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Phosphorus (P) deficiency induces cluster-root formation and carboxylate exudation
in most Proteaceae. However, how external P supply regulates these root traits in
Macadamia integrifolia remains unclear. Macadamia plants were grown hydroponically
with seven P levels to characterize biomass allocation, cluster-root development,
and exudation of carboxylates and acid phosphatases. Plant biomass increased with
increasing P supply, peaking at 5 µM P, was the same at 5–25 µM P, and declined at 50–
100 µM P. Leaf P concentration increased with increasing P supply, but shoot biomass
was positively correlated with leaf P concentration up to 0.7–0.8 mg P g−1 dry weight
(DW), and declined with further increasing leaf P concentration. The number of cluster
roots declined with increasing P supply, with a critical value of leaf P concentration at
0.7–0.8 mg P g−1 DW. We found a similar trend for carboxylate release, with a critical
value of leaf P concentration at 0.5 mg g−1 DW, but the activity of acid phosphatases
showed a gradually-decreasing trend with increasing P supply. Our results suggest that
leaf P concentration regulates the development and functioning of cluster roots, with a
critical P concentration of 0.5–0.8 mg g−1, above which macadamia growth is inhibited.

Keywords: cluster roots, critical phosphorus concentration, exudation, Proteaceae, phosphorus supply

INTRODUCTION

Phosphorus (P) is an essential nutrient for all life on the earth (Baker et al., 2015; Cong et al., 2020).
Phosphorus in soil has a very low solubility and mobility. In acid soils, most P is sorbed by Al- or
Fe-oxides and -hydroxides (Parfitt, 1989; Shen et al., 2011), while it is precipitated with calcium
(Larsen, 1967) and sorbed onto clay minerals (Devau et al., 2010) in neutral-to-calcareous soils.
The availability of P in soil limits plant growth in many agricultural systems (Marschner, 1995;
Cong et al., 2020). Thus, plant strategies to efficiently acquire P from soil play important roles in
increasing plant growth and yield (Shen et al., 2011). One of the most important strategies for
increasing P acquisition includes root morphological modifications, involving higher root/shoot
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ratio, more root branching, greater root hair length, faster root
elongation, and an increased ratio of fine roots (Shane et al.,
2003a; Lynch, 2015; Wen et al., 2017).

Most Proteaceae grow on nutrient-impoverished soils with
low P availability, especially in Australia and South Africa
(Lamont, 2003; Lambers et al., 2010, 2015b) and evolved
specialized root structures—cluster roots (Lambers et al., 2015a).
Cluster roots, originally called “proteoid roots,” were first noted
by Engler (1894) and described in detail by Purnell (1960)
as “dense clusters of rootlets of limited growth” along lateral
roots. The specialized morphology of cluster roots enhances
root surface area (Shen et al., 2011; Lambers et al., 2015a),
and most importantly, cluster roots release substantial amounts
of carboxylates (Gardner et al., 1982; Dinkelaker et al., 1989;
Keerthisinghe et al., 1998; Watt and Evans, 1999; Lambers et al.,
2002), mostly citrate and malate (Neumann and Martinoia, 2002;
Shen et al., 2011), and thus mobilize soil P sources (Hoffland et al.,
1989; Lambers et al., 2015a; Krishnapriya and Pandey, 2016). The
release of carboxylates coincides with rhizosphere acidification,
particularly in Lupinus albus (Gardner et al., 1982; Marschner
et al., 1987; Neumann and Martinoia, 2002; Meyer et al., 2010).
Acid phosphatases are also exuded into the rhizosphere, and
these hydrolyze organic P (Gilbert et al., 1999; Wasaki et al.,
2003; Delgado et al., 2015). Cluster roots are ephemeral structures
(Lambers et al., 2015a), and live for about 20 days, from rootlet
emergence to senescence in Hakea prostrata (Shane et al., 2004c).
In white lupin, visible rootlets begin to develop on the apical
regions of the lateral roots in the juvenile stage of cluster roots,
followed by an exudative burst of large amounts of citrate
and malate at the mature stage (Watt and Evans, 1999). Also,
exudation of protons reaches a maximum at the mature stage
of cluster roots, leading to an acidification of the rhizosphere
(Zhu et al., 2005).

Macadamia (Macadamia integrifolia), which belongs to
Proteaceae, is native to Australia (Hue, 2009), and is well adapted
to low-P environments (Aitken et al., 1992). In macadamia,
previous studies reported some descriptive relationships between
the leaf P/soil P and dry weight (DW) of macadamia seedlings
(Aitken et al., 1992, 1993; Stephenson et al., 2002). Cluster root
growth (as a percentage of total root weight) of macadamia is
related to the soil P concentration and inhibited at high soil P
levels (Aitken et al., 1992). Moreover, excessive P application
suppresses the growth of macadamia trees (Aitken et al., 1993),
and causes leaf chlorosis (Hue and Nakamura, 1988; Nagao et al.,
1992; Gallagher et al., 2003). Hue (2009) evaluated the effects of
P and Fe fertilizers and their interactions on the development of
cluster roots in macadamia. Several authors showed that excess
P supply causes P-toxicity symptoms in Proteaceae (Groves and
Keraitis, 1976; Grose, 1989) such as Banksia ericifolia (Handreck,
1991; Parks et al., 2000), and H. prostrata (Shane et al., 2004a).

The formation of cluster roots and carboxylate exudation
induced by low P availability have been studied extensively in
L. albus (Shane et al., 2003b; Wasaki et al., 2003; Shen et al.,
2005; Li et al., 2008; Cheng et al., 2014; Gallardo et al., 2019),
and many species of Proteaceae like Hakea sp. (Lamont, 1972a,b),
Grevillea robusta (Skene et al., 1996, 1998), H. prostrata (Shane
et al., 2003a), Grevillea crithmifolia (Shane and Lambers, 2006),

and Euplassa cantareirae (de Britto Costa et al., 2016). Yet,
how variation in P supply affects these root traits, especially the
functioning of cluster roots of macadamia, as a valuable nut tree,
is poorly understood.

In this study, we tested the hypothesis that external P supply
affects the internal shoot P concentration, and thus regulates
cluster-root formation and carboxylate exudation in macadamia
at a critical P value. This study aimed to provide valuable insights
into the mechanism underlying cluster-root development and
functioning for efficient P acquisition and thus underpin best
nutrient management to increase P use efficiency and avoid P
toxicity in macadamia cultivation.

MATERIALS AND METHODS

Experimental Setup
The experiment was conducted in a greenhouse at China
Agricultural University, Beijing (40◦ 1′ 46′′ N, 116◦ 17′ 11′′
E). Seeds of macadamia were collected in Yunnan Province,
Southern China. Seed P concentration was 1.9 ± 0.6 mg P g−1

DW. Seeds were planted in washed sand and watered with
deionized water for germination. Seedlings with four leaves
were transplanted into half-strength nutrient solution which was
modified to contain only 2.5 µM P for 2 weeks; after this, plants
were transferred to 100% strength hydroponics and cotyledons
were removed. Nutrient solutions were renewed every 7 days.
There were seven P application rates: 0, 2.5, 5, 10, 25, 50,
100 µM supplied as KH2PO4; the K concentration was the same
in every treatment, because KH2PO4 was replaced by KCl. All
other basal nutrients were provided as follows: MgSO4 (500 µM);
Ca(NO3)2 (2000 µM); K2SO4 (700 µM); Fe-EDTA (20 µM);
H3BO3 (10 µM); MnSO4 (0.5 µM); ZnSO4 (0.5 µM); CuSO4
(0.2 µM); (NH4)6Mo7O24 (0.01 µM). The pot size was 7.8 L, and
the initial pH of the nutrient solution was measured with a pH-
sensitive microelectrode and adjusted to 5.8 using NaOH or HCl.
There were four replicates in each treatment.

Plant Harvest and Root Sampling
Plants were harvested after 6 months of growth. Plants were
divided into roots, stems, young leaves, and old leaves for
harvesting. The number of cluster roots was measured in every
treatment. All plant samples were oven-dried at 70◦C for 72 h
to determine DW. Dried material was ground to a powder with
a stainless-steel grinder to determine P concentration. Plant
powders were digested using the microwave-accelerated reaction
system (CEM, Matthews, NC, United States). We used 6 mL
HNO3 and 2 mL 30% (v/v) H2O2 during the digestion process.

Collection of Root Exudates and
Measurement of Carboxylates
We used 0.5 g excised root segments in every treatment to
collect root exudates before plants were harvested. We sampled
the active white root cluster as cluster root segment. For the
treatments without cluster roots, we sampled root tips bearing
no cluster roots. Roots were washed with deionized water
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four times to remove ions from the root surface and xylem
exudate. Then roots were incubated in a centrifuge tube with
3 mL incubation medium for 2 h to collect exudates. The
composition of the incubation medium was (µM): MgCl2 (200),
KCl (100), CaCl2 (600), and H3BO3 (5) and it was adjusted to
the same pH as that of the nutrient solution with NaOH or HCl
(5.8). After the collection of exudates, two drops of microbial
inhibitor Micropur (Sicheres Trinkwasser, Munich, Germany) at
0.01 g L−1 and two drops of concentrated H3PO4 were added to
inhibit microbial degradation of root exudates (Cheng et al., 2014;
Wen et al., 2019).

Root exudates were stored at −20◦C until the analysis of
carboxylates by HPLC. Before analysis, root exudation samples
were passed through sterile Millex GS Millipore 0.22-µm filters.
The analysis method was the same as described by Shen et al.
(2003) and Wang et al. (2007).

Cluster roots at different developmental stages were
differentiated as shown in Section “Results” and taken from
the plants grown in the 0 µM P treatment.

Determination of Root-Released Acid
Phosphatase Activity (APase)
Before plants were harvested, another 0.5 g root sample was
taken to measure acid phosphatase (APase). Root samples were
washed in deionized water four times. The APase activity on the
root surface was analyzed according to Neumann et al. (1999).
Root samples were placed in a centrifuge tube with 0.4 mL
substrate buffer (pH 5.2); then 0.1 mL p-nitrophenyl phosphate
(NPP) was added and 0.5 mL deionized water. Centrifuge
tubes were placed in a 30◦C water bath for 15 min, and then
0.5 mL 0.5 M NaOH was added to terminate the reaction and
develop the color. The absorbance of the resulting color was
determined spectrophotometrically (UV-2201, Shimadzu, Kyoto,
Japan) at 405 nm.

Determination of Nutrient Solution pH
and Rhizosphere pH
In this experiment, we changed the nutrient solution every
7 days, and the solution pH was monitored every day using a
pH-sensitive microelectrode (pH-HJ90B, Shanghai, China). We
chose cluster-root segments to measure the rhizosphere pH of
different development stages using an agar method with pH
indicator. 0.75% w/v agar and 0.006% (w/v) bromocresol purple
were mixed, and the pH was adjusted to 6.0. The agar was heated
to boiling temperature and then cooled to 40◦C.

Cluster roots were washed and placed in a clean Petri dish, and
then liquid agar was poured into the Petri dish. After 10 min, the
color along the roots changed, yellow representing acidification
and purple alkalization, respectively.

Data Analysis
One-way ANOVA was performed, and when appropriate, the
post hoc means comparisons were done by SAS statistical software
(8.1; SAS Institute, Inc., Cary, NC, United States). Data were

analyzed by least squares fitting method and determined as non-
linear regression functions in SigmaPlot 10.0 (United States).
P < 0.05 was considered significant.

RESULTS

Plant Growth and Biomass Allocation
Plants produced more shoot biomass than root biomass in
all treatments. Both shoot and root biomass increased with
increasing P supply, with no further change from 5 to 25 µM P,
and then growth was significantly inhibited at 50 and 100 µM P
(Figure 1A). The greatest root/shoot ratio was found at 0 µM P,
with a one-third decrease in all P treatments compared with no P
supply (Figure 1B).

Plant P Concentration and Content
Phosphorus concentrations in shoots (from 0.24 to 2.3 mg P
g−1 DW) and roots (from 0.36 to 2.9 mg P g−1 DW) increased
with increasing P supply (Figure 2A). The P content in shoots
and roots also increased with increasing P supply from 0 to
25 µM, but showed no further increase at 25, 50, and 100 µM P
(Figure 2B).

Relationships Between External P
Supply, Leaf P Concentration, and Shoot
Biomass
Leaf P concentration had a positive correlation with external P
supply. Leaf P concentration increased with increasing P supply,
and reached 1.9 mg P g−1 DW, three times greater at 100 µM
P than at 0 µM P (Figure 3A). Increasing P concentration in the
leaves was associated with greater shoot biomass, which increased
to a peak of 11 g DW plant−1 at a leaf P concentration of 0.7–
0.8 P mg g−1 DW. However, with a further increase in leaf P
concentration, shoot biomass gradually declined (Figure 3B).
The same trend was found between shoot biomass and shoot P
concentration (Supplementary Figure S1).

Cluster-Root Formation and Exudation
As shown in Figure 4A, plants developed most cluster roots at
0 µM P, when roots were longer compared with + P treatments.
There was a downward trend in the number of cluster roots
with increasing P supply from 0 to 10 µM. Plants produced 33
cluster roots per plant on average at 0 µM P, but only 18 per
plant at 2.5 µM P. At 5 µM P, the number decreased to eight
per plant, and plants did not develop cluster roots when the P
supply exceeded 10 µM P (Figure 4B). There was a significant
negative correlation between the cluster-root number and leaf P
concentration (Figure 4C).

Roots of plants grown without P exuded more malate and
citrate than those in treatments with P added. Neither malate nor
citrate showed a significant difference among the treatments with
P added (Figure 5A). Plants exuded more citrate than malate only
at 0 µM P supply. In other treatments, citrate exudation tended
to be less than that of malate. Total carboxylate release declined
sharply with increasing leaf P concentration (Figure 5C), but the
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FIGURE 1 | Partitioning of dry matter (A) and root/shoot ratio (B) of Macadamia integrifolia grown with different rates of phosphorus (P) supply. Plants were grown
for 6 months at 0, 2.5, 5, 10, 25, 50, and 100 µM P (mean ± SE, n = 4). Different lowercase or uppercase letters denote a significant difference among plants grown
with a different P supply (P < 0.05).

activity of acid phosphatases showed a gradually-decreasing trend
with increasing P supply and leaf P concentration (Figures 5B,D).
When focusing on different developmental stages of cluster roots,
we found that more citrate than malate was exuded at each stage,
but there were no differences between the two carboxylates in
root tips. Juvenile-mature and mature cluster roots showed faster
exudation rates than root tips and senescent clusters (Figure 6).

Changes in Rhizosphere pH
Daily tests showed that the pH in the nutrient solution increased
every day in all treatments. This trend was most distinct on
the first day after changing the nutrient solution (Figure 7A).
One day after the nutrient solution was renewed, the pH
changed about 0.6 units from 5.8 to about 6.4. In the following
6 days, the change was less, about 0.1 units higher every
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FIGURE 2 | Phosphorus (P) concentration (A) and content (B) in shoots and roots of Macadamia integrifolia. Plants were grown for 6 months at 0, 2.5, 5, 10, 25,
50, and 100 µM P (mean ± SE, n = 4). Different lowercase or uppercase letters denote a significant difference among P supplies (P < 0.05).

day. In all treatments, pH in the 0 µM P treatment changed
the least, about 0.7 units, during 7 days, while it changed
0.9 units in P2.5; 1.1 units in P5; and 1.3 units in P10,
P25, P50, and P100.

Rhizosphere acidification associated with different stages of
cluster-root development was shown using the agar method
with a pH indicator (Figure 7B). The yellow color surrounding
the juvenile and mature cluster roots had a larger range
than that around senescent cluster roots, indicating that
juvenile and mature cluster roots released more protons from
their root surface.

DISCUSSION

The Relationship Between External P
Supply, Leaf P Concentration, and Plant
Growth
This study exhibited clear correlation between external P supply
and macadamia biomass and leaf P concentration. Interestingly,
we found that biomass of macadamia increased with increasing P
supply, with no further increase from 5 to 25 µM P, and a decrease
when P supply surpassed 10 µM (Figure 1A). This pattern
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FIGURE 3 | (A) Relationships between leaf phosphorus (P) concentration and P supply. (B) Relationship between shoot biomass and leaf P concentration.

of macadamia plant growth is supported by previous studies
on Proteaceae. For example, the biomass of many Proteaceae
increases with increasing P supply in a low P range, but decreases
with further P supply due to P toxicity at a concentration that
is much lower than used to grow crop plants (Grundon, 1972;
Groves and Keraitis, 1976; Lambers et al., 2002; Shane et al.,
2004a,b). In a greenhouse pot experiment, B. ericifolia shows a
positive biomass response to P supply in a range of 30–150 mg
P pot−1, but its biomass greatly declines at 300 mg P pot−1

(Parks et al., 2000). Fresh weight of another Proteaceae, Banksia
menziesii, is greatest at 1 µM P supply in nutrient solutions and
decreases at 10 µM P (de Campos et al., 2013).

In addition to the external P supply, the internal P level,
especially leaf P concentration, plays an important role in plant
biomass production. The average leaf P concentration of Banksia
plants growing in a low-P habitat in Australia is only 0.23 mg
P g−1 DW (Denton et al., 2007), but leaf P concentrations for
crop plants are typically 4 mg P g−1 DW (Föhse et al., 1988;
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FIGURE 4 | Effects of phosphorus (P) supply on the growth of Macadamia
integrifolia (A) and number of cluster roots (B), and the relationship between
cluster root number and leaf P concentration (C). The data in (B) represent
the means of four replicates ± SE. Different letters indicate significant
differences (P < 0.05).

Lambers et al., 2015a). Leaf P levels of about 0.8–1.0 mg P g−1

DW are adequate for macadamia growth (Aitken et al., 1992).
Also, leaf P concentrations in a range of 0.7–1.0 mg g−1 DW are
recommended for macadamia orchards in New South Wales and
Queensland, Australia (Huett and Vimpany, 2007). Hue (2009)
reported that optimum biomass of macadamia is associated with
a P concentration of 1.1 µM P in soil solution and 1.0 mg P g−1

DW in leaves. In the present study, shoot biomass of macadamia
correlated with leaf P concentration (Figure 3B), and reached
the highest value at a critical level of 0.7–0.8 mg g−1, which is
consistent with previous studies. As previously reported for other
Proteaceae (Shane and Lambers, 2005), the leaf P concentration
of macadamia also increased with increasing P supply and

reached 1.9 mg P g−1 DW (Figure 3A). Previous investigations
on H. prostrata (Shane et al., 2004b), Banksia attenuata, and
B. menziesii (de Campos et al., 2013) showed that excessive
accumulation of leaf P caused significant P-toxicity symptoms,
which was associated with a limited ability to downregulate their
P-uptake capacity. Here, 100 µM P supply was not enough to
contribute to significant P-toxicity symptoms in macadamia in
this study, except the biomass decreased at 50–100 µM P supply.
No leaf symptoms of P tocxicity (brown-gray necrosis on young
leaves) were found. Further studies need to be done to confirm
whether macadamia can downregulate its P-uptake capacity, as
investigated in other Proteaceae.

Our results indicate that macadamia plants are highly sensitive
to P supply with a critical leaf P concentration of 0.7–0.8 mg P g−1

DW for maximum biomass production.

Effects of Leaf P Level on Cluster-Root
Formation and Exudation
The formation of cluster roots is promoted by P starvation, and
suppressed at a high P supply (Lamont, 1972a; Shane et al., 2003a;
Lambers et al., 2015a). In this study, cluster-root formation and
exudation in macadamia were induced by leaf P starvation, and
suppressed by high leaf P levels associated with a high external
P supply. A leaf P concentration of 0.7–0.8 P mg g−1 DW was a
critical value for cluster-root production.

Similar responses have been found in white lupin according
to the suppression of the formation of cluster roots after foliar
P application (Shane et al., 2003b). Moreover, the formation
and functioning of cluster roots in white lupin is regulated by
shoot P level in a split-root system. A critical level of shoot P
concentration of 2–3 mg P g−1 DW was determined which could
govern cluster-root formation and citrate exudation (Li et al.,
2008). Some species of pasture legume families and Banksia from
Proteaceae also have the same responses (Denton et al., 2007;
Pang et al., 2009; Suriyagoda et al., 2012).

We detected six carboxylates including tartrate, malate, citrate,
succinate, fumarate, and trans-aconitate. Malate and citrate were
the major exudates in every treatment, and succinate was only
found at 0 µM P (Supplementary Table S1). Roelofs et al. (2001)
found five species of Proteaceae released different carboxylates
from their entire root system. Exudation of malate and citrate was
strongly stimulated under 0 µM P, as reported for other species
bearing cluster roots when growing under low-P conditions
(Shane et al., 2004c; Delgado et al., 2014), and citrate was
exuded relatively more than other carboxylates (Supplementary
Table S1). A possible explanation is that substantial exudation
of citrate and malate, especially citrate, has been linked to
increased biosynthesis and decreased metabolism of citrate in the
tricarboxylic acid cycle (Neumann et al., 1999, 2000; Shane et al.,
2016).

The average rate of carboxylate exudation from the whole
root system in Proteaceae species occurring in south-western
Australia on P-impoverished soils, like Hakea petiolaris, Hakea
undulata, and Banksia prionotes is 1.6 nmol g−1 FW s−1

(5.76 µmol g−1 FW h−1, Roelofs et al., 2001). Compared with
these rates, exudation from the entire system of Embothrium
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FIGURE 5 | Effects of phosphorus (P) supply on root carboxylate exudation (A), and the activity of acid phosphatase (B) of Macadamia integrifolia. Relationship
between total carboxylates (C) and activity of acid phosphatase (D) and leaf P concentration. Plants were grown for 6 months at 0, 2.5, 5, 10, 25, 50, and 100 µM
P. The data represent the means of four replicates ± SE. Different lowercase or uppercase letters indicate significant differences (P < 0.05).

coccineum occurring in southern South America in soils that
are rich in total P, but with a low available P concentration
is nine times faster (Delgado et al., 2014). The difference in
the environment has resulted in divergent functioning between
E. coccineum and Proteaceae from south-western Australia. Total
amount of carboxylates released by excised cluster roots of
macadamia at 0 µM P was about 11.8 µmol g−1 FW h−1 (data
not shown), and for malate and citrate, the rates were 2.1 and
3.4 µmol g−1 FW h−1, respectively (Supplementary Table S1).
Previous studies reported that the rates of carboxylate release
were relatively fast from cluster roots among roots for a range
of plant species (Jones, 1998; Roelofs et al., 2001; Delgado et al.,
2013). Larger amounts of carboxylate can be released by cluster
roots compared with non-cluster roots. Furthermore, a limited
number of cluster roots in Lomatia dentata were found to have
a high exudation rate (Zúñiga-Feest et al., 2020). Carboxylate-
exudation rates of excised cluster roots are much faster than
those from whole root systems (Delgado et al., 2013). In this
experiment, we used excised cluster roots. Thus, the average
rate of carboxylate exudation from the whole root system of
macadamia could be much slower than 11.8 µmol g−1 FW h−1,
and closer to Proteaceae species in south-western Australia.

Malate and citrate exudation from juvenile-mature and
completely mature cluster roots were much faster than those at
other developmental stages of cluster roots (Figure 6A). Our
results showed no exudation peak in mature cluster roots. The
result differs from previous studies on white lupin (Dinkelaker
et al., 1989; Watt and Evans, 1999; Skene, 2000) and H. prostrata
(Shane et al., 2004c), which show an exudative burst for citrate
and malate at the mature stage which lasts a few days. We
consider two possible explanations. One is that we did not
accurately determine the time from initiation of the cluster
roots to senescence, thus leading to a possible bias for our
classification of the cluster-root developmental stages. Another
possible explanation is that the exudative burst of mature cluster
roots in macadamia lasted a relatively short time, which we
did not capture. Further studies on developmental stages of
macadamia cluster roots need to be done.

Our results show that carboxylate release declined sharply
when the P supply was increased from 0 to 2.5 µM when the
leaf P concentration was about 0.5 mg P g−1 DW. The release
of carboxylates is likely more sensitive than the initiation of
cluster roots for macadamia in response to P supply, as was
found for E. coccineum (Delgado et al., 2014). Similar to the
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FIGURE 6 | Rates of malate and citrate exudation (A) at different developmental stages (B,C) of cluster roots at 0 µM P supply. The data in the figure represent the
means of four replicates ± SE. Different lowercase or uppercase letters indicate significant differences (P < 0.05).

exudation of carboxylates, the activity of acid phosphatases was
higher under 0 µM P. However, the activity of acid phosphatases
decreased marginally with increasing leaf P concentration
associated with the P supply, indicating that the exudation of
carboxylates responded more strongly to P level than the release
of acid phosphatases.

Effects of External P Supply on the
Rhizosphere pH
The release of carboxylates is concomitant with rhizosphere
acidification, because carboxylate release via an anion channel
requires a proton gradient (Tomasi et al., 2009). In the present
experiment, acidification occurred in the rhizosphere of clusters
of macadamia, especially during the juvenile and mature stages
(Figure 7B), as found in white lupin (Watt and Evans, 1999;

Shen et al., 2003, 2005) and Proteaceae species, for instance,
E. cantareirae (de Britto Costa et al., 2016).

We observed an increased pH in nutrient solution compared
with the original pH, mainly due to uptake of NO3

−-N.
The change in rhizosphere pH depends on nitrogen source
(NO3

− vs. NH4
+) and the buffering capacity of the solution

(Marschner and Römheld, 1983). In this study, we used NO3
−

as nitrogen source; uptake of NO3
− results in the alkalinization

of the rhizosphere (Hinsinger et al., 2003; Feng et al., 2020).
We also found that P deficiency decreased the pH in the
nutrient solution compared with high P supply, during the
6 days after changing the solution, suggesting a stimulating
effect on proton release by P-deficiency as reported before
(Neumann et al., 1999; Shen et al., 2005). Moreover, cluster
roots could acidify rhizosphere, and the treatments of high P
supply have little or even no cluster roots. Therefore, weakened
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FIGURE 7 | Daily changes of pH in the nutrient solution used to grow Macadamia integrifolia under different rates of P supply (A). Using a pH indicator in agar to
assess local acidification (B). Solution pH was measured every day using a pH meter. Bromocresol-purple was used as pH indicator. A yellow color indicates
acidification. The data represent the means of four replicates ± SE. Different letters indicate significant differences (P < 0.05).

acidification occurred in the treatments of high P supply due to
the decreased cluster-root number compared with low P supply.
The difference in pH change among the P treatments was the
consequence of balancing anion and cation uptake as well as
nitrate reduction.

CONCLUSION

In conclusion, our results suggest that leaf P concentration
in macadamia regulates the development of cluster roots and
exudation of carboxylates, which is affected by external P supply,
and that the plants produce most shoot biomass and show the

greatest cluster-root formation and functioning at a critical leaf P
concentration of 0.5–0.8 mg g−1 DW.
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