k = 2. To select suitable variable to make a split in each node, the
decrease of GI between the parent node and its two descendant
nodes is calculated, and the variable m which maximizes this
decrease is chosen as the current node.

Thirdly, the remaining one-third of the training samples,
which are also named as out-of-bag (OOB) samples, are used
for scoring variable importance. At the scoring step, we adopt
a permutation based variable importance scoring approach. The
main idea behind this method is that we use the classifier to
predict labels of OOB samples and calculate the classification
accuracy or error rate in advance. In our experiments, OOB error
estimate is utilized. The established CART is used to classify
each OOB sample. Taking the unbalanced distribution between
positive and negative samples into account, we modify the OOB
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FIGURE 2 | Qualitative results on 188D. (A–C) Gaussian distribution of the accumulated variable importance corresponding to three-time random sample splits,

respectively. (D–F) Refer to the ROC curves and AUC values of the selected four variables, 188D and the selected 13 variables, respectively.

Frontiers in Plant Science | www.frontiersin.org 3 March 2021 | Volume 12 | Article 506681

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhao et al. Identifying PPR Using Variable Selection

TABLE 1 | Quantitative results on 188D.

Feature Confusion matrix Class TP rate FP rate Precision Recall F1-measure

(10)T

Classified as − > a b a: Positive 0.230 0.032 0.267 0.230 0.247

a 56 188 b: Positive 0.968 0.770 0.964 0.968 0.964

b 154 4,641 Weighted average 0.932 0.734 0.927 0.932 0.927

(10, 12)T

Classified as − > a b a: Positive 0.344 0.012 0.587 0.344 0.434

a 84 160 b: Positive 0.988 0.656 0.967 0.988 0.977

b 59 4,736 Weighted average 0.957 0.625 0.949 0.957 0.951

(10, 12, 130)T

Classified as − > a b a: Positive 0.434 0.011 0.675 0.434 0.528

a 106 138 b: Positive 0.989 0.566 0.972 0.989 0.980

b 51 4,744 Weighted average 0.962 0.539 0.958 0.962 0.958

(10, 12, 130, 1)T

Classified as − > a b a: Positive 0.541 0.006 0.825 0.541 0.653

a 132 112 b: Positive 0.994 0.459 0.977 0.994 0.985

b 28 4,767 Weighted average 0.972 0.437 0.970 0.972 0.969

(10, 12, 152, 130, Classified as − > a b a: Positive 0.639 0.001 0.975 0.639 0.772

1, 63, 24, 13, 22, a 156 88 b: Positive 0.999 0.361 0.982 0.999 0.990

87, 62, 45, 9)T b 4 4,791 Weighted average 0.982 0.344 0.982 0.982 0.979

188D

Classified as − > a b a: Positive 0.623 0.000 1.000 0.623 0.768

a 152 92 b: Positive 1.000 0.377 0.981 1.000 0.985

b 0 4,795 Weighted average 0.982 0.359 0.982 0.982 0.979

error rate as follows,

ErrOOB = (FN/(TP + FN)+ FP/(TN + FP))/2, (2)

where FN, TP, FP, and TN represent the number of false
negative, true positive, false positive, and true negative samples,
respectively. Then we permute the values of a specific variable
and use the classifier to predict the permuted data and calculate
the error rate again. The difference between the two error rate
measures is assigned to the specific variable as its importance.

Under the assumption that there are no differential expression
levels between positive and negative samples, the expression
levels of OOB samples on component i are reordered.
Correspondingly, a new OOB classification error rate which is
expressed as ẼrrOOB is obtained using Equation (2). As a result,
the score of component i in j round is calculated as

scorej(i) = ẼrrOOB − ErrOOB. (3)

The score calculated in Equation (3) indicates the contribution of
component i to the classification result expressed in Equation (2).
If the values of variable i have no apparent difference between
two groups of OOB samples before and after permutation, then
ẼrrOOB will keep a similar OOB error rate as ErrOOB despite the
one time permutation to the values of OOB samples. Otherwise,
the score expressed in Equation (3) will become large. After
N rounds of resampling, training and scoring, the accumulated
score of component i is expressed as

Acc_score(i) =

∑N
j=1 scorej(i)

N
. (4)

2.3. Automatic Variable Selection
Once the accumulated score of each component or variable in
a multidimensional feature is achieved, it needs to be further
discussed either some components or the whole feature may
work for discrimination between positive and negative samples.
Instead of manually selecting variables with high accumulated
scores, a model selection method needs to be presented for
automatic variable selection. Here, we choose Gaussian mixture
model (GMM) (Li et al., 2015) for automatic variable selection.

GMM is a probabilistic model that assumes samples are
generated from themixture of Gaussian distributions. As a result,
data is distributed as follows,

p(x|θ) =

k∑

i=1

πiN(µi, σi), (5)

where πi, µi, σi are the mixture proportion, the mean and
the standard variance of Guassian component i, respectively.
N denotes Gaussian distribution, and θ = (πi,µi, σi) is
the parameter vector to be determined. To fit a GMM
model, expectation maximum algorithm (EM) which guarantees
converge can be used after fixing the number of components. EM
algorithm is an iterative method to find the maximum likelihood,
or maximum posteriori estimates on parameters of a model. The
method repeatedly performs the expectation (E) step and the
maximum (M) step. In the E step, a function for the expectation
of the log-likelihood evaluated using the current estimates for
model parameters is created; while in the M step, the values of
parameters which maximize the function for the expectation is
found, and the new estimates are then used in the next E step.
When fitting the GMM model, the E step at the ith iteration of
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FIGURE 3 | Qualitative results on PAAC. (A–C) Gaussian distribution of the accumulated variable importance corresponding to three-time random sample splits,

respectively. (D–F) Refer to the ROC curves and AUC values of the selected two variables, PAAC and the selected eight variables, respectively.
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TABLE 2 | Quantitative results on PAAC.

Feature Confusion matrix Class TP rate FP rate Precision Recall F1-measure

(10)T

Classified as − > a b a: Positive 0.246 0.034 0.267 0.246 0.256

a 60 184 b: Positive 0.966 0.754 0.962 0.966 0.964

b 165 4,630 Weighted average 0.931 0.719 0.929 0.928 0.930

(10, 1)T

Classified as − > a b a: Positive 0.471 0.012 0.669 0.471 0.553

a 115 129 b: Positive 0.988 0.529 0.973 0.988 0.980

b 57 4,738 Weighted average 0.963 0.504 0.958 0.963 0.959

(10, 1, 30, Classified as − > a b a: Positive 0.652 0.001 0.958 0.652 0.776

29, 22, 9, a 159 85 b: Positive 0.999 0.348 0.983 0.999 0.991

12, 13)T b 7 4,788 Weighted average 0.982 0.331 0.982 0.982 0.981

PAAC

Classified as − > a b a: Positive 0.643 0.000 0.994 0.643 0.781

a 157 87 b: Positive 1.000 0.357 0.982 1.000 0.991

b 1 4,794 Weighted average 0.983 0.340 0.983 0.983 0.981

EM algorithm can be described as

pi =
πp(x|µ, σ )∑
k πp(x|µ, σ )

. (6)

And the updates of estimates at the (i + 1)th iteration in the M
step is formulated as

π i+1 =
∑

pi

N ,

µi+1 =
∑

pix∑
pi
,

σ i+1 =
∑

pi(x−µi)(x−µi)T∑
pi

.

(7)

How to choose the GMM model which fits the data best among
these with different component numbers is an instance of model
selection. Bayesian information criterion (BIC) is employed in
our method. BIC is defined as

BIC = ln(n)k− 2ln(L̂), (8)

where L̂ = p(x|θ̂ , L̂) denotes the maximized value of the
likelihood function of GMM, n is the sample size and k is the
number of parameters in the model. BIC considers both data
fitting and model complexity, and it adds a penalty term for each
model to help to avoid overfitting. Themodel with the lowest BIC
is preferred.

After fitting the GMM model with accumulated scores,
variables belonging to Gaussian distributions with high means
will be automatically selected for subsequent analysis.

2.4. Measurement
In order to show the effectiveness of the selected variables,
we choose seven quantitative measurements including
confusion matrix, TP rate, FP rate, Precision, Recall, Accuracy,
and F1-measure.

A confusion matrix (Theodoridis and Koutroumbas, 2009)
illustrates the number of false negative (FN), true positive
(TP), false positive (FP), and true negative (TN) samples.

Correspondingly, TP rate, FP rate, Precision, Recall, and
Accuracy (ACC) are computed as follows,

TP rate = TP
TP+FN ,

FP rate = FP
FP+TN ,

Precision = TP
TP+FP ,

Recall = TP
TP+FN ,

ACC = TP+TN
TP+FN+TN+FP ,

(9)

where TP rate and Recall are expressed in the same form. The F1-
measure (Nan et al., 2012) is a harmonic average of Precision and
Recall, which is expressed as

F1−measure =
2∗Precision ∗ Recall

Precision+ Recall
. (10)

Besides, the receiver operating characteristic (ROC) and the area
under ROC curve (AUC) are also provided.

3. RESULTS

Experiments were conducted on 487 PPR positive and 9,590
negative proteins. The procedure shown in Figure 1 was
accomplished using our own developed tool ECFS-DEA (Zhao
et al., 2020) on the training set, whereby variables associated
with discrimination between PPR positive and negative samples
were automatically selected. On the testing set, we used six-fold
cross validation. Five parts of the testing set were used to train
a random forest (RF), each tree of which was a CART. The
remaining part was used for testing.

3.1. Variable Selection Results on 188D
Wefirstly used 188D as the starting point of our variable selection
method. Rounds of the iteration were referred to the successively
performing of resampling, training, and scoring. In order to
stabilize the results obtained by our variable selection method,
1 × 105 rounds were performed. In addition, this procedure was
repeated three times, each of which corresponded to a group
of randomly selected training samples. Accordingly, Gaussian

Frontiers in Plant Science | www.frontiersin.org 6 March 2021 | Volume 12 | Article 506681



Zhao et al. Identifying PPR Using Variable Selection

FIGURE 4 | Line charts of quantitative results on 188D and PAAC, with the x axis representing the number of selected variables. (A,B) Quantitative results on 188D

with the positive class set to a and b, respectively. (C,D) Quantitative results on PAAC with the positive class set to a and b, respectively.

distributions of the GMM instances fitted by the accumulated
variable importance are listed in Figures 2A–C, respectively.

Figure 2A illustrates one, four, 24 and 159 variables in
the first, second, third, and fourth Gaussian component with
the variable importance in a descending order, respectively.
Figure 2B shows one, 13 and 174 variables in the first, second,
and third Gaussian component with the variable importance in
a descending order, respectively. As to Figure 2C, it has one,
seven, 19 and 161 variables in the first, second, third, and fourth
Gaussian component according to the variable importance in
a descending order. If we select variables which belong to the
first two Gaussian components of all the three times which have
highest mean scores of variable importance, namely we select
all the variables belong to subset Q, where Q = ∩i(Gi1 ∪ Gi2).
Here, i is the index of the three times and Gij denotes the
Gaussian distribution which has the jth highest mean score of
variable importance in the ith time, four variables are selected.
The corresponding ROC curves and AUC values can be seen in
Figure 2D.

If we expand the scope by including two green Gaussian
components illustrated in Figures 2A,C, namely, we now select
variables in subset Q′, where Q′ is defined as Q′ = (G11 ∪ G12 ∪

G13)∩(G21∪G22)∩(G31∪G32∪G33), we will obtain 13 variables.
The corresponding ROC curves and AUC values can be seen in
Figure 2F. Besides, the ROC curves and AUC values of 188D are
shown in Figure 2E.

Starting from the set A which is composed of the only

variable with the highest importance score, i.e., A = ∩iGi1,

we progressively add to A new elements in Q which is made
up of originally selected four variables with their importance in
a descending order and present quantitative results in Table 1.
Detailed results of the selected four variables together with the 13
variables and 188D are also listed in Table 1.

In Table 1, the confusion matrix, true positive (TP) rate,
false positive (FP) rate, precision, recall, and F1 measure are
calculated for the results corresponding to a specific feature,
i.e., the compound of the selected variables. The two classes
representing PPR positive (labeled a) and negative proteins
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FIGURE 5 | Scatter plots derived from feature 188D, each of which keeps x and y axis representing variable and its importance score, respectively. (A,C) Correspond

to 20-fold sample split from twice random generations of the training samples. (B,D) Refer to the accumulated results of the 20-fold scatter plots in (A,C), respectively.

(labeled b) are separately considered as the positive class
when we calculate these quantitative results. As more and
more variables are added to A, the frequency of misclassifying
samples labeled b to a decreases and vice versa; while the
TP rate using both class a and class b as the positive class
improves, so do the precision, recall and F1 measure. As to
the FP rate, when setting the positive class to b and the
error rate that misclassifying samples of label a to b, the
values gradually become smaller as more variables are included
at the beginning, but fluctuate later. These dynamic changes
are illustrated in Figures 4A,B, respectively. Besides, it can be
obviously seen that the 13 variables keep a comparable result
with 188D.

3.2. Variable Selection Results on PAAC
Then, we used PAAC as the original feature for variable
selection. Following the same way as 188D, we also performed
1 × 105 rounds to stabilize the results and repeated the
procedure three times on three groups of randomly selected
training samples. Gaussian distributions of the GMM instances
fitted by the accumulated variable importance are shown in
Figures 3A–C, respectively.

Figure 3A illustrates two Gaussian mixture components from
right to left, each component of which contains 11 and 54

variables with the variable importance in a descending order.
Figure 3B presents three, 11 and 51 variables in the three
Gaussian distributions from right to left with the variable
importance in a descending order. Meanwhile, three, 12 and 50
variables are included in three Gaussian components from right
to left, respectively, as shown in Figure 3C.

We first select the variables in subset Q, which is the
interaction of variables belonging to the Gaussian component
with the highest mean score in Figure 3, variables belonging
to the Gaussian component with the highest mean score in
Figure 3B and variables belonging to the Gaussian component
with the highest mean score in Figure 3C, namely, Q = (G11) ∩
(G21) ∩ (G31). Here, i is the index of the three times and Gij

denotes the Gaussian distribution which has the jth highest mean
score of variable importance in the ith time. Q consists of only
two variables. The corresponding ROC curves and AUC values
can be seen in Figure 3D.

If we expand the scope by including two green Gaussian
components illustrated in Figures 3B,C, namely, we now select
variables in subset Q′, where Q′ is defined as Q′ = (G11) ∩
(G21 ∪ G22) ∩ (G31 ∪ G32), eight components will be selected.
The corresponding ROC curves and AUC values can be seen in
Figure 3F. Besides, the ROC curves and AUC values of PAAC are
shown in Figure 3E.
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FIGURE 6 | Scatter plots derived from feature PAAC, each of which keeps x and y axis representing variable and its importance score, respectively. (A,C) Correspond

to 20-fold sample split from twice random generations of the training samples. (B,D) Refer to the accumulated results of the 20-fold scatter plots in (A,C), respectively.

Again, similar to what we have done on 188D, starting
from the set A consisting of the only variable with the highest
importance score, we progressively add to A new elements in Q
which is made up of originally selected two variables with their
importance in a descending order and present quantitative results
in Table 2. Then, detailed results of the selected two variables
together with the eight variables and PAAC are listed in Table 2.

In Table 2, the confusion matrix, true positive (TP) rate,
false positive (FP) rate, precision, recall, and F1 measure
are also presented for the results corresponding to the
compound of selected variables. The two classes representing
PPR positive samples (labeled a) and negative ones (labeled b)
are separately considered as positive classes when we calculate
these quantitative results. As more and more variables are added
to Q, the frequency of misclassifying samples labeled b to a
decreased and vice versa; while the TP rate using both class
a and class b as positive class improves, so do the precision,
recall and F1 measure. When setting the positive class to b and
the error rate of misclassifying samples of label a to b, the FP
rate also follows a similar trend of the result on 188D. These
changes of quantitative results regarded as the function of the
variable number are plotted in Figures 4C,D, respectively. It can
be also seen that the eight variables keep a comparable result
with PAAC.

3.3. Results on Low-Redundant Training
Data From 20-Fold Sample Split
Actually, we don’t know whether the dataset representing
plant PPR (Qu et al., 2019) is non-redundant or not. And
the case might be that redundancy exists among 9590 PPR
negative sequences. However, some statistical strategies can be
employed to reduce data redundancy as much as possible.
Here, we used all the 243 positive samples of the training
set, and divided the 4,795 negative samples of the training
set equally into 20 sets. We made this 20-fold sample split
to make a balance between the number of PPR positive
proteins and that of negative ones. This kind of strategy
may help to reduce redundancy among PPR negative samples.
Again, this procedure was repeated two times, each of
which corresponded to a randomly selected original group of
training samples.

As to each fold of negative samples and the 243 positive
ones, we followed the resampling, training, and scoring
step in section 2.2 and made 1 × 104 rounds of the
iteration. Correspondingly, a scatter plot was obtained,
with its x and y coordinate representing each variable
and its importance score, respectively. The experimental
results on 188D and PAAC are shown in Figures 5,
6, respectively.
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FIGURE 7 | Qualitative results on low-redundant dataset using 188D. (A,C) Gaussian distributions of the accumulated variable importance corresponding to twice

random sample splits, respectively. (B,D) Refer to ACC line charts of different dimensions derived from feature 188D, with important variables incrementally added one

by one according to the accumulated scores in a descending order.

Figures 5A,C refer to twice random generations of the
training set. Twenty scatter plots corresponding to 20-fold
negative samples are listed in each sub-figure. Besides, two
scatter plots which record the accumulated scores of variable
importance are listed in Figures 5B,D, respectively. It can be seen
that variable 10 in 188D is obviously more important than the
other variables.

As to Figures 6A,C, it refers to twice random generations
of the training set. Twenty scatter plots corresponding to
20-fold negative samples can be seen in each sub-figure.
Moreover, two scatter plots which correspond to the accumulated
scores of variable importance are shown in Figures 6B,D,
respectively. It can be also seen that variable 10 in PAAC
is important.

As having been stated in section 2.3, after making automatic
variable selection on accumulated scores of variable importance
shown in Figures 5B,D, 6B,D, Gaussian distributions of the
accumulated variable importance corresponding to the twice

random generations of the training set are obtained and
illustrated in Figures 7, 8, respectively.

Figures 7A,C, which are associated with the scatter plots in
Figures 5B,D, show Gaussian distributions of the accumulated
variable importance using feature 188D. As to Figures 8A,C, they
correspond to the scatter plots in Figures 6B,D and represent
Gaussian distributions of the accumulated variable importance
using feature PAAC. In practice, we regard variables that belongs
to the first two Gaussian mixture components (or outliers) with
higher scores of variable importance as important variables.

3.4. Results on Low-Redundant Testing
Data From 20-Fold Sample Split
Now that important variables were selected according to
Gaussian distributions derived from each training set, we moved
on to the testing set. In order to get low-redundant data, we
divided negative samples of the testing set equally into 20 sets,
each of which kept a comparable number as that of the positive
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FIGURE 8 | Qualitative results on low-redundant dataset using PAAC. (A,C) Gaussian distributions of the accumulated variable importance corresponding to twice

random sample splits, respectively. (B,D) Refer to ACC line charts of different dimensions derived from feature PAAC, with important variables incrementally added

one by one according to the accumulated scores in a descending order.

samples. Each set of the negative samples and all the positive ones
together formed a fold on the testing set.

In each fold, we followed the resampling, training, and scoring
step stated in section 2.2 and made 1 × 104 rounds of the
iteration. Therefore, a random forest containing 1 × 104 CARTs
was built. Then, the left samples on the testing set were used to
calculate an ACC value, as having been expressed in Equation (9).
Each fold corresponded to an ACC value. As a result, we
could get a line chart including 20 ACC values in a specific
dimensional space.

Since important variables have been selected in each random
generation of the training set using either feature 188D or
feature PAAC, important variables can be sorted according
to their accumulated scores in a descending order. Following
this order, variables can be incrementally added so that
different dimensional spaces composed of important variables
are established.

Figures 7B,D, which are separately associated with
Figures 7A,C, show ACC line charts of different dimensions
derived from feature 188D. The line chart keeping the lowest
ACC values corresponds to variable 10 in 188D; while, the one
keeping the highest ACC values represents feature 188D. It
can be seen that ACC values may increase with the addition of
feature dimension.

As to Figures 8B,D, which are separately associated with
Figures 8A,C, ACC line charts of different dimensions derived
from feature PAAC are also listed in turn. The variable with the
highest score of variable importance keeps the lowest ACC values;
while, the one keeping the highest ACC values corresponds to
feature PAAC. Also, it can be discovered that ACC values may
increase with the addition of feature dimension.

From the ACC lines charts of different dimensions shown in
Figures 7, 8, we see that ACC values increase with the growth
of feature dimensions. Anyway, even though all the important
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FIGURE 9 | Line charts of the average ACC values with increasing feature dimensions following the order of the variable importance. (A) Is the line chart derived from

the average of 20-fold cross validation using 188D. (B) Is the line chart derived from the average of 1,000 times equal resampling on negative samples from a testing

set compared with the number of positive samples on the testing set using 188D. (C) Is the line chart derived from the average of 20-fold cross validation using PAAC.

(D) Is the line chart derived from the average of 1,000 times equal resampling on negative samples from a testing set compared with the number of positive samples

on the testing set using PAAC.

variables are used, the ACC value is still slightly less better than
the ACC value using feature 188D or feature PAAC. We wonder
at which dimension the incrementally added variables can obtain
almost same ACC values as feature 188D or feature PAAC does.

As a result, we followed the order of the variable importance,
made 1×104 rounds of the iteration by repeating the resampling,
training and scoring step to establish a random forest with 1×104

CARTs, and obtained line charts of the average ACC values in
different dimensions. Figure 9 illustrates the experimental results
in detail. It can be indicated that the first 25 variables may
achieve almost the same ACC values as feature 188D or feature
PAAC does.

By making a comparison between Figures 8B,D, we found
the ACC line charts of the most important variable in these
two subfigures are of different ACC values. In fact, the most
important variable shown in Figure 8B is variable 10 in PAAC;

while, it is variable 22 in Figure 8D. Thus, we inferred variable 10
is more important. After attaching the ACC line chart of variable
22 using dotted line, we found the line chart of variable 10 is
above that of variable 22. That is to say, variable 10 should be
the most important variable in PAAC despite the instability of
selected variables using PAAC (see Figures 6B,D).

Note that 188D and PAAC keep the same variable 10. In
order to validate whether variable 10 plays a part in predicting
PPR proteins, we randomly extracted negative samples with
the number equal to that of positive samples on a testing set
and made 1 × 104 rounds of resampling, training and scoring
step to form a random forest. The left samples were used to
calculate ACC values. The random extraction was repeated 1,000
times. Figure 10 shows the experimental results in detail. It can
be seen that any 25 dimensional feature excluding variable 10
shown in Figures 10B,E has a lower average ACC value than
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FIGURE 10 | Line charts of ACC values in 25 dimensions including and excluding variable 10 on 188D and PAAC. The black dotted line refers to the average ACC

values of 1,000 rounds. (A) Shows the ACC values of any 25 dimensional feature randomly extracted from 188D in each round of 1,000 times negative sample

extraction. (B) Illustrates the ACC values of any 25 dimensional feature randomly extracted from 188D after excluding variable 10 in each round of 1,000 times

negative sample extraction. (C) Shows the ACC values of any 25 dimensional feature including variable 10 that is randomly extracted from 188D in each round of

1,000 times negative sample extraction. (D) Shows the ACC values of any 25 dimensional feature randomly extracted from PAAC in each round of 1,000 times

negative sample extraction. (E) Illustrates the ACC values of any 25 dimensional feature randomly extracted from PAAC after excluding variable 10 in each round of

1,000 times negative sample extraction. (F) Shows the ACC values of any 25 dimensional feature including variable 10 that is randomly extracted from PAAC in each

round of 1,000 times negative sample extraction.

that of any 25 dimensional feature (see Figures 10A,D). As to
any 25 dimensional feature including variable 10, it keeps a
higher average ACC value (see Figures 10C,F) than that of any
25 dimensional feature. Thus, it indicated that variable 10 really
plays an important role in predicting PPR proteins.

3.5. Results on Non-redundant Data
In order to show the effectiveness of our method, redundancy
has to be removed from the dataset representing plant PPR (Qu
et al., 2019). A redundancy removing tool namely Cd-hit (Li
and Adam, 2006) is used at 25% cutoff, which means no
two protein sequences have similarity more than 25%. This
redundancy removing procedure was made on 487 PPR
positive protein sequences and 9,590 negative ones, respectively.
Correspondingly, 170 PPR positive proteins and 9,293 negative
ones were left, and they composed the non-redundant data. As
shown in Figure 1, a balanced sample split was made. That is,
85 PPR positive proteins together with 4,646 negative ones were
randomly selected as the training set. The left proteins composed
the testing set. Again, this procedure was repeated two times, each
of which corresponded to a random selection of training samples.

In each time of random sample selection for training, we
divided the 4,646 negative proteins of the training set equally
into 50 sets in order to make a balance between the positive
and negative samples. As to each fold of negative samples

and the 85 positive ones, we followed the resampling, training
and scoring step in section 2.2 and made 1 × 104 rounds of
the iteration. After traversing all the 50-folds, a scatter plot
recording the accumulated scores of variable importance was
obtained, with its x and y coordinate representing each variable
and its importance score, respectively. The experimental results
on 188D and PAAC are shown in Figures 11, 12, respectively.
Figures 11A,D show the scatter plots derived from feature 188D,
each of which corresponds to one time of random sample
selection for training. Gaussian distributions of the accumulated
variable importance corresponding to the twice random selection
of the training set are illustrated in Figures 11B,E, respectively.
Accordingly, experimental results using feature PAAC are shown
in Figures 12A,B,D,E, respectively.

As to each testing set, 4,647 negative samples were equally

divided into 50 sets, each of which kept a comparable number as

that of the 85 positive samples. Each set of the negative samples

and all the positive samples formed a fold. Thus, we obtained
50-folds. In each fold, we followed the automatic variable
selection step shown in Figure 1, which has been clearly stated
in section 3.4. A line chart including 50 ACC values could be
obtained in a specific dimensional space deriving from important
variables incrementally added according to their accumulated
scores in a descending order. Therefore, Figures 11C,F show
ACC line charts of different dimensions derived from 188D.
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FIGURE 11 | Qualitative results on non-redundant dataset using 188D. (A,D) Refer to the accumulated results of the 50-fold scatter plots, each of which corresponds

to one time of random sample selection for training. (B,E) Gaussian distributions of the accumulated variable importance corresponding to twice random sample

splits, respectively. (C,F) ACC line charts of different dimensions derived from feature 188D, with important variables incrementally added one by one according to the

accumulated scores in a descending order.

FIGURE 12 | Qualitative results on non-redundant dataset using PAAC. (A,D) Refer to the accumulated results of the 50-fold scatter plots, each of which

corresponds to one time of random sample selection for training. (B,E) Gaussian distributions of the accumulated variable importance corresponding to twice random

sample splits, respectively. (C,F) Illustrate ACC line charts of different dimensions derived from feature PAAC, with important variables incrementally added one by one

according to the accumulated scores in a descending order.
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FIGURE 13 | Line charts of the average ACC values with increasing feature dimensions following the order of the variable importance on non-redundant dataset.

(A,B) Are the line charts derived from the average of 50-fold cross validation using 188D, which correspond to twice random sample splits. (C,D) Are the line charts

derived from the average of 50-fold cross validation using feature PAAC, which correspond to twice random sample splits.

Correspondingly, experimental results using feature PAAC are
illustrated in Figures 12C,F, respectively.

Furthermore, we calculated the average ACC values of the
50 folds derived from feature 188D and PAAC in different
dimensions, as shown in Figure 13. Figures 13A,B correspond
to the experimental results of the twice random selection of
the training set using feature 188D. As to Figures 13C,D, it
refers to the experimental results of the twice random selection
of the training set using feature PAAC. It can be discovered
that mean ACC values may increase when enlarging feature
dimension. The selected variables regarded to be important
always obtain ACC values comparable to those of feature 188D
or PAAC, which indicates the effectiveness of the selected
variables. After making a comparison between Figure 9 and
Figure 13, we find that our variable selection method still
works on non-redundant data despite the existence of 5%
point loss on the average ACC values from feature 188D and
feature PAAC.

4. DISCUSSIONS

According to the experimental results, we make some discussions
as follows. Firstly, it needs to be considered whether the
classification accuracy will come downwhen non-redundant data
is used. It is observed that methods presented by Qu et al. (2019)
and the 20-fold sample split in this paper have used all the
PPR positive proteins for training, which means there are only
negative samples in a testing set. In that case, ACC is equivalent
to TP rate, for PPR negative proteins are labeled with positive
class (see Equation 9). Table 1 shows the classification results
on a testing set containing 244 PPR positive proteins and 4,795
negative ones. Correspondingly, the training set which includes
243 PPR positive proteins and 4,795 negative ones is considered
to be most redundant. As listed in Table 1, the ACC values (i.e.,
the TP rate when class b is labeled to be positive) using feature
188D and only variable 10 are 1.000 and 0.968. As to the low-
redundant testing data from 20-fold sample split, only 243 PPR
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positive proteins and nomore than 240 negative samples are used
for training, which shows more lest redundancy (only 9.6% of the
former training sample size). It can be discovered in Figure 8 that
the ACC values are commonly above 0.95 when the dimension of
selected variables is bigger than 25. That means the classification
accuracy will come down a little but not drastically when low-
redundant data is used. As to non-redundant data, experimental
results shown in Figure 13 exhibit that the mean ACC values are
approximate to 0.9 with the feature dimension increasing, which
demonstrates the effectiveness of our method.

Secondly, we want to discuss whether variable 10 is effective
for identifying PPR proteins and whether all the variables in
feature 188D or feature PAAC are needed. The experimental
results in Figure 10 indicate the importance of using variable
10 for classification. The selected four variables (10, 12, 130, 1)T

shown in Table 1 correspond to the content of methionine,
proline, cysteine, and the conversion frequency of amino
acid surface tension, respectively. Meanwhile, the selected two
variables (10, 1)T shown in Table 2 refer to the occurrence
frequencies of cysteine and methionine in PPR proteins. Thus,
it can be inferred that the content of methionine in proteins
plays an important role in predicting PPR proteins. Besides,
it can be inferred from Figure 9 that 25 dimensional features
instead of feature 188D or feature PAAC may also work. Despite
the phenomenon that variable 10 is not selected as the most
important variable (see Figures 11, 12), it may because of
redundancy removal that makes the number of PPR positive
proteins down from 487 to 170.

Thirdly, whether classification methods should be used for
identifying proteins with specific functions needs to be discussed.
As shown in Tables 1, 2, the quantitative results regarding PPR
negative proteins as samples with positive class labels (i.e., b
to positive) are often better than those regarding PPR positive
proteins as samples with positive class labels (i.e., a to positive).
After observing the confusion matrix, it is found that samples
regarded as PPR positive proteins are wrongly classified in a high
rate. In fact, these PPR positive proteins are derived fromUniPort
by searching the keyword “pentatricopeptide repeat” (Qu et al.,
2019), it is possible that the proteins searched out emerge as false
positives due to lack of biological validation. In that case, it may
be better if we use clustering methods for partitioning proteins
regarded as positive in advance.

5. CONCLUSION

PPR proteins play a vital role in plant growth and development.
In this study, we proposed a framework of variable selection
for predicting PPR proteins. A random sample split was
made for obtaining a training and a testing set in balance.
An iteration referred to resampling, training, and scoring
step was implemented to stabilize the results of variable
selection. Then, important variables were automatically selected
by employing GMM with BIC. Qualitative and quantitative
results demonstrated that the content of methionine may
play an important role in predicting PPR proteins. Besides,
important variables other than the extracted feature are
applicable to prediction of PRR proteins. In future work,
clustering methods will be considered in advance for getting
better identifying results.
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