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Limited attention has been paid to maize (Zea mays L.) resistance induced by corn borer 
damage, although evidence shows that induced defenses have lower resource allocation 
costs than constitutive defenses. Maize responses to short- and long-term feeding by 
the Mediterranean corn borer (MCB, Sesamia nionagrioides) have been previously studied, 
but the suggested differences between responses could be due to experimental differences. 
Therefore, in the current study, a direct comparison between short- and long-term 
responses has been made. The objectives were (i) to determine changes in the level of 
antibiosis of the stems induced by feeding of S. nonagrioides larvae for 2 days (short-term 
feeding) and 9 days (long-term feeding), (ii) to characterize the metabolome of the stems’ 
short- and long-term responses to borer feeding, and (iii) to look for metabolic pathways 
that could modulate plant resistance to MCB. Defenses were progressively induced in 
the resistant inbred, and constitutive defenses were broken down in the susceptible inbred. 
Results suggest that the different resistance levels of the two inbreds to stem tunneling 
by MCB could depend on their ability to establish a systemic response. Based on these 
results, a high throughput look for specific metabolites implicated in systemic induced 
resistance to maize stem borers is recommended; the current focus on constitutive 
defense metabolites has not been successful in finding molecules that would be valuable 
tools for pest control.

Keywords: induced resistance, antibiosis, metabolomic response, Sesamia nonagrioides, stem corn borer

INTRODUCTION

Stem tunneling by maize stem borers is an important constraint to achieve the potential yield 
of maize varieties across the world (Malvar et  al., 2008). The maize plants protect themselves 
from borer feeding using constitutive and induced defenses. Much attention has focused on 
studying the former, although evidence indicates that induced defenses have lower resource 
allocation costs than constitutive defenses (Klenke et  al., 1986; Beeghly et  al., 1997; 
Karban et al., 1997; Cardinal and Lee, 2005; Santiago et al., 2006a,b, 2011; Howe and Jander, 2008). 
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Indeed, maize stem feeding by borers significantly modifies 
antibiosis against stem borer larvae. However, these changes 
depend on the genotype and the duration of feeding. We consider 
plant responses to 1 or 2 days of feeding by herbivores as 
short-term responses; meanwhile, long-term responses will 
be  generated after more than 1 week of continuous feeding. 
Dafoe et  al. (2013) reported that the growth of stem borer 
larvae was significantly higher when fed with stem tissues 
preconditioned by 48 h of larval tunneling compared to untreated 
stem tissues, while Cao et  al. (2019) stated that the effect of 
long-term feeding by borers on the antibiotic properties of 
corn stems is genotype-dependent.

Previous studies have already shown that feeding-induced 
changes in plant metabolites influence the behavior and 
performance of conspecific herbivores, and that influence 
depends on the time lag of induction (Poelman et  al., 2008; 
Wang et  al., 2015; Santiago et  al., 2017; Su et  al., 2018). In 
that regard, several authors have pointed out specific defense 
mechanisms involved in the response to long-term feeding 
by insects (Gutsche et  al., 2009; Uawisetwathana et  al., 2015; 
Donze-Reiner et  al., 2017). In the particular case of maize, 
important differences between maize stem responses to short- 
and long-term feeding by stem borers have been reported 
(Dafoe et  al., 2011; Rodriguez et  al., 2012, 2018). The early 
stem response to feeding by corn borers was characterized 
by the activation of signaling mechanisms mediated by 
phytohormones, whereas these molecules were only marginally 
involved in the long-term response (Dafoe et  al., 2011; 
Rodriguez et  al., 2012). The stem’s long-term response was 
characterized by reorganization of the primary metabolism 
and a strong redox response, mainly mediated by germin-like 
proteins to produce anti-nutritive and toxic compounds that 
reduced insect viability (Rodriguez et  al., 2018). However, 
no studies have simultaneously characterized short- and long-
term responses to stem feeding by stem borers, and the 
current work would be  the first attempt to do so. A direct 
comparison of both responses using several genotypes under 
the same experimental conditions will shed light on real 
differences, which cannot be  disentangled from experimental 
differences when results from different experiments are 
compared. The stem borer species selected to perform this 
direct comparison was Sesamia nonagrioides Lef. [the 
Mediterranean stem borer that is often called Mediterranean 
corn borer (MCB)]. The MCB shows two to four generations 
per year; larvae of the first generation being scarce, feeding 
on the whorl of juvenile plants, and causing plant death or 
delayed development; meanwhile, subsequent generation larvae 
are more numerous and feed preferentially on the stem pith 
of adult plants (Cordero et  al., 1998).

Since metabolome can be  viewed as the end product of 
gene expression, un-targeted metabolomics would be a valuable 
tool to monitor the biological processes operating in the plant 
response to herbivory (Sumner et al., 2003; Schauer and Fernie, 
2006; Jansen et  al., 2009). Aside from a direct plant defense, 
herbivory could induce extensive metabolic changes to prevent 
the allocation of energy and nutrients to herbivore fitness. 
Plant metabolites involved in defense are not just toxic, repellent, 

and/or anti-nutritive molecules but compounds that could 
attract enemies of herbivores that could participate in nutrient 
transport and storage to make nutrients less accessible to the 
insect or that are involved in phenology shifts that grant 
herbivore avoidance (Schuman and Baldwin, 2016).

The objectives of this work were (i) to determine changes 
in the level of antibiosis of the stems induced by feeding of 
MCB larvae for 2 days (short-term feeding) and 9 days (long-term 
feeding), (ii) to characterize the metabolome of the stems’ 
short- and long-term responses to borer feeding, and (iii) to 
look for metabolic pathways that could modulate plant 
resistance to MCB.

MATERIALS AND METHODS

Plant Materials and Treatment Applications
Two different maize inbred lines (PB130 and EP42) were used 
as plant material. In previous works, we  classified these inbred 
lines as resistant (PB130) and susceptible (EP42) to MCB 
feeding at maturity stage (R6) and significantly different in 
their early response to stem tunneling by MCB larvae (Butron 
et  al., 1998, 1999; Rodriguez et  al., 2012). Maize plants were 
individually grown, under greenhouse conditions, in 10-L pots 
filled with peat and fertilized according to maize needs. 
We performed three consecutive plantings separated by 10 days 
to guarantee that, during the bioassay, MCB larvae were always 
fed with stems from plants around tasseling stage. In the earliest 
planting and within each genotype, 10 plants were infested 
9 days before the establishment of the bioassay by placing 
2 second-instar larvae between the stalk and the sheath of basal 
leaves, 10 plants were infested 48 h before, and 10 plants were 
left untreated (control). Infested plants were protected with 
nets to avoid larval dispersion to non-infested pots. Since stems 
to feed the larvae were renewed during the bioassay, treatments 
were also done as described above in the second and third 
planting dates to guarantee that stem portions given to the 
larvae came from plants around the tasseling stage (Figure  1). 
Plant tissue at tasseling was chosen because second and 
subsequent generation larvae can attack maize from tasseling 
to harvest time but plants at earlier stages of development are 
more susceptible to damage by S. nonagrioides (Ordas et al., 2013).

Non-choice Feeding Bioassays
To study the effect of short- and long-term feeding, MCB 
larvae were fed with stems of plants infested for 48 h (short-term 
feeding), plants infested for 9 days (long-term feeding), or 
non-infested plants before bioassay establishment. Based on 
the biology and voraciousness of this species, feeding periods 
for studying short- and long-term responses to stem feeding 
were established as 2- and 9-day feeding times, respectively, 
because we  wanted to guarantee that the pith is damaged 
but at levels that do not compromise the availability of 
undamaged stem tissue for analysis. Therefore, 2-day feeding 
was used for studying the short-term response because larvae 
would need 48 h to penetrate the stem and start to feed 
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on the pith; meanwhile, as this species has great voracity, 
a 9-day feeding period would render large damage to stems 
but without compromising the disposal of undamaged tissue.

First-instar MCB larvae were initially weighed and 
individually placed in plastic tubes on 2-cm sections of the 
stem portion that goes from the ground to main ear insertion 
node. Larvae were previously fed on a maize-based artificial 
diet for 48 h and maintained at starvation for 24 h, presenting 
weights of 1–3 mg at the beginning of the bioassay. Sixty 
larvae per treatment and genotype were set and maintained 
in a growth chamber under controlled conditions of temperature 
and humidity [22°C, 80% relative humidity (RH)] and a 
photoperiod of 16 L:8D. When necessary, new fresh stem 
portions of plants (control or preconditioned by stem feeding 
during 2 or 9 days) were provided to the bioassay larvae. 
Renewal of stem cuts was done weekly at the beginning of 
the bioassay and every 3–4 days at the end of the bioassay 
to prevent undesirable effects of tissue deterioration on larval 
development and to avoid larval starvation when larvae began 
to increase tissue consumption. Larval weights and data related 

to dead larvae were recorded at 7, 11, 14, 18, 22, and 26 days 
after bioassay establishment.

A repeated-measures analysis was performed to test differences 
for larval weights using the PROC GLIMMIX procedure of 
SAS software (SAS, 2008; Stroup, 2013). Initial larval weight 
was included as a covariate, genotype and treatment were set 
as fixed factors and a first-order autoregressive covariance 
structure (AR-1) was chosen in the within-subject correlation. 
Within each genotype, differences for larval weight of treatments 
were tested at each time using least square (LS) means, adjusted 
by the initial larval weight. Additionally, linear and quadratic 
coefficients of regression of larval weight on time were obtained 
for each treatment-genotype combination. Within each genotype, 
the comparison of the larval growth curves of treatments was 
performed by making orthogonal contrasts among treatment 
regression parameters (intercept, linear and quadratic 
components, respectively; p  ≤  0.05; Littell et  al., 2006). The 
PROC LIFETEST procedure of SAS software was used to test 
differences of larval survival among treatments applied to the 
same genotype using the Kaplan-Meier method (SAS, 2008). 

FIGURE 1 | Greenhouse experiment design. *Maize samples for establishment of the bioassay and metabolite characterization were taken 77 days after planting in 
the earliest planting. Maize tissues from the second and third plantings were taken at 84 and 91 days, respectively, to renew feeds for Mediterranean corn borer 
(MCB) larvae.
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The death of larvae was the event of interest, and the missing 
and live larvae at the end of the bioassay were treated as 
censored data. The homogeneity of the survival distributions 
was tested using the Šidák multiple-comparison adjustment 
for log-rank test (p  ≤  0.05).

Metabolomics Characterization of Maize 
Responses to Mediterranean Corn Borer 
Feeding
Metabolomic profiles were obtained in five biological replicates 
per genotype-treatment combination. A 3-cm portion at the bottom 
of the stem internode below the ear was taken from each plant. 
Frozen samples were lyophilized and ground to a fine powder 
using an electric mill. Metabolites were extracted using 50 mg of 
this powder through 500 μl of 80% aqueous methanol by sonication 
for 15 min. Samples were centrifuged for 10 min in order to remove 
plant debris (16,000  ×  g, at room temperature). Supernatant was 
filtered through a 0.20-μm polytetrafluoroethylene (PTFE) micropore 
membrane and placed in vials for further analysis. Five microliters 
of each sample were injected into an ultra-high-performance liquid 
chromatography (UHPLC) system (Thermo Dionex Ultimate 3000 
LC) connected to a QTOF detector (Bruker Compact™) with 
a heated electrospray ionization (ESI) source. Chromatographic 
separation was performed in an Intensity Solo 2 C18 column 
(2.1 mm × 100 mm, 1.7 μm pore size; Bruker Daltonics, Germany) 
using a binary gradient solvent mode consisting of 0.1% formic 
acid in water (solvent A) and acetonitrile (solvent B). The following 
gradient was used: 3% B (0–3 min), from 3 to 25% B (3–10 min), 
from 25 to 80% B (10–18 min), from 80 to 100% B (18–22 min), 
then held at 100% B until 24 min. The flow rate was established 
at 0.4 ml min−1, and column temperature was controlled at 35°C.

Mass spectrometry (MS) data were acquired using an 
acquisition rate of 2 Hz over the mass range of 50–1,200  m/z. 
Both polarities (±) of ESI mode were used under the following 
specific conditions: gas flow 9 L min−1; nebulizer pressure 2.6 bar; 
dry gas 9 L min−1; dry temperature 220°C. Capillary and endplate 
offsets were set to 4,500 and 500 V, respectively. To monitor 
the performance of data acquisition, the run sequence was 
started with three blanks (methanol, the solvent used in sample 
extraction) and a standard compound (triphenyl phosphate in 
positive ionization mode and chloramphenicol in negative 
ionization mode). Auto MS/MS fragmentation in pooled samples 
was performed in order to facilitate compound identification. 
For MS/MS analysis, data were acquired using an acquisition 
rate of 8 Hz and precursor ions collected using an absolute 
threshold of 1,500 counts and a cycle time of 1.0 s.

The algorithm T-Rex 3D from the MetaboScape 4.0 software 
(Bruker Daltoniks, Germany) was used for peak alignment and 
detection. The generated dataset was imported into MetaboAnalyst 
4.0 (Chong et  al., 2019) to perform statistical analyses. In order 
to remove non-informative variables, data were filtered using 
the interquartile range (IQR) filter. Moreover, Pareto variance 
scaling was used to remove the offsets and adjust the importance 
of high- and low-abundance ions to an equal level. The resulting 
three-dimensional matrix (peak indices, samples, and variables) 
was further subjected to multivariate data analysis. Within each 

inbred, partial least squares discriminant analysis (PLS-DA) was 
carried out to investigate and visualize the pattern of metabolite 
changes between the control and each infestation treatment. This 
analysis was applied to obtain an overview of the complete dataset 
and discriminate those variables that are responsible for variations 
between groups (control vs. 48 h feeding to characterize the 
short-term response to MCB feeding and control vs. 9 days feeding 
to characterize the long-term response). The PLS-DA model was 
evaluated through a cross-validation (R2 and Q2 parameters). 
The quality assessment (Q2) and R2 statistics provide a qualitative 
measure of consistency between the predicted and original data 
or, in other words, estimates the predictive ability of the model.

For each inbred and infestation treatment, features with a variable 
importance in projection (VIP) score >2  in the PLS-DA model 
(control vs. infestation treatment) were selected and considered 
the most influential features in that inbred response to MCB 
feeding. Features with a VIP score >2 were retained. For tentative 
identification, a consensus molecular formula was assigned to each 
molecular feature based on exact mass data and isotopic pattern 
distributions for the precursor using MetaboScape 4.0 and Sirius 
v4 (Dührkop et  al., 2019) software. Molecular formula was used 
to perform identification analysis on publicly available databases: 
PubChem (Kim et al., 2019), MassBank (Horai et al., 2010), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et  al., 
2016), KNApSAcK (Afendi et  al., 2012), Metlin (Guijas et  al., 
2018), and Chemspider (Ayers, 2012). When available, the ms/
ms fragmentation spectrum of reference compounds identified on 
databases was compared to that obtained experimentally.

RESULTS

The analysis of variance for larval weight evolution over 26 days 
showed that all sources of variation (fixed effects and random 
effects, i.e., first-order autoregressive covariance structure of 
within-subject correlation among weights recorded on the same 
larva where σ2  =  0.7539  ±  0.0163) were significant (p  <  0.05) 
except treatments. However, the interaction treatment × genotype 
was significant, suggesting that maize genotypes differentially 
respond to feeding treatments. At the end of the bioassay, larvae 
reared on stems from control susceptible inbred plants weighed 
less than larvae fed on the resistant ones (Figure  2). Resistant 
plants preconditioned by 48 h of feeding by MCB larvae decreased 
the larval weight significantly compared to its control, while 
the average weight of larvae fed with susceptible plants 
preconditioned by 48 h feeding did not differ from the 
corresponding control larval weight (Figures 2, 3). On the other 
hand, larvae fed on susceptible plants preconditioned for a longer 
period (9 days) show increased weight compared to the control, 
whereas the opposite effect was observed on larvae fed on 
resistant plants. In addition, the mortality of larvae fed on the 
resistant plants was significantly higher than that of larvae fed 
on the susceptible ones. No differences in mortality between 
both inbreds were detected at control conditions (Table  1).

Attending to the metabolomic approach, 4,362 different 
features were detected among the different samples 
(Supplementary Table S1). In the short- and long-term 
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responses, 194 and 192 ions were, respectively, selected as 
important features (based on VIP scores of the PLS-DA analysis) 
of the susceptible inbred line, 108 of them being important 

in both responses (Figure  4). On the other hand, 101 ions 
out of the 188 and 227 detected as relevant in the respective 
short- and long-term responses of the resistant inbred were 

FIGURE 2 | Means of treatments applied to two inbreds for MCB larval weight at the end of the bioassay. Mean comparison among treatments was separately 
made for each inbred (uppercase letters for the resistant inbred and lowercase letters for the susceptible inbred).

FIGURE 3 | MCB larval growth on non-choice feeding bioassay. Regression curves (including lineal and/or quadratic coefficients) of the weight (mg) of the MCB 
larvae fed on stems from the resistant and susceptible inbred plants pre-infested with MCB larvae for 48 h or 9 days (9 d) before or untreated (control) on time. Within 
each inbred, treatments followed by different letters within the brackets [] showed regression curves significantly different based on differences between linear or/and 
quadratic coefficients.
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common in both responses. Although 194 and 188 ions had 
important contributions to the 48-h responses to S. nonagrioides 
in the susceptible and resistant inbreds, respectively, only 57 
of them contributed to both responses. Ninety ions were selected 
as important features based on VIP scores of the PLS-DA 
analysis for the responses to 9 days of stem borer feeding in 
both inbreds. Finally, 30 ions were involved in the four responses.

A tentative annotation of ions with relevant effects on the 
long-term response, either detected across genotypes or genotype-
specific, was performed (Supplementary Table S2). A general 
overview of our metabolomic results yields a downregulation 
of the primary metabolism in both maize genotypes by 9 days 
of MCB feeding. This includes sugar, amino acid, fatty acid, 
and vitamin metabolism, as well as the tricarboxylic acid (TCA) 
or Krebs cycle, which implies a disruption of energy production 
(Liu et  al., 2010; Wang et  al., 2016; Kang et  al., 2019; Sabino 
et  al., 2019). Especially remarkable is that the organic acids 

malate and malonate were only detected in stems of PB130 
preconditioned by 9 days of feeding. This could be an indicator 
of a high redox level of the stem cells in this inbred line. 
According to that hypothesis, we  observed an accumulation 
of glutathione in the resistant inbred at control conditions, 
and its levels were doubled in both inbreds after 9 days of 
damage by MCB larvae. In parallel, oxoproline, which is a 
reservoir of glutamate and participates in glutathione homeostasis 
(Ohkama-Ohtsu et  al., 2008), decreased in the susceptible but 
augmented in the resistant inbred. Likewise, 3-hydroxy-3-
methylglutarate accumulated at high levels in the stem of the 
resistant inbred after continuous feeding by MCB larvae.

Both genotypes differ on the accumulation of intermediates 
or end products of the shikimate pathway. Decreases of 
tryptophan, phenylalanine, and beta-tyrosine levels and those 
of several phenolic and indole-related compounds derived from 
them were registered in the susceptible inbred after 9 days of 
feeding. On the contrary, indole-derived DIMBOA glucoside 
(antibiotic against S. nonagrioides larvae) and indole-acrylate 
(plant hormone) or the phenylpropanoids methyl-4-methoxy-
3-nitrobenzoate (probable insecticide), 4-hydroxy- 
6-methylcoumarin (biocide), sinapaldehyde (intermediate in 
lignin formation), or o-hydroxyhippurate (insect antifeedant, also  
known as salicylurate; Ortego et  al., 1998; Stuart et  al., 2000; 
Cutler et  al., 2002; Feng et  al., 2018) were upregulated in the 
resistant inbred by MCB feeding. We  also observed a decrease 
of several nitrogen-containing compounds in the susceptible 
inbred, while those compounds increased in the resistant inbred 
after 9 days of feeding; however, levels were still higher in the 
susceptible inbred.

Other major groups of compounds related to plant resistance 
to biotic stresses are oxylipins. These compounds are produced 
by enzymatic or chemical oxygenation of free or membrane-
esterified polyunsaturated fatty acids. The major oxylipin identified 
in plants is jasmonic acid (JA). This phytohormone was upregulated 
and downregulated by 48 h of feeding in resistant and susceptible 
inbreds, respectively. In parallel, 13-hydroxylinolenic acid 
(13-HOTrE), which resulted from reducing HPOTrE[R] and is 
not a JA intermediate, was downregulated by 48 h of feeding 
in the resistant inbred, contributing to the precursor pool and 
leading to cyclization and eventual synthesis of JA (Farmer et al., 
1994). Epoxy and hydroxy derivatives of linoleic acid resulting 
from the peroxygenase pathway have been described as fungitoxic 

TABLE 1 | MCB larval survival on non-choice feeding bioassay.

Log-rank for treatmentsa Log-rank for inbredsb

Treatment Resistanta Susceptible Inbred Control 48 h 9 d

Control 0.14 (27%)a 1.92 (23%)a Resistant 0.95a 2.06a 6.40a

48 h −2.28 (27%)a 1.05 (22%)a Susceptible −0.95a −2.06a −6.40b

9 d 2.01 (33%)a −2.97 (17%)a

Values of the log-rank statistic for testing homogeneity of survival distribution of Mediterranean corn borer (MCB) when larvae were reared on stems of plants infested with MCB 
larvae for 9 days (9 d) or 48 h before and on untreated (control) plants. Positive values of the log-rank statistic indicate that the number of dead larvae is over the number expected 
under the null hypotheses of equivalent survival distributions.
aLog-rank statistics followed by the same letter in the same column mean that survival curves of the different treatments within the same genotype were homogeneous (p < 0.05). 
The percentage shown between brackets is the mortality percentage.
bLog-rank statistics followed by the same letter in the same column mean that survival curves were homogeneous between genotypes under the same treatment (p < 0.05).

FIGURE 4 | Venn diagram showing the number of important features for 
each inbred response to each infestation treatment. Ions were considered 
important for a particular response when their variable importance in 
projection (VIP) scores in the partial least squares discriminant analysis 
(PLS-DA) were above 2. Resistant, inbred line PB130; Susceptible, inbred line 
EP42; 48 h, plants pre-infested with Mediterranean corn borer (MCB) larvae 
for 48 h; 9D, plants pre-infested with MCB larvae for 9 days.
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oxylipins. The metabolite 13-hydroperoxyoctadecadienoic acid, 
was reduced by 48 h of feeding in the resistant inbred and by 
9 days of feeding in both; meanwhile, vernoleate diminished 
after 9 days of feeding in both.

DISCUSSION

Previous studies have reported that based on field resistance 
(always evaluated under artificial infestation), the inbred line 
PB130 is more resistant to the attack of MCB than the inbred 
line EP42 (Butron et  al., 1999; Ordas et  al., 2010). However, in 
the current study, constitutive antibiosis was higher in the susceptible 
(EP42) than in the resistant inbred (PB130). These results suggest 
that induced metabolic responses could have an important role 
in resistance to stem borers in the long-term period. In agreement 
with this idea, we observed a disruption of the constitutive defenses 
in the susceptible inbred because stems from susceptible plants 
preconditioned for a long period increased larval weights compared 
to the susceptible control plants, whereas the resistant inbred 
reduced larval weight compared to the control. Dafoe et al. (2011, 
2013) showed that 24–48 h feeding by Ostrinia nubilalis, the 
European corn borer, could increase stem susceptibility of a single 
genotype, but other authors recently reported increased antibiosis 
of maize leaves infested with Ostrinia furnacalis, the Asian corn 
borer (Guo et  al., 2017, 2019). All these results together suggest 
that inducible rather than constitutive mechanisms have an 
important role in resistance to stem borers in the long-term 
period, and alteration of plant performance under subsequent 
conspecific attack due to previous insect damage is genotype-
dependent. Similar results have been previously reported in other 
plant-insect interactions (Su et al., 2018). For instance, the observed 
differential defense responses of two different switchgrass cultivars 
to fall armyworm herbivory indicate that the resistant cultivar 
mounted a more robust response with potential activation of 
pathways that could lead to the production of antifeedants, as 
compared to the susceptible one (Palmer et  al., 2019).

These inducible defenses are likely progressive from the 
initiation of damage because reduction of larval weight in the 
resistant genotype is stronger in the long-term than in the 
short-term feeding. We  hypothesize that after a prolonged 
period of insect damage, progressive accumulation of induced 
defensive metabolites would allow the resistant inbred to perform 
better than the susceptible inbred against insect feeding, as it 
has been reported in previous studies (Butron et  al., 1999; 
Cao et al., 2019). Accumulated defenses in the resistant genotype 
after 9 days of insect feeding increased the larval mortality 
and decreased the larval weight. Nevertheless, these defenses 
would still not be enough to outperform the antibiosis observed 
on the susceptible inbred. Even so, better field performance 
of the resistant inbred against MCB feeding would greatly 
depend on the accumulation of induced defenses by MCB 
feeding. This accumulation would be  higher as exposure to 
insect damage is prolonged. Conversely, higher constitutive 
resistance does not guarantee good performance under MCB 
infestation because continuous insect damage could disrupt 
constitutive defenses. These results suggest that the level of 

field resistance of the studied inbred lines rather depends on 
induced changes by MCB feeding than on constitutive defenses, 
and those changes are determined by the duration of insect 
feeding. Continuous damage by insect feeding seems to contribute 
to increased susceptibility or resistance, depending on the 
genotype, and those genotype-dependent changes could 
be  considered the result of reconfiguration of metabolism in 
attacked plants (Schuman and Baldwin, 2016).

Based on the former hypothesis, maize stems under MCB 
feeding undergo extensive metabolic reorganization. Those 
metabolites involved in the long-term response could be important 
determinants of genotype-induced resistance. As metabolomic 
analyses were made using undamaged stem sections, herbivore 
challenged plants of the resistant inbred would be  capable of 
mounting systemically active defense responses; meanwhile, 
susceptible plants could not (Howe and Jander, 2008). Other 
authors have demonstrated that maize herbivory by Mythimna 
separata conferred resistance to the subsequently infested caterpillars 
through systemic changes of benzoxazinoids and probably other 
defensive metabolites (Malook et  al., 2019). Our findings agreed 
with expectations because plant response to insect attack has 
been proven to be  genotype-dependent, resulting in increased 
levels of phenylpropanoids, hydroxamic acids, or/and nitrogen-
containing secondary metabolites in resistant genotypes. Increased 
susceptibility after insect attack in other genotypes was previously 
associated with reduced levels of phenylpropanoids (Liu et  al., 
2010; Biyiklioglu et  al., 2018; Su et  al., 2018; Kang et  al., 2019). 
Therefore, the susceptible inbred in field conditions seemed to 
constitutively possess a resistance metabolic array that is broken 
down by continuous insect feeding; meanwhile, the field resistant 
inbred appeared to acquire induced resistance by channeling 
metabolism toward biosynthesis of defensive metabolites like the 
benzoxazinoid DIMBOA glucoside and methyl-4-methoxy-3-
nitrobenzoate (Schuman and Baldwin, 2016).

Oxylipins has been highlighted as key regulators mediating 
maize resistance response to herbivory by insects (Christensen 
et  al., 2015; Borrego and Kolomiets, 2016). JA is a 13-LOX 
α-linolenic acid-derived plant oxylipin. Based on our results, 
we speculate that maintenance of the upregulation of JA precursors 
after 48 h of feeding in the resistant inbred could play an important 
role in inducing systemic resistance; meanwhile, resistance was 
not induced in the susceptible inbred because jasmonate precursors 
were downregulated. Production of JA is required for a systemic 
response to herbivory (Bosch et  al., 2014). Systemic response to 
parasites involves transduction processes in which transient shifts 
of intracellular and apoplastic pH are essential: rapid alkalinization 
of the apoplast is combined with intracellular acidification, loss 
of K+, and influx of Ca2+ and followed by an oxidative burst 
and upregulation of several pathways involved in defense (Viehweger 
et  al., 2002). In that context, authors proposed 
lysophosphatidylcholines as good candidates for transducing the 
elicitor-triggered signal; lysophosphatidylcholines would 
be intracytoplasmic messengers that would connect the activation 
of a stress-responding enzyme of the plasma membrane 
(phospholipase A2) with the production of vacuolar proton fluxes. 
According to that idea, levels of lysophosphatidylcholines augmented 
in the stems of the resistant inbred after feeding by MCB larvae, 
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while the levels diminished in the susceptible inbred, explaining 
the increased susceptibility upon feeding in the susceptible inbred. 
Longer maintenance of high JA precursor levels and upregulation 
of lysophosphatidylcholines could act as signal molecules of 
induced systemic resistance (ISR) to stem tunneling by stem 
borers. ISR would imply an oxidative burst [counterbalanced by 
increased reactive oxygen species (ROS) scavenging metabolites] 
and upregulation of metabolites involved in defense.

Accumulation of malate and especially malonate (only detected 
in stems of PB130 preconditioned by 9 days of feeding) in the 
resistant inbred could be  a consequence of a high redox level 
in the stem cells of this genotype. Under those conditions, 
the TCA cycle in mitochondria is transformed to a “non-cyclic” 
partial TCA cycle supplying citrate for the synthesis of 
2-oxoglutarate, glutamate, and malonate (citrate valve), while 
malate is stored and participates in the redox balance (via 
malate valve; Igamberdiev and Eprintsev, 2016). In that scenario, 
the 3-hydroxy-3-methylglutarate that is an “off-product” 
intermediate in the leucine degradation process could 
be proposed as an important agent in causing and maintaining 
oxidative burst, since this metabolite causes acute disruption 
of redox homeostasis in animal tissues (da Rosa et  al., 2013). 
Agreeing with the hypothesis of high oxidative stress in the 
resistant inbred after 9 days of feeding by MCB larvae, this 
inbred line presents a high ROS scavenging level that increased 
after long-term feeding, as indicated by the accumulation of 
glutathione and oxoproline, in the resistant inbred.

CONCLUSION

We hypothesize that the level of field resistance depends on 
induced changes by MCB feeding rather than on constitutive 
defenses, and those changes are determined by the duration 
of insect feeding. Therefore, differential defense responses to 
continuous MCB feeding would result in resistance differences 
and ions that were differentially induced in both inbreds by 
long-term feeding could play an important role in resistance. 
A limited number of differentially induced features could 
be  assigned to known metabolites but point to the ability of 
the resistant inbred to establish a systemic response involving 
oxidative burst and upregulation of defense compounds as 
determinants for limiting damage by MCB larvae. Therefore, 
these results encourage a high throughput look for specific 

metabolites implicated in systemic induced resistance to maize 
stem borers instead of the current focus on constitutive defense 
metabolites. Those molecules would be  a valuable tool for pest 
control in those scenarios where transgenic crops are not 
allowed, such as organic agriculture.
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