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Plant breeding programs use multi-environment trial (MET) data to select superior lines,

with the ultimate aim of increasing genetic gain. Selection accuracy can be improved

with the use of advanced statistical analysis methods that employ informative models

for genotype by environment interaction, include information on genetic relatedness and

appropriately accommodate within-trial error variation. The gains will only be achieved,

however, if the methods are applied to suitable MET datasets. In this paper we present

an approach for constructing MET datasets that optimizes the information available for

selection decisions. This is based on two new concepts that characterize the structure of

a breeding program. The first is that of “contemporary groups,” which are defined to be

groups of lines that enter the initial testing stage of the breeding program in the same year.

The second is that of “data bands,” which are sequences of trials that correspond to the

progression through stages of testing from year to year. MET datasets are then formed

by combining bands of data in such a way as to trace the selection histories of lines

within contemporary groups. Given a specified dataset, we use the A-optimality criterion

from the model-based design literature to quantify the information for any given selection

decision. We demonstrate the methods using two motivating examples from a durum

and chickpea breeding program. Datasets constructed using contemporary groups and

data bands are shown to be superior to other forms, in particular those that relate to a

single year alone.

Keywords: multi-environment trials, linear mixed models, model-based design, contemporary groups, selection,

plant breeding

1. INTRODUCTION

Plant breeding is a process that consists of methods for the creation, selection, and fixation
of superior plants in terms of productivity or quality (Moose and Mumm, 2008). During this
process, the ability to select the best lines and discard others is critical in constantly improving
the breeding gene pool (Zamir, 2001). Generally, breeding programs have cycle lengths that span
8 to 10 years; that is from initial cross to variety commercialization. The majority of programs
follow the modified pedigree breeding method, where traits with high heritability are selected first,

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.623586
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.623586&domain=pdf&date_stamp=2021-02-02
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:alismith@uow.edu.au
https://doi.org/10.3389/fpls.2020.623586
https://www.frontiersin.org/articles/10.3389/fpls.2020.623586/full


Smith et al. MET Dataset Construction

and traits of lower heritability selected in later generations
when lines become fixed (Collard and Mackill, 2008). The early
population stages in such programs are often focused on several
traits of commercial importance, including disease resistance,
herbicide tolerance, phenology type, and functional grain
quality. At the advanced evaluation stages selection is focused
on grain yield across target production environments (TPE),
to appropriately gauge genotype by environment interaction
(G×E), as genotypes vary in their response to different
environments. Note that in this paper the terms “genotype” and
“line” are used synonymously.

While there aremultiple traits of interest under selection, yield
is often the trait of foremost interest. In order to achieve efficiency
in yield selection, yield data is generated from a series of field
trials across years (synonymous with seasons) and geographical
locations, known as multi-environment trials (METs). METs
are an essential evaluation tool in plant breeding programs, as
they enable an effective measure of G×E. This is particularly
important in the Australian agricultural environment, which is
known to be extremely variable between locations and seasons
(Chapman et al., 2003). As a result, advanced evaluation stages
in breeding programs use expanded numbers of evaluation
environments to appropriately assess across all TPE.

The breeding process can be viewed as a multi-year, multi-
cycle collection of data (Arief et al., 2019). In particular, we find
that programs are underpinned by a grouping of lines that are
derived together from a fixed number of crosses at the crossing
block stage. These lines are essentially “born” together and are
subsequently tested together. This cohort of lines then progress
through the bulk population stages, are derived to fixed lines and
tested sequentially in the advanced evaluation stages. We refer to
these broad grouping of lines as “contemporary groups” (CGs).
As an example we consider the Durum Breeding Australia (DBA)
program from one of our motivating examples (see section 3)
in which there are four stages of testing (denoted S1 to S4).
Within the time-frame 2015 to 2018, the following four CGs
were created: CG15, CG16, CG17, and CG18 corresponding to
lines in S1 trials in those years. Then, for example, a subset of
the lines from CG15 was progressed to S2 trials in 2016 and so
on to S3 in 2017 and finally to S4 in 2018. As lines progress
through stages they decrease in number, similar to the narrowing
observed in the funnel structure seen in Figure 1. Following on
from this figure, four selection decisions would be made annually
on S1, S2, S3, and S4 lines as they progress to the next stage
of testing. The final stage selection decision, that is, for S4, is
concerned with the submission of elite lines to the Australian
national crop variety testing program, the National Variety
Trials (NVT).

For plant breeding programs in Australia, the preferred
approach for the analysis of MET data is the single stage Factor
Analytic Linear Mixed Model (FALMM) of Smith et al. (2001),
with modeling of spatial variation for individual trials (Gilmour
et al., 1997; Stefanova et al., 2009). This analysis approach is
also the preferred method of analysis for the NVT (Smith and
Cullis, 2018). Oakey et al. (2007) extended these models with the
inclusion of information on genetic relatedness through ancestral
information (pedigree), which Beeck et al. (2010) utilized to

FIGURE 1 | Summary of the typical number of lines and environments (in

parentheses) at each testing stage for one of our motivating examples, the

durum breeding program. There are four breeding stages of testing: stage 1

(S1) to stage 4 (S4) and a final stage corresponding to the independent

Australian testing system, the National Variety Trials (NVT).

enable partitioning of additive and non-additive effects for
selection in a canola breeding program.

There is a substantial amount of literature demonstrating the
improved selection accuracy resulting from the use of a one stage
FALMM that incorporates pedigree (ancestry) information (see
Oakey et al., 2007; Beeck et al., 2010; Smith and Cullis, 2018;
Ukrainetz et al., 2018). The inclusion of pedigree information
via the numerator relationship matrix (NRM) provides links
between genotypes both within and between environments. This
enables more reliable estimation of genetic variance parameters
and thence more accurate predictions of total genetic effects as
required for selection.

It is well-known that these developments in methods of
analysis contribute to genetic gains, as shown by the wide-spread
adoption of the FALMM of Smith et al. (2001) in Australian
plant breeding programs (Gogel et al., 2018). In Table 1, we
have compiled a concise summary of literature specific to plant
breeding METs and the methods of analysis. In the process
of compiling this summary, we noted that there are very few
papers written on the construction of the underlying MET
datasets to realize these genetic gains from an analysis point of
view. For example, the paper by Arief et al. (2019) indicates
that a MET dataset across stages of a breeding program in
a combined analysis is the most advantageous. However, they
used a two-stage linear mixed model without the inclusion of
pedigree information. In contrast, Yan and Rajcan (2003) used
a similar approach (single stage, without pedigree) and found
that a single year MET dataset was sufficient to identify the best
and worst selections. Despite the vast amounts of data breeding
programs generate, it is clear that there is little consensus
on the construction of datasets for selection decisions in the
current literature.

The inherent structure of the breeding program (stages within
a year) and thus selection on a stage basis often results in the
analysis of plant breeding datasets comprising a series of single

Frontiers in Plant Science | www.frontiersin.org 2 February 2021 | Volume 11 | Article 623586

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Smith et al. MET Dataset Construction

TABLE 1 | Summary of studies based on plant breeding METs, their dataset composition, and methods of analysis.

Crop - trait Selection? Aim Dataset Analysis References

Barley &

Wheat, GY

N Present an approach for the analysis of early

stage breeding METs

Barley S3 comprising 125 lines at 3 locations in

1992 & Wheat early generation yield trials sown

at 3 environments in 1991

1 & 2 stage

LMM

Cullis et al., 1998

Oat, GY N Identify long-term sources of variation S4 trials of 10-20 lines across 22 locations

across 2 years, (174 trials spanning 1985 to

1994)

2 stage LMM Frensham et al., 1998

Navy beans,

GY

N Report the results of Pattern analysis on TPE MET comprising 15 locations across the years

1983 to 1989

VCLMM Redden et al., 2000

Soy bean, GY N Evaluate multi-year data vs. single year data of

variety performance

MET dataset comprising variety trials at 4

locations per year, from 1991 to 2000

LMM Yan and Rajcan, 2003

Wheat, GY N Review the principles of biplot analysis for MET

data

MET dataset comprising 18 winter wheat

varieties tested at 9 Ontario locations in 1993

LMM Yan and Tinker, 2006

Wheat, GY Y Identify relevant testing environments and

improve predictive value of data

MET comprising: 22 varieties evaluated in 32

environments

LMM Thomason and

Phillips, 2006

Sugarcane Y Demonstrate a statistical approach for METs to

enable selection of parents and best

performing lines

Stage 2 & 3 clones at 6 locations across 2

years (2002 to 2003)

FALMM &

pedigree

Oakey et al., 2007

Lentils, GY Y Explore the AMMI model for selection MET dataset comprising 11 varieties evaluated

at 7 locations over 2–3 years

AMMI Sabaghnia et al., 2008

Canola, GY &

Oil

Y Develop tools to explore G×E MET comprising 19 trials in advanced stage of

breeding across southern Australian during

2007 to 2008

FALMM &

pedigree

Beeck et al., 2010;

Cullis et al., 2010

Maize, GY Y Investigate G×E on selection decisions MET comprising, 12 varieties and 25

environments evaluated in 2 consecutive years

AMMI Perez-Elizalde et al.,

2012

Pine

Breeding, SD

Y Present an approach for investigating additive

G×E in an outcrossing plant species

77 trials, located across Australia & New

Zealand with planting dates spanning the

period 1968 to 2005

ARAM &

FALMM &

pedigree

Cullis et al., 2014

Wheat, 21

traits

Y Evaluate methods to obtain reliable estimates

of variance components

MET comprising single cycle of breeding

nurseries: 466 unique locations across 30 years

VCLMM Arief et al., 2015

Sugarcane, 3

traits

Y Characterize the varieties in the final selection

stage of breeding

MET dataset comprising four consecutive

variety series (S00, S03, S04, and S05) planted

in the years 2011 to 2014 at 7 locations

VCLMM Guilly et al., 2017

Pine

Breeding, SD

Y Obtain predicted estimated breeding values for

parental selection

107 trials planted across the years 1968 to

2005

FALMM &

pedigree

Smith and Cullis, 2018

Lodgepole

pine, TH

Y To model patterns of G×E for a tree breeding

program

MET dataset comprising 28 second generation

progeny test locations established during 2002

to 2006 across 5 breeding zones

ARAM &

FALMM &

pedigree

Ukrainetz et al., 2018

Maize, GY Y Evaluate the benefit of multi-year and

multi-stage data for section

MET comprising stages 1 to 6 across 100 s of

locations (some containing multiple trials)

across 6 years

2 stage

FALMM

Arief et al., 2019

The Selection column indicates if the aim of the paper was selection on the given dataset. GY, Grain Yield; SD, Stem Diameter; TH, Tree Height; AMMI, Additive Main effect and

Multiplicative Interaction; ARAM, Approximate Reduced Animal Model; FALMM, Factor Analytic Linear Mixed Model; LMM, Linear Mixed Model; VCLMM, Variance Component Linear

Mixed Model.

year based analyses (Arief et al., 2019). Bernal-Vasquez et al.
(2017) finds similarly that breeding program datasets are often
analyzed on a year basis and not over years, due to the reasons:
that it is simpler/faster and that it is difficult to estimate variation
across years due to the lack of common lines between breeding
stages. However, due to the commercial nature of plant breeding
programs, there is limited literature on the dataset construction
of plant breeding METs, within the context of a commercial
breeding operation.

One of the central aims of plant breeding programs is to
select high yielding and stable genotypes across environments.
This is why plant breeding programs evaluate lines over a large
number of locations and years as it enables estimates of random

occurring cycles of normal and extreme conditions in the TPE
(Rosielle and Hamblin, 1981). In the Australian context large and
complex G×E has been reported specifically for wheat breeding
(Bänziger and Cooper, 2001). For barley, wheat, oats, lupins,
peas, lentils, and canola Cullis et al. (2000) found that the main
sources of G×E are what they define as “non-static,” that is
linked to seasonal influences. This alone contributed to 41% of
the total variance. Frensham et al. (1998) similarly found with
a Southern Australian oat breeding program that the genotype
by year by location (G×Y×L) variance component accounted
for 41.1% of the total phenotypic variance. Arief et al. (2015)
summarized multiple plant breeding studies, finding that the
G×Y×L variance component as a proportion of total phenotypic
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variance was 29% for wheat and 25% for navy beans breeding
programs in Australia. Therefore, there is a need for multiple
years of data to accurately quantify genotype performance in the
presence of substantial G×E in order to make accurate selection
decisions. This is clearly not addressed by single year/single stage
based data analysis in a plant breeding program.

The aim of this paper is to demonstrate the utilization of
the CG concept for dataset construction. The basic premise
is to include sufficient trials to optimize the amount of data
on the lines under consideration for selection. By tracing CGs
across stages and years it is possible to form a MET dataset
with the desired properties. In order to quantify the impact of
this approach we use the A-optimality criterion from model-
based design theory. The paper is arranged as follows. Section
2 outlines the methodology for MET dataset construction using
CGs. The use of A-optimality for comparing datasets is described.
In section 3 the methods are applied to two motivating examples
from Australian plant breeding programs. Some concluding
remarks are given in section 4.

2. METHODS FOR MET DATASET
CONSTRUCTION

The CG concept for MET data construction is first illustrated
using a hypothetical breeding program with four stages of testing
(S1 to S4) and in which lines progress through stages without fast-
tracking (skipping stages) or retention (remaining in a stage for
more years of testing). The aim is to construct a dataset to enable
accurate selection decisions for 2018. First consider the decisions
on lines in S4 in 2018. These lines commenced their testing in
S1 trials in 2015 (so are all members of CG15), were selected to
be tested in S2 trials in 2016, then S3 trials in 2017, and finally
S4 trials in 2018. Thus, in order to capture all of the data on the
lines under consideration for selection, we would combine data
from all of the trials in this sequence. Overall, this would suggest
a separate analysis for each of the selection decisions, based on
combining data from the following trials:

• Selection decision S1: S1 trials 2018
• Selection decision S2: S2 trials 2018 + S1 trials 2017
• Selection decision S3: S3 trials 2018 + S2 trials 2017 + S1

trials 2016
• Selection decision S4: S4 trials 2018 + S3 trials 2017 + S2 trials

2016 + S1 trials 2015.

It is instructive to illustrate this compilation of trials across stages
and years using tables such as Table 2. In this table the diagonal
bands of stages across years are labeled as A to I, with the labels A
to D being assigned in such a way that they align with the S1 to S4
trials in the year of selection (here 2018). The datasets described
above correspond to the diagonal bands of trials labeled as A to
D. Thus, for example, band D comprises data from S1 trials in
2015, S2 trials in 2016, S3 trials in 2017, and S4 trials in 2018. It is
important to note that, for any given trial, the data from all of the
harvested plots is included and not just the data on the lines of
interest. Thus, for example, the data from S1 trials in 2015 relates
to all of the lines tested in those trials. We describe bands A to F

TABLE 2 | Data bands for potential inclusion in a MET dataset for selection

decisions in 2018 from a breeding program with four stages of

selection (S1 to S4).

Year

Stage 2013 2014 2015 2016 2017 2018

S1 F E D C B A

S2 G F E D C B

S3 H G F E D C

S4 I H G F E D

Data bands correspond to diagonal sequences of stages across years and are labeled as

A to I.

in Table 2 as being “complete” in the sense that they trace back
to the first stage of testing, namely S1. In contrast, bands G to I
are incomplete, with band G missing S1 trials, band H missing
S1 and S2 trials and band I missing S1, S2, and S3 trials. This
has implications in terms of selection bias which will be discussed
in section 3.

In the absence of retention or fast-tracking, all the lines in
S1, S2, S3, and S4 in 2018 are members of CG18, CG17, CG16,
and CG15, respectively. Thus, all the lines within a stage in 2018
belong to a single CG only and the entire selection history for
any of these lines is captured in the associated data band. The
generalization to more complex scenario will be discussed in the
context of the motivating examples (see section 3).

In terms of information available for each of the four selection
decisions it is instructive to differentiate between “direct” and
“indirect” information. The former relates to observed data so is
maximized by including all trials in which the lines of interest
have been grown. In the hypothetical example this corresponds
to the bands so suggests the conduct of four analyses each based
on a separate band (A, B, C, and D). However, the use of a
FALMM for analysis creates the possibility of also using indirect
information derived from genetically related lines in other trials.
We would therefore recommend undertaking a single analysis
using data combined across these bands. This recommendation
can be justified by applying the method described in section 2.1
to quantify information for selection. Finally, we note that in the
MET analysis, G×E is modeled with reference to environments
which are defined to be combinations of trial locations and years.
Combining across bands may lead to the presence of multiple
trials at a single location within a year. For example, in any given
year, locations with S1 trials also typically include S2, S3, and
S4 trials. We refer to such trials as “co-located.” This will be
discussed further in section 3.

2.1. Quantifying Information for Selection
in MET Datasets
In order to discriminate among possible MET datasets in terms
of the amount of information available for selection decisions,
we note that the problem has strong links with optimal (model-
based) design. As Butler et al. (2014) state, “The goal of
optimal design is to discriminate among competing designs in
an effort to maximize the treatment information from a fixed

Frontiers in Plant Science | www.frontiersin.org 4 February 2021 | Volume 11 | Article 623586

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Smith et al. MET Dataset Construction

number of experimental units.” This requires the use of an
optimality criteria, and, in the context of plant breeding trials
in which the treatments are genotypes and the aim is selection,
the A-optimality criteria is appropriate since this aligns with
minimizing the probability of an incorrect selection decision
(Bueno Filho and Gilmour, 2003). A-optimality is based on
the so-called A-value which is the average pairwise variance of
elementary treatment contrasts. We therefore propose to use A-
values to quantify the treatment (genotype) information available
in any given MET dataset.

In model-based design, A-values are computed under a pre-
specified Linear Mixed Model (LMM) which we will term
the design model. Specification of the design model requires
specification of the fixed and random effects, the variance
models for the random effects and residuals and the values
of the associated variance parameters. The design model is
usually chosen to be as close as possible to that expected
for the analysis. Additionally, the variance parameter values
are chosen as being “typical” so may be based on historic
analyses. The model proposed in this paper for the analysis
of MET data is the FALMM with the inclusion of pedigree
information. Genotype selections using this model are typically
focused on the measure of overall genotype performance (across
environments) as presented in Smith and Cullis (2018). However,
the factor analytic variance parameters are specific to the
individual environments in the dataset so that typical values
do not exist. Therefore a more generic, but still realistic design
model is required for assessing MET dataset information. We
have chosen a variance component model that involves random
genotypemain effects and randomG×E effects, both of which are
partitioned into additive and non-additive effects. This is, in fact,
a sub-model of the FALMM. The A-values are then computed for
the total (additive plus non-additive) genotype main effects since
these provide a measure of average performance of genotypes
across environments.

In order to determine reasonable values for the variance
parameters in this design model we consider Cullis et al. (2000)
who conducted variance component analyses of grain yield in 22
MET datasets from Australian crop variety evaluation programs.
The environments in those datasets were classified according
to the year, the geographic region and possibly location within
region so Cullis et al. (2000) partitioned G×E accordingly. In
our motivating examples we do not have regional information
nor are trials typically located in identical positions from year
to year. However, we recognize the importance of genotype
by year interaction so maintain this as a separate source in
the design model. Thus we have used the genotype main
effects (G), genotype by year interaction (G×Y), and Error
sources of variation from Cullis et al. (2000), and have added
together the remaining sources to form residual genotype by
environment interaction. The mean percentage contributions for
each of these sources across all 22 datasets was 13.77% (G),
8.59% (G×Y), 37.91% (residual G×E), and 39.73% (Error) (see
Table 3). In the model-based design literature, and without loss
of generality, a value of one is typically assumed for the error
variance. We adopt the same approach here (see second row
in Table 3).

TABLE 3 | Variance parameter values for design model for genotype main effects

(G), genotype by year interaction (G×Y), residual genotype by environment

interaction (G×E), and Error.

G G×Y G×E Error

Mean % from Cullis et al. (2000) 13.77 8.59 37.91 39.73

Total variance parameter 0.35 0.22 0.95 1.00

Additive variance parameter 0.28/ā 0.18/ā 0.76/ā

Non-additive variance parameter 0.07 0.04 0.19

Rows in the table are: means of percentages in Cullis et al. (2000); associated (total)

variance parameter values assuming error variance of one; additive variance parameter

values (numerator is 80% of total values and denominator, ā, is the mean of the diagonal

elements of NRM); non-additive variance parameter values (20% of total values).

In contrast to our approach, the analyses in Cullis et al.
(2000) do not involve information on genetic relatedness. We
therefore make the further assumption that additive variance
comprises 80% of total variance. This represents an average from
the analyses of numerous Australian plant breeding datasets. The
final values for the variance parameters in the design model are
given in the third and fourth rows of Table 3. All A-values in this
paper were computed using ASReml-R (Butler et al., 2017). The
code is provided in Appendix A.

3. RESULTS

In this section we show the application of the methods presented
in section 2 to two motivating examples.

3.1. Durum Breeding Program
Durum wheat (Triticum durum desf.) breeding in Australia is
currently resourced on agronomic zones of production and
funded by New South Wales Department of Primary Industries
(NSWDPI), The University of Adelaide and the Grains Research
and Development Corporation (GRDC) under the Durum
Breeding Australia (DBA) project. The motivating example of
our paper is the DBA North program that operates out of
Tamworth Agricultural Institute, capturing TPEs in New South
Wales (NSW) up to and including central Queensland (QLD).
The structure of the program is illustrated in Figure 1. The
S1 in any year contains on average 1120 lines evaluated in
one or two environments. As the program progresses the line
numbers decrease to on average, 60 lines in the S4, evaluated in
eight environments.

The aim of this paper is to construct a dataset to evaluate the
performance of the 2018 S1, S2, S3, and S4 lines for selection and
progression to the next stage of testing. The data available for
this purpose spanned the period 2013 to 2018 so the sequences of
stages and years (and thence data bands) are the same as shown in
Table 2. The actual numbers of trials in each stage and year, and
the total numbers of trials in each complete data band, are given
in Table 4. Note that there were co-located trials within stages in
many environments so that the numbers of environments is also
provided in this table. The numbers of test lines for each stage and
year (2013 to 2018) are given in Table 5. Note that test lines refer
only to the lines under consideration for selection, so excludes
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check varieties, for example. At any stage of selection, a line
may be selected to progress to the next stage of testing, retained
in the same stage or rejected. In contrast to the hypothetical
example, lines are often retained within later stages for additional
year/s of testing. Retentions may occur due to limitations in seed
production, or even a holding pattern while awaiting disease
and/or quality data. This has resulted in the lines in later stages
comprising a mixture of CGs. The distribution across CGs for
2018 lines are given as the final columns in Table 5. For example,
the majority (66) of lines in S3 in 2018 correspond to CG16 so
have followed the simple progression along band C (that is, they
progressed from S1 trials in 2016 to S2 trials in 2017 to S3 trials in
2018). But a fair number (22) correspond to CG15 and progressed
from S1 trials in 2015 to S2 trials in 2016 to S3 trials in 2017 and
were then retained in S3 in 2018. Finally, five lines correspond to
CG14 and progressed from S1 trials in 2014 to S2 trials in 2015 to
S3 trials in 2016 and were then retained in S3 in 2017 and 2018.
This has implications for construction of the MET dataset.

The starting point for MET dataset construction for selection
decisions on the 2018 lines (S1 to S4) involves all trials in bands
A-D as described in the hypothetical example. With the retention
of lines it is clear that this would fail to capture much of the
data on the 30 S3 and S4 lines in 2018 that belonged to CG14
and CG13 (see Table 5). For example, Table 6 shows there are
nine lines in S4 for which 5 years of data would be missing if the
dataset comprised only bands A-D; another nine lines for which
4 years would be missing and a further seven lines missing 2 or
3 years of data. We believe this is unacceptable. We therefore

TABLE 4 | Number of trials and environments (presented as trials/environments)

in each stage (S1 to S4) and year (2013-2018) in the durum breeding program

with data bands indicated as superscripts.

Year Band

Stage 2013 2014 2015 2016 2017 2018 Totals

S1 2/1F 5/2E 6/1D 6/1C 7/1B 6/1A 6/1A

S2 6/3G 8/2F 8/2E 3/1D 3/1C 6/2B 13/3B

S3 4/4H 3/3G 5/4F 3/3E 3/3D 3/3C 12/5C

S4 9/9I 8/8H 12/10G 6/5F 11/10E 6/6D 18/11D

27/17E

21/12F

The final column gives the total numbers of trials and environments in each of the complete

data bands (A to F).

investigate the addition of bands E and F to the data. Table 6
shows the improvement in capturingmore of the data on the lines
of interest. Full data on the lines of interest could be obtained
by adding band G but we caution against this because band G
is incomplete (it is missing S1 trials, see Table 2) so we do not
have the entire selection history for many of the lines in band G.
The inclusion of band G, or indeed the other incomplete bands
H and I (so that the entire rectangle of data is included) may
result in “selection bias,” that is, bias in the estimates of the genetic
variance parameters (Thompson, 1973) so is not recommended.
The final dataset is therefore chosen to comprise bands A-F.With
this dataset only five lines under scrutiny for selection (in S4) are
missing data and the amount missing is small (1 or 2 years out of
a total of 6 years).

The final MET dataset (bands A-F) for analysis comprised
yield data on 6,951 lines from 21,660 plots corresponding to 97
trials (see Table 4) across 30 environments. Each field trial was
sown as a rectangular array indexed by field rows and columns.
Trials were sown in a serpentine sequence and harvested in
the row direction with all other management regimes applied
via pathways in the column dimension. Trials were designed
as grid-plot, partially replicated (p-rep) (Cullis et al., 2006) or
randomized complete block designs, with two to three replicates.
Summary information for the 30 environments is given in

TABLE 6 | MET dataset construction for 2018 selection decisions in durum

breeding program.

# years Bands in dataset

Stage missing A-D A-E A-F A-G

S1 0 1148 1148 1148 1148

S2 0 315 315 315 315

S3 0 88 93 93 93

2 5 0 0 0

S4 0 31 42 51 56

1 0 1 3 0

2 6 0 2 0

3 1 0 0 0

4 9 13 0 0

5 9 0 0 0

Number of lines missing years of data in datasets comprising bands A-D, A-E, A-F, and

A-G. Total number of lines for selection: 1148, 315, 93, and 56 (for stages S1 to S4).

TABLE 5 | Number of test lines in each stage (S1 to S4) and year (2013-2018) in the durum breeding program.

Number of test lines Number of 2018 test lines

Stage 2013 2014 2015 2016 2017 2018 CG18 CG17 CG16 CG15 CG14 CG13

S1 582 1485 1000 1163 1303 1148 1148 0 0 0 0 0

S2 105 361 413 388 379 315 0 315 0 0 0 0

S3 30 92 92 92 90 93 0 0 66 22 5 0

S4 25 41 57 55 53 56 0 0 0 31 12 13

The final columns give the number of lines in each contemporary group (CG18-CG13) for lines under consideration for selection in 2018.
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Table 7. There were 15 environments with co-located trials,
ranging in number from two to 13. The co-located trials related
either to different stages or to multiple trials within stages (also
see Table 4), the latter being due to physical restrictions on trial
sizes. We note that co-located trials are only deemed to comprise
a single environment when they are all managed in the same way,
that is, they are sown and harvested within a similar time frame
and subjected to the same agronomy practices including fertilizer,
herbicide, and pathway regimes.

The pedigree information associated with the above trial
data contained 7,628 records. All lines in the MET data set
had pedigree information. This was the first time a pedigree
file had been created for this breeding program and included

TABLE 7 | Summary of environments in the durum MET dataset: number of trials

for each stage of testing (S1, S2, S3, S4) and total number of trials.

Number of trials Mean

Environment S1 S2 S3 S4 Total nplot nline yield

2013-Breeza 2 0 0 0 2 720 585 2.88

2014-Breeza 3 0 0 0 3 1296 937 4.28

2014-Edgeroi 0 4 0 0 4 768 364 2.78

2014-Tworth 2 4 0 0 6 1468 915 3.93

2015-Breeza 0 0 2 0 2 384 96 5.15

2015-Edgeroi 0 4 1 0 5 1056 498 1.83

2015-Nstar 0 0 1 0 1 192 96 5.05

2015-Tworth 6 4 1 0 11 2244 1499 4.00

2016-Breeza 0 0 1 1 2 372 152 4.35

2016-Edgeroi 0 0 0 1 1 180 60 4.79

2016-Gurley 0 0 0 1 1 180 60 5.62

2016-Nstar 0 0 1 2 3 552 152 5.49

2016-Tworth 6 3 1 1 11 2628 1704 4.81

2017-Blbgra 0 0 0 1 1 180 60 1.12

2017-Breeza 0 0 1 1 2 384 158 5.31

2017-Bribbaree 0 0 0 1 1 180 60 1.20

2017-Coonamble 0 0 0 1 1 180 60 1.61

2017-Edgeroi 0 0 0 1 1 180 60 3.93

2017-Garah 0 0 0 1 1 180 60 1.84

2017-Gurley 0 0 0 1 1 180 60 2.12

2017-Nstar 0 0 1 1 2 384 158 3.41

2017-Tworth 7 3 1 2 13 3014 1836 4.26

2017-Westmar 0 0 0 1 1 180 60 2.24

2018-Blbgra 0 0 0 1 1 198 66 1.24

2018-Breeza 6 3 1 1 11 2502 1629 5.53

2018-Coonamble 0 0 0 1 1 198 66 1.55

2018-Gurley 0 0 1 0 1 210 105 2.23

2018-Moree 0 0 0 1 1 198 66 1.51

2018-Trangie 0 0 0 1 1 198 66 1.02

2018-Tworth 0 3 1 1 5 1074 481 2.24

Number of plots (nplot) and lines (nline); mean yield (t/ha).

in the analysis. This was a significant undertaking as the
durum breeding program was established in the 1960’s and
a comprehensive pedigree file (outside annual crossing block
information) had not existed in the program since this time. The
NRM was formed using the pedicure package (Butler, 2019) in R

(R Development Core Team, 2015). The inbreeding coefficients
of lines with phenotypic data ranged from 0.750 to 0.998 with
mean of 0.905.

Finally, the approach described in section 2.1 for comparing
MET datasets in terms of the information for selection was
applied for each stage of selection and for three types of MET
dataset, namely the 2018 data for each stage, the diagonal band
of data for each stage and the final dataset (bands A-F). Thus,
for S4 selections, the three datasets comprised data from S4 trials
in 2018 alone; data from trials in band D (S4 trials in 2018 +
S3 trials in 2017 + S2 trials in 2016 + S1 trials in 2015) and the
final dataset. For S3 selections, the three datasets comprised data
from S3 trials in 2018 alone; data from trials in band C (S3 trials
in 2018 + S2 trials in 2017 + S1 trials in 2016) and the final
dataset. For S2 selections, the three datasets comprised data from
S2 trials in 2018 alone; data from trials in band B (S2 trials in
2018 + S1 trials in 2017) and the final dataset. Note that for S1
selections, the single year dataset (S1 trials in 2018) is equivalent
to the band dataset (band A). The resultant A-values are shown
in Figure 2. This clearly shows the superiority of the final dataset
in each case. The reduction in A-values is largely driven by an
increase in the amount of direct information (as reflected in the
mean numbers of environments per line) but there is also a strong
contribution from indirect information. For example, the S1 lines
under consideration for selection in 2018 were only grown in
a single environment (see Table 4) so there is no difference in

FIGURE 2 | A-values for lines under consideration for selection in durum

breeding program in 2018 (stage S4: 56 lines, S3: 93 lines, S2: 315 lines, and

S1: 1148 lines). A-values are given for three types of MET dataset, namely

2018 data for each stage; diagonal band of data for each stage and the final

dataset constructed as in section 3.1. The points are labeled with the

associated mean numbers of environments in which these lines were grown.

Note that for S1 the 2018 and band datasets are the same.
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direct information between using the 2018 data alone for this
stage compared with the final dataset. However, the A-value for
the final dataset is much lower, indicating the impact of indirect
information from relatives of the S1 lines.

3.2. Chickpea Breeding Program
In Australia, the chickpea (Cicer arietinum L.) breeding program
is managed under the umbrella of Pulse Breeding Australia
(PBA). PBA is an Australian government funded project through
the Grains Research and Development Corporation (GRDC).
PBA coordinates and funds the breeding activities of the
four pulse crops of economic importance—chickpeas, field
peas, faba beans, and lentils across the Australian growing
environment. The chickpea program under PBA comprises three
sub-programs, which are based on the following germplasm
streams—desi (north and south) and kabuli. We will focus on the
desi south sub program managed by NSW DPI. This program
evaluates lines annually, across southern NSW, Victoria and
South Australia in three stages, namely S1, S2, and S3 across
multiple locations. The structure of the program is similar to that
of the program illustrated in Figure 1. The S1 in any year contains
on average 650 lines evaluated across five environments. As the
program progresses the line numbers decrease to on average, 70
lines in S3, evaluated in eight environments.

Here we consider the MET dataset construction to evaluate
the performance of test lines in all three stages in 2019. The data
available for this purpose spanned the period 2016 to 2019. The
sequences of stages and years (and thence data bands), together
with their associated numbers of trials are given in Table 8. Note
that there were no co-located trials within stages so that the
numbers of environments in the cells of this table are the same as
the numbers of trials. The numbers of test lines for each stage and
year (2016 to 2019) are given in Table 9. The distribution across
CGs for 2019 lines are given as the final columns inTable 9. Thus,
for example, the majority (46) of lines in S3 correspond to CG17
(so have followed the simple progression along band C) but 11
correspond to CG16 and one to CG14.

The starting point for MET dataset construction for selection
decisions on the 2019 lines (S1 to S3) involves all trials in bands
A-C. However, this would fail to capture all the data on the
11 S3 lines in 2019 that belonged to CG16 and the single line
that belonged to CG14 (also see Table 10). Addition of band D

TABLE 8 | Number of trials in each stage (S1 to S3) and year (2016-2019) in the

chickpea breeding program with data bands indicated as superscripts.

Year Band

Stage 2016 2017 2018 2019 Totals

S1 4D 5C 5B 6A 6A

S2 4E 6D 6C 7B 12B

S3 5F 8E 8D 9C 20C

18D

The final column gives the total numbers of trials in each of the complete data bands (A

to D).

accommodates the former and provides an additional year for
the latter. Full data on the lines of interest could be obtained
by adding bands E and F but once again we caution against
this because these bands are incomplete so would introduces
many lines with incomplete selection histories. The final dataset
is therefore chosen to comprise bands A-D.With this dataset only
a single line (in S3) is missing data.We note that this line has been
retained in S3 for a number of years and is of less interest in terms
of promotion to the next stage of testing (in the NVT).

The final MET dataset (bands A-D) for analysis comprised
yield data on 2,448 lines from 18,936 plots corresponding
to 56 trials (see Table 8) across 28 environments. Summary
information for the 28 environments is given in Table 11. There
were 18 environments with co-located trials, with between two
to three trials. These were all associated with different stages
within environments.

The pedigree information associated with the above trial data
contained 2,983 records. All lines in the MET data set had
pedigree information. The inbreeding coefficients of lines with
phenotypic data ranged from 0.500 to 0.999 with mean of 0.7404.

The information available for selection at each stage was
assessed using a similar approach to the durum example, namely
computing A-values for test lines for three types of MET dataset.
For S3 selections, the three datasets comprised data from S3 trials
in 2019 alone; data from trials in band C (S3 trials in 2019 + S2
trials in 2018 + S1 trials in 2017) and the final dataset (trials in
bands A-D). For S2 selections, the three datasets comprised data
from S2 trials in 2019 alone; data from trials in band B (S2 trials

TABLE 9 | Number of test lines in each stage (S1 to S3) and year (2016-2019) in

the chickpea breeding program.

Number of test lines Number of 2019 test lines

Stage 2016 2017 2018 2019 CG19 CG18 CG17 CG16 CG15 CG14

S1 443 559 763 638 633 5 0 0 0 0

S2 113 100 146 176 0 176 0 0 0 0

S3 58 58 49 58 0 0 46 11 0 1

The final columns give the number of lines in each contemporary group (CG19-CG14) for

lines under consideration for selection in 2019.

TABLE 10 | MET dataset construction for 2019 selection decisions in chickpea

breeding program.

# years Bands in dataset

Stage missing A-C A-D A-E A-F

S1 0 638 638 638 638

S2 0 176 176 176 176

S3 0 46 57 57 58

1 11 0 1 0

2 0 1 0 0

3 1 0 0 0

Number of lines missing years of data in datasets comprising bands A-C, A-D, A-E, and

A-F. Total number of lines for selection: 638, 176, and 58 (for S1 to S3).
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TABLE 11 | Summary of environments in the chickpea MET dataset: number of

trials for each stage of testing (S1, S2, S3) and total number of trials.

Number of trials Mean

Environment S1 S2 S3 Total nplot nline yield

2016-Balaklava 1 0 0 1 504 440 1.78

2016-Horsham 1 0 0 1 504 436 2.17

2016-Melton 1 0 0 1 504 450 2.17

2016-Yenda 1 0 0 1 504 360 2.59

2017-Balaklava 1 1 0 2 744 510 0.97

2017-Curyo 0 1 0 1 216 108 1.78

2017-Horsham 1 1 0 2 756 508 2.22

2017-Melton 1 1 0 2 756 512 1.36

2017-Yenda 1 1 0 2 924 648 1.18

2017-York 1 1 0 2 480 312 1.71

2018-Ardlethan 1 1 1 3 1356 972 0.66

2018-Balaklava 1 1 1 3 1032 676 0.44

2018-Curyo 0 1 1 2 492 210 0.74

2018-Horsham 1 1 1 3 948 599 2.02

2018-Melton 1 1 1 3 1032 676 0.49

2018-Mingenew 1 1 1 3 876 522 1.42

2018-Northampton 0 0 1 1 192 65 1.62

2018-Wagga Wagga 0 0 1 1 192 65 1.31

2019-Ardlethan 1 1 1 3 1260 858 0.35

2019-Curyo 0 1 1 2 444 180 1.63

2019-Dalwallinu 0 1 1 2 456 182 0.23

2019-Horsham 1 1 1 3 984 594 1.26

2019-Melton 1 1 1 3 816 414 0.59

2019-Mingenew 1 1 1 3 948 570 0.99

2019-Narrabri 1 0 0 1 780 642 2.11

2019-Pinery 1 1 1 3 756 368 0.78

2019-Wagga Wagga 0 0 1 1 240 81 0.58

2019-Yenda 0 0 1 1 240 80 1.38

Number of plots (nplot) and lines (nline); mean yield (t/ha).

in 2019 + S1 trials in 2018) and the final dataset. Note that for S1
selections, the single year dataset (S1 trials in 2019) is equivalent
to the band dataset (band A). The resultant A-values are shown
in Figure 3. Once again the superiority of the final dataset in each
case is clearly shown, with greatly reduced A-values compared to
the single year and single band datasets.

4. DISCUSSION

In this paper we have addressed a void in the literature,
and provided a rigorous framework for the construction of
MET datasets for selection in plant breeding programs. We
have described a method that aims to optimize the amount
of information available on the “lines of interest,” that is, the
lines under consideration for selection. The method is intuitive
and involves several simple steps. A key aspect is to identify
contemporary groups (CGs), that is, groups of lines that entered

FIGURE 3 | A-values for lines under consideration for selection in chickpea

breeding program in 2019 (stage S3: 58 lines, S2: 176 lines, and S1: 638

lines). A-values are given for three types of MET dataset, namely 2019 data for

each stage; diagonal band of data for each stage and the final dataset

constructed as in section 3.2. The points are labeled with the associated mean

numbers of environments in which these lines were grown. Note that for S1

the 2019 and band datasets are the same.

the first stage of testing (S1) in the same year. This allows a
complete enumeration of the trials in which the lines of interest
have been grown. In addition to defining CGs, which relate to
lines, we have also introduced the concept of data bands, which
relate to trials. Data bands align with the testing system, namely
the progression through stages (for example S1 through to S4)
from year to year. By sequentially building the MET dataset
using data bands we can form a dataset that captures as much
information as possible for the lines of interest.

We have also developed a method for quantifying this
information for any given MET dataset. The method uses
fundamental concepts from model-based design theory. Thus,
information is quantified using an A-value (average pairwise
variance) for the lines of interest from a pre-specified linear
mixed model. The application of this approach to the two
motivating examples in this paper clearly showed the superiority
of the MET datasets constructed using the CG approach, in
particular when compared with the more common approach of
simply using trials from a single stage and year. The information
gains for all selection stages were associated both with direct
information, that is, from the trials in which the lines of interest
were grown and also indirect information derived from trials in
which genetically related lines were grown.

MET datasets constructed using the CG approach encompass
multiple bands of data and this suggests a further and crucial
gain for S1 selection decisions since these lines have only been
grown in a single year and often at only one or two locations.
The key driver here is that locations with S1 trials also typically
include later stage trials. The environment is then defined as
the amalgamation of all of these (co-located) trials and thence
includes a far wider set of lines than the S1 lines alone. This
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provides links between environments (both within and between
years) for the S1 lines. Then application of the FALMM will
allow examination of G×E for the S1 lines of interest across a
wide range of environments. This is particularly important in an
Australian context as genotype by location by year interaction is
often the largest component of G×E (Frensham et al., 1998; Cullis
et al., 2000). Hence the additional seasons of data will lessen the
impact of selection on a single year of data, which could be a
seasonally extreme year and therefore outside what is expected
for the range of TPE. This issue has also been pointed out by Arief
et al. (2015).

We note that combining trials utilizing the CG approach
may result in an unbalanced dataset, with poor connectivity
(low numbers of lines in common) between some environments.
Whilst one of the advantages of using an FALMM is the ability
to handle unbalanced data, there has been concern about the
reliability of estimation of FA parameters in extreme cases
when connectivity is very poor. It is well-known that poorly
estimated genetic variance parameters will result in a reduction
in genetic gain (Sales and Hill, 1976a,b). The A-value approach
does not take this into account since the variance parameters
are assumed known. Historically, genotype connectivity was
thought to be the key determinant of the reliability of
estimation of FA parameters. We are currently developing a
formal information based diagnostic for this purpose. It is
superior to connectivity in the sense of better forecasting the
uncertainty of variance parameter estimates and being applicable
for both additive and non-additive genetic variance parameters.
It may therefore be applied jointly with the A-value approach
in order to balance genotype information and reliability of
variance parameter estimation in the search for an optimum
MET dataset.

The applications in this paper are based on inbred annual
crops. However, we note that our methods can be easily modified
for situations that include hybrid crops, which require evaluation
of inbred parental lines in addition to the hybrids themselves.
The methods are also applicable for parental evaluation in
perennial crops such as radiata pine, in which parental trees are
evaluated by the performance of their progeny in (field) trials
across numerous years and seasons (Smith and Cullis, 2018).
We note that all models considered in this paper partitioned
genetic effects into additive and non-additive effects. This was
achieved with the use of a numerator relationship matrix formed
from pedigree (ancestral) records. It would be straight-forward
to replace this with a genomic relationship matrix formed from
marker data.

Finally, and at the request of the editor, we note that
an important area of research that requires MET datasets is
the investigation of genotype by environment by management
(G×E×M) interactions. Our methodology was developed in
the context of (standard) two-way G×E studies but could be
generalized to three-way G×E×M studies using, for example,
linear mixed models of the form presented in Smith et al.
(2019). In Smith et al. (2019) the management practice was
the application of a fungicide to canola seed in order to limit
the impact of the disease blackleg. Within environments, the
treatments comprised the factorial combinations of genotypes
and the presence/absence of the fungicide and the experimental

designs included replication for both factors. This allowed valid
inference on G×E×M interactions. Unfortunately this is rarely
the case for G×E×M studies, with the management treatment
often not having proper replication. A common example is
studies involving the presence/absence of an abiotic stress such
as heat or drought. It is often argued that the nature of the
equipment required for application of the stress factor is such
that replication is not possible. This means that inference on
G×E×M interactions is compromised. Kadkol et al. (2020)
discuss this in detail. We argue that it should be possible
to construct experimental designs that allow a limited, but
sufficient amount of replication for stress treatments so that
valid inference on G×E×M interactions is possible. Given
the cost and importance of such research, this would seem
a priority.

Our methodology for constructing a MET dataset has
been programmed within the R computing environment (R
Development Core Team, 2015) and the code is available upon
request. The method for quantifying information involves the
use of ASReml-R (Butler et al., 2017) and example code is
given in Appendix A. We have implemented these methods
in a number of plant breeding programs with the result of
superior MET datasets and also improved breeder confidence
and understanding.
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APPENDICES

A. CODE FOR COMPUTING A-VALUES

We consider S4 selection decisions for the final MET dataset for the durum motivating example. The data-frame is “final.df” and
the key fields in this data-frame are “Environment” (factor with 30 levels); Gkeep (factor with 6,951 levels corresponding to the lines
grown in the trials) and “Year” (factor with 6 levels). The inverse of the NRM is stored in sparse form in the object “durum.giv” and
corresponds to 7,628 lines (lines grown in the trials and their ancestors). The mean of the diagonal elements of the NRM is ā = 1.9.
The steps in ASReml-R (Butler et al., 2017) are as follows:

1. run the model with start.values=T to be able to set the values of the variance parameters

sv <- asreml(Yield~Environment, random =~vm(Gkeep,durum.giv) +
idv(Year):vm(Gkeep,durum.giv) + idv(Environment):vm(Gkeep,durum.giv) +
ide(Gkeep) + Year:ide(Gkeep) + Environment:ide(Gkeep),
residual=~idv(units), data=final.df, start.values=TRUE,
na.action = na.method(x=’include’))

2. set the variance parameter values as given in Table 3. These are ordered as additive G, G×Y and G×E followed by non-additive G,
G×Y and G×E, then Error. Also set constraints so the parameters are fixed at these values in the next run of the model

gam.all <- sv$vparameters.table
gam.all$Value <- c(0.15,0.09,0.40,0.07,0.04,0.19,1,1)
gam.all$Constraint <- ’F’

3. run the model with the (fixed) pre-specified variance parameter values

temp.asr <- asreml(Yield~Environment, random =~vm(Gkeep,durum.giv) +
idv(Year):vm(Gkeep,durum.giv) + idv(Environment):vm(Gkeep,durum.giv) +
ide(Gkeep) + Year:ide(Gkeep) + Environment:ide(Gkeep),
residual=~idv(units), data=final.df, R.param=gam.all, G.param=gam.all,
na.action = na.method(x=’include’), maxit=1)

4. use the ASReml-R predict function to predict the total (additive + non-additive) line effects for the test lines in S4 in 2018 (there
are 56 of these with names stored in the vector gs4.2018). Then obtain the A-value as the average pairwise variance (square of
average sed)

temp.pvs <- predict(temp.asr, classify=’Gkeep’, maxit=1,
only=c("vm(Gkeep, durum.giv)","ide(Gkeep)"), levels=gs4.2018)
Avalue <- temp.pvs$avsed^2
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