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INTRODUCTION

The usual definition of the difference between climacteric and non-climacteric fruit relies on the
fact that climacteric fruit ripens with concomitant increases of respiration and ethylene production,
whereas barely any change in these two metabolisms occurs in non-climacteric fruit (Cherian et al.,
2014). These authors list a series of climacteric fruit, such as tomato, banana, apple and mango, and
a series of non-climacteric fruit such as strawberry, melon and grape. I think melon is a particular
case, with climacteric and non-climacteric cultivars (Obando-Ulloa et al., 2009; Saladié et al., 2015),
and this will not be detailed here. Other fruits have such climacteric and non-climacteric cultivars
within a same species, for example Asian pears (Itai and Fujita, 2008) and plums (Minas et al., 2015).
There have been many other reviews and articles over the last decade, regarding the differences
between climacteric and non-climacteric fruit classes (Paul et al., 2012; Osorio et al., 2013; Saladié
et al., 2015; Farcuh et al., 2017; Fuentes et al., 2019), but none pointed out that starch accumulation
or breakdown could be a cornerstone in the definition of these two fruit classes.

A quick data review, as detailed below, shows that most climacteric fruit accumulate starch
before the onset of ripening, then starch is broken down to soluble sugars after the inception
of ripening, whereas in the non-climacteric fruit the starch content drops very rapidly after
anthesis, and they accumulate mainly soluble sugars throughout development and ripening. This
big difference leads to different harvest strategies: climacteric fruit can be picked early, and the
starch reserve will be converted to sugars over postharvest stages, whereas the non-climacteric fruit
should be picked when the desired soluble sugar level is reached.

However, starch metabolism is rarely mentioned as a key difference between climacteric and
non-climacteric fruit. Osorio et al. (2012) suggested that the regulation of starch synthesis may be
part of this difference, when comparing climacteric (tomato) and non-climacteric (pepper) fruit
transcripts around the onset of ripening.

Thus, I will first list starch contents in some climacteric and non-climacteric fruit, then I will
review rapidly the starch synthesis and the starch breakdown metabolisms in plants, and finally I
will discuss research perspectives.

STARCH LEVEL OVER FRUIT DEVELOPMENT IN VARIOUS
SPECIES

The following data are summarized in Figure 1A. In tomato, the starch content rises up to 10mg to
20 mg/gFW up to breaker stage, then drops around 0.1 mg/gFW when the fruit ripens (Schaffer and
Petreikov, 1997; Petreikov et al., 2009; Hou et al., 2019). In banana, the starch content is relatively
high reaching 100–300 mg/gFW before harvest, while the starch content in ripe fruit drops below
150 to <10 mg/gFW, depending the cultivar (Cordenunsi-Lysenko et al., 2019). In apple flesh the
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FIGURE 1 | (A) Changes in starch accumulation over fruit development and ripening in climacteric and non-climacteric fruit (adapted from various references listed in

the text). (B) Main steps of starch synthesis and degradation in plants, AGPase stands for ADP-glucose pyrophosphorylase, GBSS for granule-bound starch

synthase, SS for starch synthase, SBE for starch branching enzyme, ISA for isoamylase, GWD for glucan water dikinase, and PWD for phosphoglucan water dikinase

(adapted from various references listed in the text).

starch content can reach 20–25 mg/gFW 90–120 days after
anthesis, according the cultivars, then drops to levels below 0.5
mg/gFW in ripe fruit (Ohmiya and Kakuishi, 1990; Brookfield
et al., 1997). In mango the starch accumulates up to 60 mg/gFW at
harvest, then drops to < 5 mg/gFW in 10 days of ripening (Simão
et al., 2014).

Regarding the non-climacteric fruit, the pattern of starch
content is clearly different. In strawberry the starch content
drops rapidly from 15 to < 1 mg/gFW 20 days after anthesis
in developing fruit (Souleyre et al., 2004). In grape berry flesh,
the starch accumulation over development and ripening is
very limited, with a rapid drop from 0.5 mg/gFW to stable
concentrations below 0.1 mg/gFW, as soon as the berry reaches 20

days after anthesis up to harvest (Zhu et al., 2017). However, these
authors showed that both strawberries and grapes accumulated
large amount of soluble sugars, instead of starch, during the fruit
development period.

STARCH SYNTHESIS AND BREAKDOWN
IN PLANTS

Starch synthesis in plants has been reviewed (Kötting et al.,
2010; Geigenberger, 2011; Pfister and Zeeman, 2016) among
other works. Starch is composed of amylose and amylopectin
fractions. It is a relatively simple pathway, as shown in
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Figure 1B, with three main steps: (1) production of ADP-
glucose from glucose-1-P by an ADPglucose pyrophosphorylase
(AGPase), (2) production of amylose from ADP-glucose by a
granule-bound starch synthase (GBSS), or (3) production of
amylopectine fromADP-glucose by a series of reactions driven
by starch synthase (SS), starch branching enzyme (SBE) and
isoamylase-type debranching enzyme (ISA), sometimes called
debranching enzyme.

Linked to the starch synthesis, Centeno et al. (2011) showed
that alterations of malate metabolism in tomatoes led to altered
levels of starch accumulation, though regulation of the redox
status of the AGPase.

Starch degradation is more complex than starch synthesis,
as it follows different pathways according to the plant organ
where they occur (Kötting et al., 2010; Zeeman et al., 2010). The
glucose polymers in vivo are degraded mainly by β-amylases and
to a lesser extent by α-amylases. The activities of these latter are
regulated by the level of phosphorylation or de-phosphorylation
of the glucose chains, performed by glucan water dikinase
(GWD) and phosphoglucan water dikinase (PWD). For detailed
mechanisms, see the review articles cited above.

DISCUSSION AND PERSPECTIVES

From general knowledge, outlined in Figure 1A, it is clear that
starch accumulation pattern is different between climacteric and
non-climacteric fruit classes. This could be further reinforced
by studies on a broader range of fleshy fruit, to confirm that
starch accumulation pattern is an essential difference between
both fruit classes. As mentioned above, Osorio et al. (2012)
suggested that starch synthesis may be a key step differentiating
the climacteric from the non-climacteric, thus I performed a
quick literature search on this step, regarding some climacteric
and non-climacteric fruit.

Robinson et al. (1988) showed that AGPase activity in
developing tomatoes was closely related to starch accumulation,

for which Petreikov et al. (2009) showed this enzyme is a limiting
step. In banana, there is a study focused on the AGPase family,
with phylogeny and expression details (Miao et al., 2017), but
there is only one stage of fruit development. AGPase proteins

were found in all developing stages of strawberry (Souleyre et al.,
2004), but no starch accumulated. In grapes, the data about starch
accumulation in fruit is scarce. There is one study about AGPase
expression in inflorescences (Sawicki et al., 2015), but not in
berries. What about in other fleshy fruit species?

Nowadays with increasing availability of large data sets,
regarding the transcriptomes or the proteomes, further research
regarding the starch synthesis pathway could be initiated
comparing some model fruit. Regarding tomato, one tool has
recently been published, TomExpress (Zouine et al., 2017).
It regroups a wide array of RNAseq studies, and allows to
search for expression patterns of all tomato genes. For banana,
there is the Banana Genome Hub, containing a transcriptomics
search tool (Droc et al., 2013). For apple, there is a similar
web site, called AppleMDO, published recently by Da et al.
(2019). For collecting grape RNAseq data and making them
searchable, a new platform has been created, called Grape-
RNA (Wang et al., 2020) and for Citrus sinensis a recent data
basis has been created too (Feng et al., 2019). Mining such
databases and others, for other fruit species, with a focus on the
few starch synthesis genes, by comparing developing stages of
climacteric and non-climacteric fruit, would probably generate
new insight into differences between these two fruit classes, and
may reinforce the fact that starch should be a cornerstone of the
definition of climacteric vs. non-climacteric. This could lead to
new research.

Regarding starch degradation, the mining of such large data
sets may also reveal some differences between these two fruit
classes, that have not yet been studied. I believe more is to be
uncovered in the coming decade, regarding starch metabolism in
climacteric vs. non-climacteric fruit.
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