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Although several results have been obtained in triploid loquat heterosis (i.e., leaf size of 
triploid loquat) studies in the past years, the underlying mechanisms of the heterosis are 
still largely unknown, especially the regulation effects of one specific gene on the 
corresponding morphology heterosis. In this study, we sought to further illustrate the 
regulatory mechanisms of one specific gene on the leaf size heterosis of triploid loquats. 
A leaf size development-related gene (EjGIF1) and its promoter were successfully cloned. 
Ectopic expression of EjGIF1 in Arabidopsis showed that the leaf size of transgenic 
plantlets was larger than that of WTs, and the transgenic plantlets had more leaves than 
WTs. Quantitative Reverse Transcription PCR (qRT-PCR) showed that the expression level 
of EjGIF1 showed an AHP expression pattern in most of the hybrids, and this was 
consistent with our previous phenotype observations. Structure analysis of EjGIF1 promoter 
showed that there were significantly more light-responsive elements than other elements. 
To further ascertain the regulatory mechanisms of EjGIF1 on triploid loquat heterosis, the 
methylation levels of EjGIF1 promoter in different ploidy loquats were analyzed by using 
bisulfite sequencing. Surprisingly, the total methylation levels of EjGIF1 promoter in triploid 
showed a decreasing trend compared with the mid-parent value (MPV), and this was also 
consistent with the qRT-PCR results of EjGIF1. Taken together, our results suggested that 
EjGIF1 played an important role in promoting leaf size development of loquat, and 
demethylation of EjGIF1 promoter in triploid loquats caused EjGIF1 to exhibit over-
dominance expression pattern and then further to promote leaf heterosis formation. In 
conclusion, EjGIF1 played an important role in the formation of triploid loquat leaf 
size heterosis.
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INTRODUCTION

Heterosis, or hybrid vigor, is a common phenomenon in many 
diploid or polyploid organisms, which means the biomass, 
resistance ability, yield, and some other agronomic traits in 
hybrids are greater than that of the parents (Hofmann, 2012). 
Heterosis has been widely used to improve the yield of the 
field crops and vegetables continuously and thus has greatly 
solved the crisis of food shortage especially in some developing 
countries (Agbo and Teixeira da Silva, 2014). However, to date 
we  still know little about the mechanisms of heterosis (Wang 
et  al., 2015). Researchers have proposed several models from 
the genetic aspect to explain the mechanisms of heterosis 
including dominance, over-dominance, and epistasis, but none 
of these models can fully explain this phenomenon (Jones, 
1917; East, 1936; Yu et  al., 1997). Recent studies on maize, 
soybean, rice, Arabidopsis, etc., have found that heterosis may 
be  associated with the differential gene expression based on 
the fact that no new genes are produced after hybridization 
(Guo and Rafalski, 2013; Miller et  al., 2015; Wang et  al., 2015; 
Taliercio et  al., 2017; Chen et  al., 2018). Two gene expression-
related models, additive and non-additive gene expression, were 
proposed by Chen (2010) to further explain heterosis 
phenomenon. With the development of functional genomics, 
such as the application of RNA-Seq technology, more and 
more studies have found that heterosis may be  highly related 
to additive expression pattern due to the fact that genes exhibit 
non-additive expression pattern in hybrids are comparatively 
rare, and the non-additive genes are deemed to associate with 
the formation of transgressive traits in hybrids (Guo et  al., 
2006; Thiemann et  al., 2014). For instance, study on triploid 
loquat, Liu et  al. (2018a) analyzed the leaf transcriptomes of 
the triploid loquats and their parents in two cross combinations 
and identified that 94.56 and 86.97% transcripts were expressed 
additively in the two cross combinations, respectively, and only 
5.44 and 13.03% genes expressed non-additively. These results 
indicated that additively expressed genes may play a fundamental 
role in the formation of triploid loquats.

Recent studies found that epigenetic mechanisms, especially 
DNA methylation which are considered to be  associated with 
the regulation of gene expression in a number of plant species 
(Arikan et  al., 2018). Due to the regulatory function on gene 
expression, DNA methylation level is also considered to 
be  associated tightly with heterosis (Nakamura and Hosaka, 
2010). Studies have shown that DNA methylation is mainly 
occurred in the CpG island of the promoter, and the DNA 
methylation density of a promoter can affect the transcriptional 
activity of the gene (De Smet et al., 1999; Alasaari et al., 2012).

Loquat [Eriobotrya japonica (Thunb.) L.; 2n  =  2x  =  34] 
belongs to the subtribe Pyrinae in the Rosaceae family and 
is favored by many people due to its excellent flavor and 
medicinal applications (Wu et  al., 2015). However, the loquat 
fruits sold in the market currently are all diploid with too 
many seeds, and this significantly affects their edibility (Liu 
et  al., 2018a). Triploid loquat breeding provides a new way 
to solve the problem of low edible rate of diploid loquats. 
Previous studies in our lab found that triploid loquats are not 

only seedless, but also have a variety of excellent traits that 
diploid and tetraploid loquats do not have, such as larger and 
greener loquat leaves, showing an obvious heterosis (Liu et  al., 
2018b, 2019). Liu et al. (2018a,b) have studied the mechanisms 
of triploid loquat heterosis by using several triploid loquats 
with clear genetic relationship and found that extensive genetic 
variation and DNA methylation remodeling after the formation 
of triploid loquat may change the gene expression patterns in 
triploid loquats, and these further promoted the formation of 
triploid loquat heterosis. However, for triploid loquat heterosis, 
we  still know little about the mechanisms.

Leaves are the photosynthetic place of plants, absorbing 
sunlight energy to synthesize biological energy (Gonzalez et al., 
2012; Jiao et  al., 2019). Leaves of eudicots are initiated at the 
flank of the shoot apical meristem (SAM), and the extent 
and direction of leaf growth have a great influence on the 
leaf size and shape (Horiguchi et  al., 2005; Vercruyssen et  al., 
2015). Plant Growth-Regulating Factor (GRFs) is a family of 
transcription factors that regulate leaf development, and nine 
GRFs (GRF1-GRF9) were identified from Arabidopsis (Kim 
et  al., 2003). Studies on Arabidopsis and rice found that GRFs 
could repress or activate the expression of their target genes 
by binding to the regulatory region of DNA (Kim et al., 2012; 
Kuijt et  al., 2014). Overexpression of AtGRF1, AtGRF2, and 
AtGRF5 could lead the cell number or size of transgenic leaves 
to decrease, and these make the transgenic plants have larger 
leaves than wild-type (WT) plants (Kim et  al., 2003). GRF 
INTERACTING FACTOR 1/ANGUSTIFOLIA 3 (GIF1/AN3) 
is a transcriptional coactivator which is a functional homolog 
to the human synovial sarcoma translocation protein (SYT) 
transcription coactivator (Horiguchi et  al., 2005; Vercruyssen 
et  al., 2015). Overexpression of AtGIF1 enlarged the leaf size 
of the transgenic plants, whereas, loss-of-function gif1 plants 
developed narrower leaves (Kim and Kende, 2004; Horiguchi 
et  al., 2005). Yeast two-hybrid analysis showed that AtGIF1 
could interact with both AtGRF1 and AtGRF5, and positively 
promoted the leaf cell proliferation and regulated the leaf size 
in plants (Kim and Kende, 2004; Horiguchi et  al., 2005). 
Thus, like GRFs, GIF1 also functions as an important 
transcription factor in the size and shape regulation of plant 
leaves (Kim and Kende, 2004).

Although we  have verified that the triploid loquat leaves 
become larger, greener than that of diploid and tetraploid 
loquats, showing an obvious heterosis (Supplementary Material: 
Supplementary Table S1), we  still know little about the 
association of leaf development with triploid loquat leaf heterosis 
and also few reports on this issue. Illuminating the mechanisms 
of leaf development of loquat could help us better understand 
the heterosis phenomenon of triploid loquat leaf and provide 
more details for the triploid loquat application in loquat breeding. 
In this study, we have identified the transcription factor EjGIF1 in 
loquat and made a further validation for EjGIF1 function, and 
at the same time, EjGIF1 promoter was cloned and also the 
methylation level of EjGIF1 promoter was analyzed by bisulfite 
sequencing (BSP) in different ploidy loquats. Our study will 
provide more information on the morphology heterosis of 
triploid loquat leaf.
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MATERIALS AND METHODS

Plant Lines
In order to overcome the unclear origin of loquat, the triploid 
loquats used in this study were created by cross-fertilizing. 
Two triploid loquat lines were generated in 2003, named 
Triploid-A and Triploid-B. For the two triploid lines, the same 
female parent (Longquan-1 tetraploid) was used to cross with 
two different wild diploid loquats, GC-1 (Triploid-A) and GC-23 
(Triploid-B). The tetraploid parent Longquan-1 was selected 
by our laboratory, while the wild diploid parents, GC-1 and 
GC-23 were identified in Guizhou Province, China, which grow 
naturally in the rocky arid region and have strong levels of 
abiotic and biotic resistance (Wu et al., 2015). In the meantime, 
GC-1 and GC-23 also have a far genetic distance with cultivated 
loquats, which could increase mutations in triploid loquats 
after hybridization (Wu et  al., 2015). Finally, nine and three 
triploid loquats were obtained in Triploid-A and Triploid-B, 
respectively, which were labeled as A-1, A-2, A-3,… A-9 and 
B-1, B-2, B-3. All the plants were grown in a natural environment, 
in the Experimental Base of College of Horticulture and 
Landscape Architecture, Southwest University, Chongqing, China.

Isolation of EjGIF1 Complementary DNA 
Sequence
The reference sequence of EjGIF1 was obtained from the 
RNA-Seq data base in our laboratory. The leaf material of 
Longquan-1 tetraploid was used for the cDNA isolation; 
moreover, the RNA extraction and cDNA synthesis methods 
were performed the same as Liu et  al. (2019). The cloning 
primers (EjGIF1-Asc I-F and EjGIF1-Xba I-R) were designed 
based on the EjGIF1 reference sequence, and the restriction 
enzyme sites were added at the 5'-end and 3'-end for the 
subsequent vector construction (Table  1). PCR products 
were then cloned to the pMD19-T (Takara, Dalina) 
for sequencing.

Isolation and Analysis of EjGIF1 Promoter 
Sequence
In order to analyze the structure and methylation level of 
EjGIF1 Cis-element, the promoter sequence of EjGIF1 was 
isolated based on the user manual of Universal Genome-Walker 
Kit 2.0 (Takara, Clontech Laboratories, Inc., Japan). The nested 
primers (1-EjGIF1 GSP1 to 5-EjGIF1 GSP2) used for promoter 
cloning were listed in Table  1, and the amplification products 
were sequenced as the same as described above. The possible 
regulatory elements of the EjGIF1 promoter were annotated 
by using the PlantCARE database.

Expression Pattern Analysis of Loquat 
EjGIF1 Gene in Different Ploidy and 
Developmental Stages
To analyze the expression level of EjGIF1 in different ploidy 
loquats, and in different developmental stages of loquat leaves as 
well, leaves from three developmental periods of different ploidy 

loquats were collected and named P I  (young  leaves  <  5  cm), 
P II (5  cm  <  medium mature leaves  <  15  cm) P III (mature 
leaves), respectively (Gong et  al., 2014). The expression levels in 
different developmental stages were analyzed by using the materials 
of P I, P II, and P III. The RNAs were extracted as described 
by Liu et  al. (2019). cDNA synthesis and Quantitative Reverse 
Transcription-PCR (qRT-PCR) methods were also performed by 
using the methods as described by Liu et  al. (2019). The primers 
(qEjGIF1-F and qEjGIF1-R) used in qRT-PCR analysis were listed 
in Table 1. Actin of loquat was analyzed with the primer sequences 
5'-ATCCTTCGTCTGGACCTTGC-3' and 5'-GACAATTTCCCGT 
TCAGCAGT-3'. All of the samples were examined in triplicate.

EjGIF1 Overexpression Plasmid 
Construction and Arabidopsis 
Transformation
The full length cDNA sequence of EjGIF1 was cloned to Asc 
I-Xba I  sites of pFGC5941 plasmid so that the EjGIF1 could 
express under the control of CaMV 35S promoter. The 
recombinant plasmid pFGC5941-35S::EjGIF1 was then transferred 
to the Agrobacterium tumefaciens strain LBA4404 by means 
of electric shock. Afterward, WT plants were transformed by 
using the floral dip method (Clough and Bent, 1998) with 
minor modifications. Infiltration media used contained 5% 
sucrose and 0.02% Silwet. Seeds of transgenic lines (T0) were 
planted in soil and were selected by spraying with 20  g/L 
glufosinate-ammonium after 2 weeks. The same selection methods 
were used until the T2 generation was obtained, and the T2 
homozygous progenies were used for phenotype observation 
and expression test of EjGIF1 by qRT-PCR. All the seedlings 
with glufosinate-ammonium resistance were grown in a growth 
chamber under the 16 h light/8 h dark photoperiod (2,500 lux).

Positive Transgenic Plantlet Verification
Genomic DNAs were isolated from young, fresh leaves of 
glufosinate-ammonium resistance plants and WT plants with 
a modified cetyltrimethyl ammonium bromide (CTAB) method 
(Liu et  al., 2005). Then, PCR was carried out for detecting 
the insertion, and the WT was used as a control. The 
transgenic and WT plants were tested for the presence of 
both EjGIF1 and CaMV 35s genes separately, and primers 
(EjGIF1-F and EjGIF1-R, and CaMV 35s_F and CaMV 35s_R) 
are listed in Table  1.

Gene Expression Detection in the Positive 
and Wild Type Plants
Total RNAs were extracted from young, fresh leaves of T2 
homozygous progenies and WT plants. The RNA extraction, 
cDNA synthesis and qRT-PCR methods were performed the 
same as Liu et al. (2019). The primers (qEjGIF1-F and qEjGIF1-R) 
were listed in Table  1. WTs were used as controls and the 
reference gene (Actin) of Arabidopsis was analyzed with the 
primer sequences 5'-CTTCGTCTTCCACTTCAG-3' and 5'-ATC 
ATACCAGTCTCAACAC-3'. Each transgenic line and each WT 
was examined in three plantlets as biological repetition.
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Leaf Morphology Traits Analysis of 
Transgenic and WT Plants
The T2 homozygous progenies and WT plants were grown in 
the growth chamber for about 1 month and their leaf morphology 
traits were recorded individually. The methods for leaf length 
and width measuring were the same as Liu et  al. (2018b), 
and the leaf size was measured by using the ImageJ software. 
For each trait, 20 individuals in each transgenic line were 
measured as biological repetition, and three values were measured 
for each individual as technical repetition.

BSP Sequencing for EjGIF1 Promoter in 
Different Ploidy Loquats
Tiangen Bisulfite Conversion Kit (Tiangen Company, Beijing) 
was adopted for genomic DNA bisulfite conversion. CpG islands 
prediction and PCR amplification primers for bisulfite sequencing 
design were carried out by using the online software (http://
www.urogene.org/cgi-bin/methprimer/methprimer.cgi). Primers 
(CpG1-F and CpG1-R, CpG2-F and CpG2-R, and CpG3-F 
and CpG3-R) used for bisulfite sequencing are listed in Table 1. 
The amplification products were also sequenced as the same 
as described above, and for each CpG island, 15 randomly 
chosen clones per genotype were sequenced. The methylation 
levels were counted as described by Liu et  al. (2018b).

Statistical Analysis
The phylogenetic tree was generated by using the Clustal W, 
and the bootstrap test was set at 1,000 to test confidence for 

the tree (Higgins et  al., 1994). The MEGA 5.0 software was 
used for phylogenetic tree construction with Neighbor-Joining 
method (Tamura et  al., 2011). Mid-parent value (MPV) was 
adopted to measure the heterosis, and it was calculated by using 
the method of Turner (1953). Briefly, MPV was calculated 
according to the genomic contribution by the two parents, i.e., 
MPV  =  2/3 Longquan-1tetraploid  +  1/3 GC-1/GC-23. The gene 
expression patterns were classified into two classes by using the 
method described by Liu et  al. (2019). Briefly, (i) additive 
expression pattern, which gene expression levels in hybrids were 
at the MPV (MPL); (ii) non-additive expression pattern, which 
gene expression level was deviated from the MPV. The non-additive 
expression pattern was further classified into two classes; (iii) 
dominance expression pattern, which the gene expression level 
was at the high parent level (HPL) or at the low parent level 
(LPL); and (iv) over-dominance expression pattern, which the 
gene expression level was above the high parent level (AHP) 
or below the low parent level (BLP). Finally, the significance 
examination was performed by using the one-way ANOVA method.

RESULTS

Identification and Characterization of 
EjGIF1
Based on the reference sequence from RNA-Seq database, a 
segment of 651 bp cDNA sequence was obtained and sequenced, 
named EjGIF1. Sequence analysis showed that EjGIF1 encoded 

TABLE 1 | Primers used in this study.

Primer name Primer sequence (5'-3') Tm value (°C)

EjGIF1-Asc I-F 5'-AGGCGCGCCATGCAGCAGCACCTGATCAGA-3' 87.3

EjGIF1-Xba I-R 5'-GCTCTAGATTAATTTCCATCATCGGTCGAT-3' 68.6

1-EjGIF1 GSP1 5'-TGGTAGGAGGCTGGGGTTGAGAATC-3' 68.7

1-EjGIF1 GSP2 5'-GCTGTAGCTTTGCTTGGTTCTCTGC-3' 66.0

2-EjGIF1 GSP1 5'-CTCTCTCTAACTTTCTCACTCC-3' 49.6

2-EjGIF1 GSP2 5'-GCTTTTTTTTTACAGAGTTGAG-3' 51.9

3-EjGIF1 GSP1 5'-TTGCTGCATGTAATGTGCTCCTGGTTG-3' 71.1

3-EjGIF1 GSP2 5'-AGATTCCGCTGTAGCTTTGCTTGGTTC-3' 69.4

4-EjGIF1 GSP1 5'-AAGAAGGAGGACCTGCTGAATGTGATC-3' 67.4

4-EjGIF1 GSP2 5'-GTTGTTAGGATAATAGGCTGCCATCAT-3' 63.8

5-EjGIF1 GSP1 5'-CAGATTGTTGAGATGTTTATTGCGGGC-3' 69.1

5-EjGIF1 GSP2 5'-AATGGCGTACAGAGAATGCGATTGTCA-3' 69.9

qEjGIF1-F 5'-TACTCCCAGCAACCGTTTTCA-3' 60.7

qEjGIF1-R 5′-TCCAGCATTATTTCCCTCATT-3' 56.7

EjGIF1-F 5'-ATGCAGCAGCACCTGATG-3' 55.1

EjGIF1-R 5'-TTAATTTCCATCATCGGTCGAT-3' 51.5

CaMV 35s_F 5'-TGAGACTTTTCAACAAAGGATAATT-3' 54.6

CaMV 35s_R 5'-TGTCCTCTCCAAATGAAATGAAC-3' 58.5

CpG1-F 5'-ACAGTTACCTGAGGACTCTGGAGTC-3' 64.4

CpG1-R 5'-CTGTGGTAGTGAGAAGTAAGGTCGT-3' 65.2

CpG2-F 5'-CCACAGTAAGTACAACCACCAG-3' 59.6

CpG2-R 5'-CTCAAACAGATCGTGTCTACACTTT-3' 58.5

CpG3-F 5'-GGTTTTGTAGGTAAGATTATAGATTTGAGA-3' 61.6

CpG3-R 5'-TAAAAATAATCCCCAACCACCTATA-3' 59.4
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a 216 amino acids protein with the molecular weight of 23.20 kDa. 
The sequence of EjGIF1 was submitted to National Center for 
Biotechnology Information (NCBI) and the accession number 
was MK573556. To investigate the relationship among the GIF1 
genes in different species, we  downloaded the reported cDNA 
sequences from NCBI, and these reported GIF1 proteins were 
mainly distributed in 10 families, Rosaceae, Solanaceae, 
Curcurbitaceae, Euphorbiaceae, Malvaceae, Sterculiaceae, 
Leguminosae, Rutaceae, Juglandaceae, and Papilionoideae. The 
phylogenetic tree was created by using the deduced protein of 
EjGIF1 and these reported GIF1 proteins. The same with the 
traditional taxonomy, our results showed that EjGIF1 was separated 
from the other GIF1 proteins clearly, and EjGIF1 was clustered 
into Rosaceae and was closest to Malus × domestica (Figure 1B).

GIF1 is a leaf shape related protein which was first isolated 
by Relichova (1976). Previous researches showed that GIF1 is 
a homolog of SYT whose N-terminal contains a conserved SYT 
N-terminal homology (SNH) domain, and this domain could 
participate in protein-protein interactions (Crew et  al., 1995; 
Thaete et  al., 1999; Kato et  al., 2002). In this study, results of 
multiple sequence alignment showed that EjGIF1 also contained 

a SNH domain, and this was consistent with the previous studies 
(Figure 1A). Taken together, these results suggested that EjGIF1 
gene is kept highly conserved during the evolution processes.

Generating and Verification of 
Transformants
To investigate the potential function of EjGIF1, an over-expression 
vector with EjGIF1 CDS sequence under the control of CaMV 
35S promoter was transferred into Arabidopsis. After continuous 
screening with glufosinate-ammonium, we finally got 50 plantlets 
belonging to 10 transgenic lines. The transgenic seedlings and 
the WT ones were then transferred to the new pots and 
cultured in the growth chamber.

To verify the reliability of the transgenic plantlets, the 
presence of EjGIF1 and CaMV_35s in the genomes of transgenic 
and WT plantlets were performed by PCR separately. The 
empty vector (pFGC5941) and the WT genomic DNA were 
set as controls. The detection results of the two genes in the 
transformants and WTs suggested that the two expected specific 
fragments appeared in the right positions, indicating the precision 
of these transgenic plantlets was reliable (Figure  2).

A B

FIGURE 1 | (A) Multiple sequence alignment of EjGIF1 SNH domains with other GIF1s reported in National Center for Biotechnology Information (NCBI); 
(B) Phylogenetic relationships between loquat EjGIF1 and other GIF1 proteins reported in NCBI. The unrooted were constructed using MEGA 5.0 by neighbor-
joining method, and a bootstrap test was set at 1,000 to test confidence for the tree.

FIGURE 2 | Positive transgenic plantlets verification. CaMV_35s and EjGIF1 genes were detected by PCR, and CK1 and CK2 were set as control. M represents 
Marker; CK1: genome DNA of wild type; CK2: empty pFGC5941 plasmid.
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Over-Expression of EjGIF1 in Arabidopsis 
Enlarged Leaf Size and Leaf Number
To evaluate the regulatory effects of EjGIF1 on leaf 
development in Arabidopsis, we  selected five independent 
transgenic lines (named: OE1, OE2…OE5) with fine 
phonetype for further phenotype analysis, and the WT 
plantlets were set as controls. The transgenic and WT 
plantlets were grown in a growth chamber for about 1 month. 
The same to the previous studies, we  also found that 
overexpression EjGIF1 in Arabidopsis could lead the leaf 
length and width to become larger than the WTs (Table  2). 
Moreover, the leaf sizes of the transgenic plantlets were 
enlarged as well. As shown in Table  2, the leaf area of 
the five transgenic plantlets (OE1, OE2…OE5) were 
342.53  mm2, 380.32  mm2, 313.00  mm2, 285.72  mm2, and 
285.48  mm2, while the WT was 257.71  mm2 (Figures  3A,C; 
Table  2). Correlation analysis between the leaf area and 
the expression level of EjGIF1 in the five transgenic plantlets 
found that except for OE1, there was a positive correlation 
between the leaf area and the expression level of EjGIF1 
in the transgenic plantlets (Figures  3B,C). Therefore, these 
indicated that EjGIF1 plays an important role in regulating 
the development of the loquat leaf size.

Interestingly, we  also found that the transgenic plantlets 
had significantly more leaves than the WT (Figure 3D; Table 2). 
As shown in Table  2, the WT contains 11 leaves, while the 
transgenic plantlets contain 20, 20, 19, 15, and 23 leaves, 
respectively. Different from previous studies (Kim and Kende, 
2004; Horiguchi et al., 2005), our results suggested that EjGIF1 
could not only promote the development of leaf size but also 
increase the formation of leaf primordium, but how does this 
occur requires to be  further researched.

Finally, the expression levels of EjGIF1 in the five transgenic 
lines and WTs were detected by qRT-PCR. Results showed 
that EjGIF1 were expressed higher in all the five transgenic 
lines than that of the WTs (Figure  3B), and transcripts have 
not been detected out in the WT ones.

Expression Analysis of EjGIF1 in Different 
Developmental Stages and Ploidy Loquat
To ascertain the expression levels of EjGIF1 in different 
developmental stages of loquat leaf, we  then measured the 
expression levels of EjGIF1 in three developmental stages of 
different ploidy loquats by qRT-PCR. Our results showed that, 
for most of the genotypes, the expression levels of EjGIF1 
displayed a tendency of rising first and then dropping, and 
expressed the highest levels in P II (Figure  4A).

Our previous studies on the morphologies of loquat 
leaves demonstrated that many morphological characteristics 
of triploid loquat leaves showed a different degree of heterosis 
compared with their parents, such as leaf length and width 
(Supplementary Material: Supplementary Table S1). In 
order to investigate the regulatory effects of EjGIF1 on the 
formation of triploid leaf morphology heterosis, the expression 
analyses of EjGIF1 in different ploidy loquats were performed. 
Based on the results above, materials of P II were used 
for further analysis. The results showed that the expression 
of EjGIF1 in most of the hybrids exhibited AHP (A-3, A-4, 
A-5, A-6, A-7, A-8, and B-2) expression pattern, demonstrating 
pronounced heterosis (Figure 4B; Table 3). Only A-1 showed 
an LPL expression pattern, and A-2, A-9, B-1, and B-3 
were expressed BLP (Figure  4B; Table  3). No hybrids 
expressed MPL and HPL. The qRT-PCR results were basically 
consistent with our previous morphology (leaf length and 
width) studies. These results indicated that EjGIF1 may 
play an important role in the formation of leaf heterosis 
of triploid loquat.

Isolation and Characterization of EjGIF1 
Promoter
Gene expression was regulated by both Cis-elements and trans-
regulatory factors (Shi et  al., 2012; Wittkopp and Kalay, 2012). 
In order to ascertain the possible regulatory mechanisms of 
EjGIF1 gene in regulating the leaf development of loquats, 
we  cloned a 2,475  bp promoter sequence from the upstream 
of the initiation codon of EjGIF1 by using the Longquan-1 
tetraploid genomic DNA. Results of the online prediction 
showed that there were five hormone-responsive elements 
(GARE-motif, TATC-box, TCA-element, ABRE, and P-box), 
12 light-responsive elements (AE-box, Box4, C-box, G-box, 
GAG-motif, Gap-box, LAMP-element, Sp1, TCT-motif, CATT-
motif, I-box, and MNF1), and six stress-responsive elements 
(HSE, ARE, GC-motif, MBS, DRE, and TC-rich repeats; Table 4; 
Figure  5A). What caught our attention was that the light-
responsive elements were far more than the other elements, 
and these suggested that the expression of EjGIF1 may be highly 
sensitive to light changes, but this need to be further validated.

Promoter Methylation Level Analysis of 
Different Ploidy Loquat
DNA methylation level of a promoter can directly affect 
the transcriptional activity of the gene (Wei et  al., 2018). 
Moreover, gene expression level could further affect the 

TABLE 2 | Leaf morphologies analysis of the transgenic and WT plantlets.

WT OE1 OE2 OE3 OE4 OE5

Leaf length (cm) 3.3 ± 0.1a 4.3 ± 0.1 4.5 ± 0.1 4.3 ± 0.1 4.0 ± 0.1 4.7 ± 0.1
Leaf width (cm) 1.2 ± 0.1 1.3 ± 0.1 1.6 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 1.3 ± 0.1
leaf area (mm2) 257.71 ± 1.36 342.53 ± 4.20 380.32 ± 0.91 313.00 ± 1.55 285.72 ± 3.32 285.48 ± 1.01
Leaf number 11 ± 1 20 ± 1 20 ± 1 19 ± 1 15 ± 2 23 ± 2

amean ± standard deviation.
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phenotype of a plant. Therefore, in order to further analyze 
the regulatory effects of EjGIF1 on the leaf morphology 
development of loquat, we  randomly selected three triploids 
from Triploid-A (A-3, A-5, and A-6), and the methylation 
levels of EjGIF1 promoters in the three triploids and their 
parents (Longquan-1 tetraploid, GC-1) were analyzed by 
bisulfite sequencing. CpG island prediction showed that there 
were three CpG islands in the promoter, and the length 

were 151  bp, 306  bp, and 191  bp, respectively (Figure  5B). 
The sequences of the three CpG islands were further used 
for primer design (Table  1). Bisulfite sequencing results 
exhibited that methylation levels of diploid parent GC-1 
were basically slightly higher than that of the tetraploid 
parent in all the three contexts (mCG, mCHG, and mCHH) 
among the 3 CpG islands. However, when compared with 
MPVs, the methylation levels of the hybrids (A-3, A-5, and 
A-6) showed a decreasing trend in almost all the three 
methylation types among CpG1 and CpG3 islands, and only 
CpG2 showed an increasing trend (Figures  6A–C). 
Interestingly, when we  counted for the total methylation 
level for the EjGIF1 promoter in the three hybrids, it was 
showed that the methylation level demonstrated a decreasing 
level in all the three hybrids compared with MPV (21.50%), 
with the methylation level of 17.56% (A-3), 18.33% (A-5), 
and 17.84% (A-6), respectively (Figure  6D).

Taken together, our results suggested that the total methylation 
levels of EjGIF1 promoter in triploid loquats (A-3, A-5, and 
A-6) showed a decreasing trend, and this may generate the 
expression differences of EjGIF1 between triploid loquats and 

A

B

FIGURE 4 | (A) EjGIF1 expression analyses in different development stages 
and (B) ploidy loquats. Actin gene was selected by our laboratory previously 
which was used as a control. All data are from three technical repeats (n = 3). 
Error bars denote |S|D.

A

B C D

FIGURE 3 | (A) Phenotypes of transformants and WT plants. The size of the bar showed in the picture was 1 cm. (B) Expression analysis of EjGIF1 in T2 
homozygous progenies and WTs. Actin gene was selected by our laboratory previously which was used as a control. All data are from three biological repeats 
(n = 3). (C) Leaf area analysis of the transgenic plantlets and WTs. (D) Leaf number analysis of the transgenic plantlets and WTs. **Represents the significance level 
of the one-way ANOVA test, p = 0.01. Error bars denote |S|D.

TABLE 3 | EjGIF1 expression patterns in the hybrids.

Additive Dominance Over-dominance

MPLa HPLb LPLc AHPd BLPe

EjGIF1 NONE NONE A-1 A-3, A-4, 
A-5, A-6, 
A-7, A-8, 

B-2

A-2, A-9, 
B-1, B-3

aGene expression level was at the MPV.
bGene expression level was at the high parent level.
cGene expression level was at the low parent level.
dGene expression level is above the high parent level.
eGene expression level is below the low parent level.
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parents (Longquan-1 tetraploid, GC-1), and further regulate 
the leaf morphology heterosis of triploid loquat.

DISCUSSION

Leaf is an important organ of plant photosynthesis, and it can 
directly affect the accumulation of sugar. In the meantime, it 
is also an important aspect for the plant morphology formation, 
and determines the growth potential of plant (Yan et al., 2008). 
Leaf size or leaf area greatly determines the light interception 
and transpiration (Monteith, 1977). Researches on leaf 
development have been lasted for many years. In previous 
studies, many transcription factors, such as GRFs or 
AINTEGUMENTA 3 (GIF1), that regulate leaf development 
have been verified and reported, and also some regulatory 
mechanisms of these transcription factors have been validated 
(Gonzalez et  al., 2012; Dkhar and Pareek, 2014). Kuijt et  al. 
(2014) found that Oskn2, an upstream sequence of KNOX 
gene, could interact with OsGRF3 and OsGRF10 in rice. In 
Arabidopsis, it was found that the expression levels of GRFs 
were regulated by miR396, and overexpressing miR396 could 
cause narrow-leaf phenotypes (Liu et  al., 2009). So far, studies 
on leaf development are mainly focused on the model plants, 
grasses, or herbaceous plants, such as Arabidopsis, barley, Brassica 
napus etc., and there are relatively few studies on the leaf 
development of woody plants (Mizukami and Fischer, 2000; 
Osnato et  al., 2010; Liu et  al., 2012; Dkhar and Pareek, 2014). 
In this study, we  have successfully cloned a transcriptional 
coactivator GIF1 from loquat (EjGIF1), and our phylogenetic 
tree analysis showed that EjGIF1 is highly homologous with 
plants of the Rosaceae family, and is kept highly conserved 

during the evolution processes. Results of EjGIF1 function 
validation demonstrated that the ectopic expression of EjGIF1 
in Arabidopsis could increase the leaf size, and this was consistent 
with previous findings (Kim et  al., 2002; Horiguchi et  al., 
2005). Interestingly, we also found that the transgenic plantlets 
contained more leaves than the WTs. These results suggested 
that EjGIF1 may play an important role in the leaf development 
of the Arabidopsis.

Polyploid possesses more than two sets of chromosome 
per cell, and it plays an important role in the plant evolution 
(Sattler et  al., 2016). Delighting, polyploidization is often 
accompanied with the increased growth vigor of the plants 
compared with the diploid progenitors, and so does the 
triploid loquat (Stebbins, 1971; Chen, 2007; Li et  al., 2017). 
Despite the ploidy effect, triploid loquat demonstrated 
pronounced heterosis compared with the diploid and tetraploid 
loquats based on our previous studies on the cultivated 
triploid loquats (Liu et al., 2018a,b, 2019). For the mechanisms 
studies of triploid loquat heterosis, some results have been 
obtained, but the molecular mechanisms of triploid loquat 
heterosis are still poorly understood (Liu et  al., 2018a,b, 
2019). As described above, to date, researches on the 
correlation between heterosis and genes are mainly on the 
whole genome-wide expression levels, and few studies have 
been performed on some specific genes. In this study, we have 
investigated the expression level of one specific leaf 
development-related gene EjGIF1 in triploid loquats and 
their parents based on the results of our previous research 
that the leaf morphologies (length and width) of triploid 
loquats exhibited pronounced heterosis. Based on the results 
of EjGIF1 ectopic expression in Arabidopsis, we  further 
investigated the expression level of EjGIF1 in triploid loquats 

TABLE 4 | Partial Cis-regulatory elements in the promoter of EjGIF1.

Motif Sequence Function

  EjGIF1

AE-box AGAAACAA Part of a module for light response
ARE TGGTTT Cis-acting regulatory element essential for the anaerobic induction
Box 4 ATTAAT Part of a conserved DNA module involved in light responsiveness
C-box CTGACGTCAG Cis-acting regulatory element involved in light responsiveness
G-box CACGAC Cis-acting regulatory element involved in light responsiveness
GAG-motif AGAGAGT Part of light responsive element
GARE-motif AAACAGA Gibberellin-responsive element
Gap-box AAATGGAGA Part of light responsive element
LAMP-element CCAAAACCA Part of light responsive element
MBS CAACTG MYB binding site involved in drought-inducibility
Sp1 CC(G/A)CCC Light responsive element
TATC-box TATCCCA Cis-acting element involved in gibberellin-responsiveness
TCA-element CCATCTTTTT Cis-acting element involved in salicylic acid responsiveness
TCT-motif TCTTAC Part of light responsive element
Circadian CAANNNNATC Cis-acting regulatory element involved in circadian control
ABRE TACGTG Cis-acting element involved in the abscisic acid responsiveness
C-repeat/DRE TGGCCGAC Regulatory element involved in cold- and dehydration responsiveness
CATT-motif GCATTC Part of a light responsive element
GC-motif CCCCCG Enhancer-like element involved in anoxic specific inducibility
HSE AAAAAATTTC Cis-acting element involved in heat stress responsiveness
I-box GATATGG Part of light responsive element
MNF1 GTGCCC(A/T) Light responsive element
P-box CCTTTTG Gibberellin-responsive element
TC-rich repeats ATTTTCTTCA Cis-acting element involved in defense and stress responsiveness
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and their parents. It was found that EjGIF1 was expressed 
AHP in most of the triploid loquats, showing a non-additive 
expression pattern, and this was basically consistent with 
our previous studies on leaf morphology heterosis of triploid 
loquats (Liu et al., 2018b). These suggested that high expression 
of EjGIF1 in triploid hybrids played a critical role in the 
leaf size heterosis formation.

Gene expression was greatly regulated by Cis-element, 
which could affect the transcriptional efficiency and stability 
(Garí et  al., 1997; Mei et  al., 2008). In order to ascertain 
the structure of EjGIF1 promoter, we have successfully obtained 
a 2,475 bp promoter sequence by using the method of genome 
walking. After making a prediction for the promoter online, 
it was found that the light-responsive elements were significantly 
more than other elements, suggesting that the expression of 
EjGIF1 may be  greatly sensitive to light changes. In fact, 
many studies have found that light can affect the leaf size 
development, for example, light quality affects the trophic 
effects through photosynthesis and further determines the 
leaf morphogenesis or leaf area (Tardieu et  al., 1999; 
Cookson and Granier, 2006). In this study, we  indeed found 

that there were more light-responsive elements in the EjGIF1 
promoter, so we  suggested that the expression of EjGIF1 may 
be  largely regulated by light changes. On the other hand, 
Baldissera et  al. (2014) studied the alfalfa plants and found 
that plant branch development and the number of shoot per 
plant were most affected by light. Furthermore, Horiguchi 
et  al. (2005) found that AN3 was expressed at a high level 
in the basal region of leaf primordia, therefore, based on 
the results discussed above, we  further proposed that EjGIF1 
could also promote the formation of leaf primordium. If this 
is the case, the transgenic Arabidopsis of EjGIF1 should have 
more leaves than the WTs. Intriguingly, the transgenic plantlets 
did have more leaves than the WTs. Taken together, 
we  speculated that the expression of EjGIF1 was greatly 
induced by the light changes, and EjGIF1 may also have an 
effect on the formation of leaf primordia. However, whether 
or how the light works on these issues are important questions 
and still need to be  deeply studied.

Recent studies found that polyploidization could trigger 
extensive DNA methylation remodeling in the first or the 
following few generations due to the fact that it is an effective 

A

B

FIGURE 5 | (A) Structure analysis and (B) CpG islands prediction of EjGIF1 promoter.
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way for polyploid to maintain the genome stability 
(Wang et al., 2004; Fort et al., 2016). That is, DNA methylation 
occurred in the whole genome could regulate gene expression, 
inhibit transposable elements (TEs) transposition, and maintain 
the structure stability of chromatin (Feinberg, 2007; Bucher 
et  al., 2012). Among them, methylation through promoter 
region is an effective way to inhibit gene expression without 
DNA sequence variation (Maunakea et  al., 2010). These 
make more and more researchers believe that there must 
be  a correlation between heterosis and DNA methylation, 
and begin to explain the heterosis mechanisms from the 
aspect of epigenetic (Groszmann et  al., 2013; Xiong et  al., 
2013; Wang et  al., 2018). To ascertain the methylation level 
of EjGIF1 promoter among triploid loquats and their parents, 
we  have analyzed the methylation levels in three randomly 
selected triploid loquats and their parents by bisulfite 
sequencing. It was found that the total methylation level 
of EjGIF1 promoter in triploid loquats showed a decreasing 

trend compared with MPV, and this was consistent with 
the qRT-PCR results. Since the three hybrids (A-3, A-5, 
and A-6) used for methylation level analysis were selected 
randomly in this study, it was worth noting that the expression 
levels of EjGIF1 in some hybrids exhibited a low expression 
level, and we  still did not know the methylation levels of 
EjGIF1 promoter in these hybrids. Therefore, the methylation 
levels of these low expressed hybrids need to be  further 
detected for verifying the association between the expression 
level and the methylation level.

Taken together, our results suggested that (1) compared 
with previous studies, our study found that EjGIF1 showed 
significant regulation effects on the development of leaf size; 
and (2) demethylation of EjGIF1 promoter made EjGIF1 exhibit 
over-dominance expression pattern in triploid loquats, and this 
further promoted the formation of triploid loquat heterosis. 
In short, EjGIF1 played an important role in the formation 
of triploid loquat leaf size heterosis.

FIGURE 6 | Cytosine methylation level analysis of the three CpG islands using bisulfite sequencing. Each CpG islands was sequenced by using 15 PCR clones. 
The collective methylation levels (%) of the three types of cytosine residues, mCG, mCHG, and mCHH for the three CpG islands (CpG1, CpG2, and CpG3) were 
depicted in (A–C), and the total methylation level of the promoter was depicted in (D). Error bars denote |S|D.
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