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the His-Asp Phosphorelay Network:
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General and Applied Botany, Institute of Biology, Faculty of Life Sciences, Universität Leipzig, Leipzig, Germany

The plant hormone cytokinin, existing in several molecular forms, is perceived by
membrane-localized histidine kinases. The signal is transduced to transcription factors
of the type-B response regulator family localized in the nucleus by a multi-step histidine-
aspartate phosphorelay network employing histidine phosphotransmitters as shuttle
proteins across the nuclear envelope. The type-B response regulators activate a number
of primary response genes, some of which trigger in turn further signaling events and
the expression of secondary response genes. Most genes activated in both rounds of
transcription were identified with high confidence using different transcriptomic toolkits
and meta analyses of multiple individual published datasets. In this review, we attempt to
summarize the existing knowledge about the primary and secondary cytokinin response
genes in order to try connecting gene expression with the multitude of effects that
cytokinin exerts within the plant body and throughout the lifespan of a plant.

Keywords: cytokinin, signal transduction, downstream signaling, signaling crosstalk, feed-forward signaling,
feed-back signaling

INTRODUCTION

The plant hormone cytokinin, regulates a wide range of processes in plants, ranging from
development (growth, meristem activity, vascular development) over metabolism and physiology
(source–sink relationships, secondary metabolism) to environmental interactions (both biotic and
abiotic) (Mok and Mok, 2001; Argueso et al., 2009; Werner and Schmülling, 2009; Kieber and
Schaller, 2014, 2018; Cortleven et al., 2019; Wybouw and De Rybel, 2019).

The immediate-early cytokinin signaling network is an extended version of the two-component
signaling system known in prokaryotes. Besides having receptors (histidine kinases, HK) and
transcription factors (type-B response regulators, RRB) like the original prokaryotic system,
this plant-specific multi-step His-Asp phosphorelay system is augmented by mobile signaling
components traveling between cytosol and nucleus (histidine phosphotransmitters, HPT), and
negative feedback regulators (type-A response regulators, RRA) (Heyl et al., 2013). The RRB
transcription factors are transcriptional activators, and numerous transcriptomic studies have
not found genes that are consistently negatively regulated in response to cytokinin at very early
time points (Brenner et al., 2012; Brenner and Schmülling, 2015), suggesting that RRBs have no
repressive function.
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Among the cytokinin-induced genes, there are numerous
signal transduction components such as transcription factors,
protein kinases, F-box proteins, etc. (Rashotte et al., 2003;
Brenner et al., 2005, 2012; Bhargava et al., 2013; Brenner and
Schmülling, 2015). Some of them are immediate-early response
genes, the transcripts of which have started to accumulate as early
as 15 min after cytokinin treatment. Others are induced at later
time points, indicating that several subsequent rounds of gene
expression happen after cytokinin treatment. Additionally, few
genes transducing downstream branches of the cytokinin signal
were found by other means.

Some of the cytokinin-regulated signal transduction genes
have been functionally characterized, a few of them in great
detail, and in part focusing on aspects other than cytokinin. This
review aims at summarizing the accumulated knowledge about
selected signaling components downstream of the phosphorelay
signaling system, at finding functional interactions between them,
and at presenting hypotheses resulting from mechanistic and
functional considerations.

The regulation of gene expression is obviously not the
only means by which signals are transduced. However,
other means such as different post-translational protein
modifications are not as easily detected in a comprehensive
manner. Thus, this review focuses on genes transcriptionally
regulated by cytokinin and mentions other means of signal
transduction only if they have been shown in the context of the
respective gene.

In the following paragraphs, the collected knowledge of
selected cytokinin-regulated genes will be presented in order to
derive ideas about their functions and their contribution to the
hormonal effects of cytokinin. The selection of genes (Table 1) is
largely based on their frequency of occurrence in transcriptomic
investigations of the global gene expression response to the
hormone in the model plant Arabidopsis thaliana.

GENES INVOLVED IN CYTOKININ
HOMEOSTASIS

Cytokinin Biosynthesis and Activation
CYP735A2 is a gene encoding a cytochrome p450 family protein
with trans-hydroxylation enzyme activity forming trans-zeatin
(tZ)-type cytokinins from N6(12-isopentenyl) adenine (iP)-
type cytokinins (Takei et al., 2004b; Kiba et al., 2013). This
change of the side-chain structure is relevant for the biological
activity of the respective cytokinin derivative (Schmitz et al.,
1972; Mok et al., 1978) and their route of transportation via
phloem or xylem (Takei et al., 2001a; Hirose et al., 2007; Kudo
et al., 2010; Kiba et al., 2013). Previous studies showed that
the CYP735A2 transcript is induced by all forms of active
cytokinins including the synthetic cytokinin BA, while the
transcript of the paralog CYP735A1 is insensitive to cytokinin
(Takei et al., 2004b; Brenner et al., 2012; Bhargava et al., 2013).
The CYP735A2 promoter harbors several core motifs and one
extended motif binding type-B RRs (Brenner et al., 2012; Brenner
and Schmülling, 2015), linking it with immediate-early cytokinin

signaling network. Both CYP735A enzymes can be inhibited by
uniconazole (Sasaki et al., 2013).

CYP735A2 is mainly expressed in roots (Takei et al., 2001b,
2004b; Schmid et al., 2005). Higher expression levels were
also found during petal differentiation, in hypocotyls and
in the leaf-forming structures of the shoot apical meristem
(Schmid et al., 2005). The encoded protein is predicted
to be localized in mitochondria and extracellular regions.
A proteomic study has found the protein in the plasmodesmata
(Fernandez-Calvino et al., 2011).

CYP735A2 is regarded as one of the major genes in
maintaining the homeostasis of active cytokinins (Wang et al.,
2013). This was concluded after studies with an ugtc76c1
mutant showed attenuated N-glycosylation of tZ and iP, but
stable tZ and iP content and normal developmental phenotypes.
The upregulation of CYP735A2 is the likely reason for that
stable homeostasis.

CYP735A2 is strongly upregulated by increases of the
nitrate concentration in the medium (Ramireddy et al.,
2014). In contrast, increased phosphate availability, acidity,
and osmotic stress downregulate CYP735A2 expression
(Ramireddy et al., 2014). The CYP735A2 enzyme produces
tZ-type cytokinins predominantly in the root, which are
then transported to the shoot, promoting shoot growth
(Takei et al., 2004b; Hirose et al., 2007; Kiba et al., 2013).
Cytokinin has been proven to be one of the systemic signals
of nitrogen availability in the soil (Krouk et al., 2011; Ruffel
et al., 2011; Poitout et al., 2018; Vega et al., 2019). Therefore,
it is concluded that CYP735A2 may be the main regulator
of that systemic signal (Ramireddy et al., 2014). However,
CYP735A2-produced tZ is not the only root-to-shoot nitrate
signal since cytokinin-independent signaling by mobile peptides
has also been found (Ruffel et al., 2016). In addition to
being a long-distance signal promoting shoot growth in
the presence of nitrate, cytokinin directly influences root
system architecture by suppressing root growth and branching
(Ramireddy et al., 2014).

CYP735A2 is strongly upregulated by cytokinin in roots.
This can be regarded as part of a feed-forward loop. Such
feed-forward loops tend to increase the signal through itself.
On the other hand, cytokinin signaling involves numerous
feedback loops mediated through type-A response regulators
or cytokinin-degrading enzymes (e.g., CKX4, UGT76C2).
Temporally separated counteracting feed-forward and feed-back
loops are frequently observed in developmental biology as
they help establish patterning by promoting steeper gradients
of morphogens between different domains. In this scenario,
a feed forward loop may help establish a state of no return,
fixing the developmental fate of a cell or a group of cells.
In terms of long-distance signaling, a feed-forward loop
may conceptually be a signal enhancing mechanism to
increase the speed of signal propagation. In this case, that
concept would be realized by a process in which tZ-activated
CYP735A2 successively synthesizes tZ in the tissue at the
arriving tZ signal. Such a mechanism may be faster than
the process relying on transport with the water stream in
the xylem, which is dependent on water evaporation of the
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TABLE 1 | Cytokinin-regulated genes reviewed in this article.

Gene ID Gene name Cited ina Function (named in publications) Crosstalk with major
pathways

AT1G67110 CYP735A2 3, 6, 8, 9, 10, 11, 13, 15, 16 Conversion of iP-type cytokinins to tZ-type cytokinins

AT4G29740 CKX4 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15, 16 Irreversible degradation of cytokinins by cleavage

AT5G05860 UGT76C2 4, 6, 8, 12, 15, 16 Irreversible inactivation of cytokinins by N-glucosylation
Drought and osmotic stress

AT4G23750 CRF2 1, 3, 4, 6, 7, 8, 9, 12, 15, 16 De novo SAM generation in calli Lateral root elongation
Root architecture in the cold

Auxin

AT2G46310 CRF5 3, 4, 6, 7, 8, 9, 15, 16 Development of embryos, cotyledons and leaves Auxin

AT3G61630 CRF6 12, 13, 15 Leaf senescence Auxin

AT1G68360 GIS3 8, 10, 12, 13, 15, 16 Trichome cell differentiation Root hair differentiation Gibberellin

AT1G16530 LBD3/ASL9 3, 6, 8, 10, 11, 15, 16 Leaf development

AT1G31320 LBD4 13, 15, 16 Cambium activity, vascular development, xylem
differentiation

AT2G21650 RL2/MEE3/RSM1 3, 6, 8, 15 Endosperm development Gravitropism
Photomorphogenesis Embryo development Floral
development Seed germination Response to salinity

Auxin ABA

AT4G26150 CGA1/GNL/GATA22 5, 6, 8, 15 Chloroplast biogenesis Chloroplast proliferation Chlorophyll
biosynthesis Leaf senescence Flowering time Phyllotaxis
Branching Floral development Silique length Nitrate
assimilation

Light Gibberellin Auxin

AT1G13740 AFP2 5, 8, 13, 15 Seed dormancy Flowering time ABA

AT3G44326 CFB 14, 15, 16 Sterol biosynthesis

AT1G78580 TPS1 3, 8, 15 Trehalose-6-phosphate homeostasis Primary metabolism
Sink–source relations

AT2G22860 PSK2 3, 5 Cell division and proliferation Adventitious organ formation
Pollen germination and growth Chlorophyll biosynthesis
Differentiation of tracheary elements Stress-induced
senescence

AT2G17500 PILS5 7, 12, 13, 15, 16 Negative regulator of auxin signaling Auxin

At2g34350 3, 15 Biotic and abiotic stress (?) JA

At1g11670 DTX36 15, 16 Toxin and heavy metal efflux (?) Cell cycle (?) Phytochrome

AT2G17820 AHK1/HK1 14, 15 Osmosensor ABA

At3G51660 MDL3 5, 15, 16 Response to pathogens (?) Response to stress (?)

a Numbers refer to the following publications: 1 Che et al., 2002; 2 Hoth et al., 2003; 3 Rashotte et al., 2003; 4 Kiba et al., 2004; 5 Brenner et al., 2005; 6 Kiba et al.,
2005; 7 Rashotte et al., 2006; 8 Lee et al., 2007; 9 Taniguchi et al., 2007; 10 Yokoyama et al., 2007; 11 Argyros et al., 2008; 12 Heyl et al., 2008; 13 Brenner and
Schmülling, 2012; 14 Brenner et al., 2012; 15 Bhargava et al., 2013; 16 Brenner and Schmülling, 2015.

upper shoot and may therefore, under conditions of little
evaporation, be quite slow.

Cytokinin Deactivation and Degradation
CKX4 encodes one of the seven cytokinin
oxidases/dehydrogenases in Arabidopsis (Werner et al.,
2001, 2003, 2006), and is the only one whose transcript levels
are strongly induced by cytokinin treatment (Rashotte et al.,
2003; Brenner et al., 2005). CKX enzymes degrade cytokinins
irreversibly by cleaving the adenine or adenosine moiety from
the respective side chain. Thus, the induction of the CKX4 gene
by cytokinin may be regarded as another negative feedback
mechanism superimposed to the negative feedback by type-A
response regulators at the signaling level.

CKX4 is predominantly expressed in the root cap, but also in
meristemoid cells of the leaf epidermis forming stomata (Werner
et al., 2003). Other authors found CKX4 expression in a wide
variety of other tissues, including the shoot apex (Schmid et al.,
2005; Obulareddy et al., 2013) and in the endo-reduplicating cells

of developing trichomes and stipules (Werner et al., 2006). No
exact function of the CKX4 gene could be established by analysis
of single mutants as it obviously has overlapping functions with
other CKX genes. Overexpression of CKX4 as well as other
CKX genes appeared to increase tolerance to drought, heat, or
salt stress. Apparently, decreased levels of iP and tZ, which are
the main substrates of CKX4 (Gajdošová et al., 2011), play a
major role in establishing drought, heat, or salt stress tolerance
(Wang et al., 2020). It was also determined that CKX4 plays
a role in the pathogen-induced reduction of cytokinin levels
after inoculation with Pseudomonas syringae pv. Tomato DC3000
since the gene is induces by the phytotoxin coronatine delivered
through the type III secretion system, thereby downregulating
the plant defense system (Thilmony et al., 2006). Lastly, CKX4
expression is down-regulated by IAA (Bilyeu et al., 2001; Wang
et al., 2020), underlining the importance of this gene in auxin–
cytokinin crosstalk.

Although the main expression domain of CKX4 is in the root
cap, it has most likely also a function in the shoot apical meristem:
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A ckx3 ckx4 double mutant showed a significant increase of the
meristem activity manifesting in a higher number of flowers and
siliques (Bartrina et al., 2011). In the shoot apical meristem,
cytokinin oxidases/dehydrogenases are involved in cytokinin
homeostasis to maintain meristem activity at sustainable levels,
and CKX4 may be an active negative feedback regulator in this
signaling circuitry due to its responsiveness to cytokinin.

The CKX4 protein is most likely secreted into the apoplast
as it has corresponding sequence features and is also secreted
when expressed in the yeast P. pastoris (Bilyeu et al., 2001;
Werner et al., 2003). Computational localization predicts the
protein also to localize in the ER. Other CKX proteins were
predicted to be localized in the mitochondria (Schmülling et al.,
2003), or found in the vacuole (Šmehilová et al., 2009; Kowalska
et al., 2010), and in the cytoplasm (Zürcher and Müller, 2016).
iP-ribotides and tZ-ribotides are the predominant long-range
transport forms of cytokinin, but their respective locations of
biosynthesis and directions of transport differ fundamentally:
While tZ-type cytokinins move from the root to the shoot in
the xylem, iP-type cytokinins are transported rootward through
symplastic connections in the phloem (Takei et al., 2001b;
Corbesier et al., 2003; Matsumoto-Kitano et al., 2008; Shimizu-
Sato et al., 2008; Kudo et al., 2010; Bishopp et al., 2011). Given
their different subcellular locations, it is likely that different CKX
genes are specialized in degrading different types of cytokinins
with differing functions.

CKX5 is another cytokinin oxidase/dehydrogenase gene
mainly expressed in the testa and in old leaves and primarily
appears to have functions in germination, senescence and
flowering (Gajdošová et al., 2011; Klepikova et al., 2016). Like
CKX4, the CKX5 protein is localized in the ER and secreted
into the apoplast (Werner et al., 2003; Zürcher and Müller,
2016). CKX5 is not very specific with regards to its substrate
and metabolizes, in contrast to CKX4, cis-zeatin and cis-zeatin
riboside quite efficiently (Gajdošová et al., 2011). These findings
underline the assumption that different CKX enzymes are
degrading different forms of cytokinin. Differential tissue-specific
expression patterns suggest that the degradation of specific
cytokinins happens in specific parts of the plant. Complex
glycosylation patterns were found, and it has been speculated
that these may be responsible for the regulation of enzymatic
activity, protein stability, pH optimum, or subcellular localization
(Schmülling et al., 2003; Werner et al., 2003; Gajdošová et al.,
2011).

Another cytokinin-deactivating gene transcriptionally
induced by cytokinin is UGT76C2, which encodes a cytokinin
N- glycosyltransferase of Arabidopsis thaliana (Wang J. et al.,
2011; Li et al., 2015; Šmehilová et al., 2016). It is one out of
three UGTs having the ability to deactivate cytokinin in vivo.
UGT76C2 is an immediate-early cytokinin response gene (Kiba
et al., 2004, 2005; Lee et al., 2007; Heyl et al., 2008), and its
gene product was shown to be located in the cytosol (Šmehilová
et al., 2016). The gene shows a spatio-temporal expression
pattern in plants with high expression levels in roots, hypocotyls,
cotyledons, young leaves, young lateral roots and immature
seeds, but low expression levels in inflorescences and other
tissues (Wang J. et al., 2011).

In comparison to the wild type, the amount of cytokinin
N-glycosides is reduced in ugt76c2 loss-of-function mutant
plants and increased in plants overexpressing UGT76C2. The
content of active cytokinins is increased in ugt76c2 mutant
plants, which is reflected by pertinent phenotypes in roots (root
length and lateral root density), leaves (chlorophyll retention
in detached leaves kept in the dark), and seeds (seed size)
correlating with typical cytokinin functions (Wang J. et al.,
2011). Being a cytokinin-deactivating gene, UGT76C2 influences
the expression of other cytokinin homeostasis and signaling
genes: In UGT76C2-deficient plants, the positive regulators of
the cytokinin status AHK2, AHK3, ARR1, and IPT5 are down-
regulated, while the negative regulator CKX3 is upregulated
(Wang J. et al., 2011). Generally, loss of UGT enzyme activity
tends to be compensated by an increased CKX gene activity
(Šmehilová et al., 2016). Transgenic plants overexpressing
the UGT76C2 gene show enhanced tolerance to water deficit
suggesting a function of UGT76C2 in drought stress adaptation
(Li et al., 2015).

In summary, CKX4, CKX5, and UGT76C2 show crosstalk
signaling with other cytokinin homeostasis and signaling genes,
such as the receptor genes AHK2, AHK3, AHK4 and the response
regulator genes ARR1 and ARR2, suggesting a complex network
of balancing feed-forward and feed-back loops, and signal
attenuation events that may be differentially shaped depending
on cell type, tissue or the underlying conditions.

TRANSCRIPTION FACTOR GENES
REGULATED BY CYTOKININ

The Arabidopsis genome harbors more than 1,600 genes
encoding transcription factors, more than 5% of the protein-
coding genes. Based on their phylogenetic relationship they can
be grouped into at least 11 major families. Members of at least
four families, ERF/AP2, zinc finger, LBD/ASL, and MYB, are
directly or indirectly transcriptionally regulated by cytokinin.

Cytokinin-Responsive CRF Genes Have
Roles in Diverse Areas Such as Stress
Response and Development
According to sequence similarity, CRF2, CRF5, and CRF6 are
the three cytokinin-responsive genes of a group of six identified
as the CRF (Cytokinin Response Factor) subset of ERF/AP2
transcription factor genes (Rashotte et al., 2006; Rashotte and
Goertzen, 2010; Cutcliffe et al., 2011; Jeon et al., 2016). Among
other functions, they play a major role in establishing adjustments
to pathogens, wounding and cold (Müller and Munné-Bosch,
2015; Sun X. et al., 2020). All three of the encoded proteins
contain a highly conserved DNA-binding AP2 domain in the
central region. This domain is around 60 amino acids long
(Weigel, 1995; Cutcliffe et al., 2011) and directly binds to the
GCC-Box, which appears to be the key motif in the promoters
of ethylene-responsive genes (Hao et al., 1998; Sakuma et al.,
2002; Rashotte and Goertzen, 2010; Sun X. et al., 2020).
Additionally, they have a C-terminal MAPK phosphorylation site
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and an N-terminal CRF domain. Deletion constructs lacking the
C-terminal domains of CRF5 demonstrated that the AP2 domain
is required for target gene transcription (Cutcliffe et al., 2011;
Striberny et al., 2017).

CRF proteins form dimers among each other, with the
CRF domain functioning as the sole dimerization domain
(Cutcliffe et al., 2011). They also interact with all histidine
phosphotransmitter proteins and some of the type-A and type-
B response regulator proteins of the TCS pathway, probably also
by means of the CRF domain, but with none of the cytokinin
receptors. Specific interactions between response regulators and
CRF proteins were reported for CRF2 with ARR1, ARR7, ARR10,
and ARR12, for CRF5 with ARR1 and ARR12, and for CRF6 with
ARR6, ARR9, ARR10, and ARR11 (Rashotte et al., 2006; Cutcliffe
et al., 2011; Jeon et al., 2016; Zwack et al., 2016). For CRF2, and
CRF5, multiple type-B RR binding motifs were found in the 5′
region (Brenner et al., 2012; Brenner and Schmülling, 2015).

Outside of the cytokinin signaling network, CRFs influence
the auxin transport machinery. Transcription of the two
auxin efflux carrier genes PIN1 and PIN7 is directly up-
regulated by CRFs binding to PIN CYTOKININ RESPONSE
ELEMENTs (PCREs) in the promoter regions of PIN1 and PIN7.
Consequently, plants lacking CRF activity show aberrations
in developmental patterning consistent with abnormal auxin
distribution. Investigations of the root suggested that CRFs fine-
tune root growth and development (Šimášková et al., 2015).

As demonstrated by mutant phenotypes, the CRF proteins act
as developmental regulators in embryos, leaves, and cotyledons
(Rashotte et al., 2006). Gene expression data suggest that CRF2
is important for root development (Schlereth et al., 2010), highly
expressed in seeds imbibed for 1 day, and moderately expressed
in cotyledons and roots of 1-day-old seedlings, young leaves, seed
forming organs and developing seeds (Klepikova et al., 2016).
CRF5 appears to have it highest expression rate in the shoot apex,
in the female floral organs (particularly in the ovules), in mature
seeds, in the root, and in the axis of the inflorescence. CRF6 has
its highest expression levels in petals, carpels, the first internode
and in the mature leaves. It is not expressed in the embryo so that
the first expression of CRF6 is shown in the cotyledon of a 1-day-
old seedling. Of all three cytokinin-regulated CRFs, CRF2 has the
highest expression level (Klepikova et al., 2016).

There is strong evidence that CRF2 plays a crucial role in the
MONOPTEROS (MP) signaling pathway during de novo shoot
apical meristem (SAM) generation in calli. The transcription
factor MP directly binds to the CRF2 promoter and positively
regulates its expression, positioning CRF2 as a downstream
signaling molecule of MP (Schlereth et al., 2010; Ckurshumova
et al., 2014). Loss of function of CRF2 totally abolished
the increased shoot formation present in calli expressing a
constitutively active variant of MP (Ckurshumova et al., 2014).
The finding that CRF2 is a strong positive regulator of shoot
regeneration from calli, more precisely the de novo establishment
of SAMs, strongly suggests a role as a mediator of the cytokinin
signal in this cytokinin-dependent process.

Besides its role in fine-tuning root growth and de novo
SAM generation, the transcription factor CRF2 is involved in
lateral root (LR) elongation. Together with CRF3, it promotes
LR elongation, which is strongly reduced under cold stress

in crf2 crf3 double mutants (Jeon et al., 2016). Interestingly,
cold-induced up-regulation of the CRF2 transcript is partially
dependent on the two-component signaling system (Jeon et al.,
2016), indicating convergence of multiple signaling pathways
upstream of the CFR2 promoter. Whereas cytokinin inhibits LR
initiation (Riefler et al., 2006; Laplaze et al., 2007; Bielach et al.,
2012; Chang et al., 2015), it is involved in LR elongation, and
cytokinin-responsive genes, among them CRF2, are expressed in
emerging lateral roots. In summary, CRF2 is involved in shaping
root system architecture in response to cold, and is probably also
involved in the cellular signal transduction of other root growth
responses mediated by cytokinin.

Cytokinin has a major function in delaying leaf senescence
(Werner and Schmülling, 2009). Recently it was found that CRF6
has a major role in dark-induced and stress-induced senescence
and is most likely part of a fine-tuning system between both
senescence pathways. Among the receptors, the main mediator
of this response is AHK3 (Kim et al., 2006). Furthermore, the
CRF6 protein acts as a negative regulator in developmental leaf
senescence and senescence caused by oxidative stress (Zwack and
Rashotte, 2013; Zwack et al., 2016). From experiments with H2O2
it was concluded that CRF6 has a function as a transcriptional
suppressor repressing the expression of the type-A RRs ARR6,
ARR9, and of the type-B RR ARR11 in terms of signaling, LOG7
in terms of cytokinin biosynthesis and ABCG14 in terms of
cytokinin transport (Zwack et al., 2016). The role of cytokinin
and its downstream signaling components in alleviating diverse
stresses is still not fully investigated. Research into this topic
may lead to findings of potential importance in agriculture when
applied in green biotechnology (Gan and Amasino, 1995).

In summary, cytokinin-regulated CRFs appear to mediate a
number of cytokinin-related plant responses in different organs.
As most of these CRFs are also regulators in other signaling
pathways, they can be regarded as hubs for crosstalk and signal
integration between cytokinin and stress-related signaling.

GIS3: A Link Between Cytokinin and
Trichome/Root Hair Development
The protein encoded by GIS3 (AT1G68360, GLABROUS
INFLORESCENCE STEMS) is a member of the C2H2-type Zinc
finger family of transcription factors and is induced by cytokinin
as early as 15 min (Bhargava et al., 2013; Brenner and Schmülling,
2015). It is a direct target of the type-B response regulator
ARR10 (Zubo et al., 2017). The C2H2 subfamily of zinc finger
transcription factors contains the GIS subfamily made up of
ZFP5, ZFP6, ZFP8, GIS, GIS2, and GIS3 (Sun et al., 2015), two of
which (ZFP6, ZFP8) were also reported as direct targets of ARR10
(Zubo et al., 2017). The main function of GIS3 is in trichome
development where it is a positive regulator of trichome cell
differentiation and morphogenesis (Sun et al., 2015; Han et al.,
2020).GIS3 is primarily expressed in these tissues but additionally
in roots (Schmid et al., 2005; Sun et al., 2015).

Cytokinin is a positive regulator of trichome formation
in Arabidopsis, and it is even able to induce trichome
formation when applied to organs that normally do not form
trichomes, such as floral organs (Greenboim-Wainberg et al.,
2005). Cytokinin signaling promoting trichome differentiation
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is transduced through two other C2H2 zinc finger proteins,
ZFP8 and GIS2, the latter being a cytokinin-inducible gene
itself (Gan et al., 2007b). GIS3 acts upstream of GIS, GIS2
and ZFP8 to induce trichome development by binding to their
promoters (Gan et al., 2007a,b; Sun et al., 2015). It was shown
that the Gibberellin-activated signaling pathway plays a key role
for trichome development (Gan et al., 2007b; Sun et al., 2015).
Thus, GIS3 appears to be the signaling component that feeds the
cytokinin signal into the module consisting of GIS, ZFP8, and
GIS2 to integrate cytokinin and gibberellin signaling.

Another function of certain C2H2 zinc finger transcription
factors regarding the development of epidermal layers is in
root hair development in Arabidopsis, integrating cytokinin and
gibberellin signals (Han et al., 2020). Consequently, the gene
is mainly expressed in root hair cells (Zhou Z.-Y. et al., 2011;
An et al., 2012) but additionally it is involved in initiation of
inflorescence trichomes in response to gibberellin (Zhou Z.-Y.
et al., 2011). Similar to trichome development, GIS3 functions
upstream of GIS, GIS2 and ZFP8, the latter being again directly
targeted by GIS3 (Zhou Z.-Y. et al., 2011).

The involvement of virtually identical signaling molecules
in the development of (unicellular) trichomes and root hairs
in Arabidopsis underlines the idea that both structures are
developmentally related. Consequently, cytokinin plays the same
promoting role in the formation of both trichomes and root hairs.

Cytokinin-Regulated Genes Encoding
LOB Domain Proteins Involved in
Secondary Growth and Vascular
Development
LATERAL ORGAN BOUNDARY DOMAIN (LBD) genes encode
a plant-specific transcription factor family whose first discovered
member LOB shows a ring-shaped expression pattern around
the sites where lateral organs emerge from an axis (Shuai et al.,
2002). These genes are also referred to as ASL (AS2-like) genes,
based on their sequence similarity to ASYMMETRIC LEAVES2
(Iwakawa et al., 2002).

The LBD3/ASL9 transcript was found to be induced by
cytokinin in a number of transcriptomic studies (Rashotte et al.,
2003; Kiba et al., 2005; Bhargava et al., 2013), but by no other
hormone (Naito et al., 2007). Consistent with that, its promoter
contains type-B response regulator binding sites (Brenner and
Schmülling, 2015). No other LBD gene was rapidly responsive to
cytokinin (Naito et al., 2007).

Another LBD gene regulated by cytokinin, albeit at later
stages of the response (2 h after induction and later), is LBD4
(AT1G31320). Unlike most cytokinin-responsive genes, which
are regulated in the same way in root and shoot, LBD4 is
specifically upregulated in the root but not in the shoot (Brenner
and Schmülling, 2012). LBD4 was identified as part of a feed-
forward loop in a transcriptional network analysis to identify
signaling mechanisms controlling vascular development (Smit
et al., 2020). This network transduces the signal of TDIF, a
mobile CLE peptide perceived by the PXY receptor, leading to the
upregulation of several WOX genes (Hirakawa et al., 2008, 2010;
Etchells et al., 2013; Morita et al., 2016; Zhang et al., 2016). The

ligand-receptor pair of TDIF and PXY is part of a regulatory loop
between phloem and cambium controlling xylem differentiation
through another transcription factor, BES1 (Kondo et al., 2014).

Both LBD3 and LBD4, the two closest relatives among the
LBD genes, are redundantly involved in vascular development as
shown by mutant and overexpression analysis (Smit et al., 2020).
Remarkably, LBD4 is expressed at the phloem-procambium
boundary, in accordance with the general expression pattern of
genes of the LBD family at organ boundaries. It is hypothesized
that LBD4 may function as a boundary regulator or as an
enhancer of cell divisions at the phloem side of the procambium,
or to have both functions. Since redundancy of LBD3 and LBD4
was determined, it is very likely that LBD3 acts in the same way.
Both genes may act as a signaling hub feeding the cytokinin
signal into the system controlling vascular development and
cambial activity with LBD4 acting as a factor differentiating
between root and shoot.

MEE3: Signaling Hub Coupling Cytokinin
With Auxin and ABA Signal Transduction
MEE3 (AT2G21650, MATERNAL EFFECT EMBRYO ARREST 3),
also known as RSM1 or ATRL2, belongs to the family of MYB-
related transcription factors. It is a gene responding at a later time
point to a cytokinin pulse, probably not being directly coupled to
the phosphorelay network by the type-B response regulators.

MEE3 is essential for endosperm development, gravitropism,
and photomorphogenesis. Additionally, it may have roles
in embryo development, plant hormone interaction, floral
development, and response to stress, and modulates seed
germination and seedling development in response to abscisic
acid and salinity (Riechmann and Ratcliffe, 2000; Pagnussat et al.,
2005; Baxter et al., 2007; Hamaguchi et al., 2008; Yang et al., 2018).

During early photomorphogenesis, MEE3 may be implicated
in HOOKLESS1 (HLS1)-mediated auxin signaling, negatively
regulating this pathway as a feedback regulator by a mechanism
that is so far unknown (Hamaguchi et al., 2008). This
observation may reflect part of the antagonistic effect of
cytokinin on auxin action. The mutually inhibitory influence
of the two hormones on each other’s action is known
since a long time from phenotypical observations and is
realized on the molecular level through hormone homeostasis
and signal inhibition (Dello Ioio et al., 2008; Müller and
Sheen, 2008; Schaller et al., 2015). Thus, MEE3 may be
another piece to be added to the multi-faceted auxin–cytokinin
interaction network.

MEE3 binds to the ABI5 promoter driving the expression
of a transcription factor negatively regulating seed germination,
major mediator of abscisic acid (ABA) signal transduction and
abiotic stress response (Finkelstein, 1994; Finkelstein and Lynch,
2000; Lopez-Molina et al., 2001; Nakamura et al., 2001; Yang
et al., 2018). In addition, MEE3 physically interacts with the
transcription factor HY5, which promotes photomorphogenesis
and activates ABI5 expression (Alabadí and Blázquez, 2008; Yang
et al., 2018). This interaction between MEE3, HY5, and the
ABI5 promoter appears to modulate the sensitivity of several
abscisic acid (ABA)-dependent processes to the hormone. This
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way, cytokinin signaling couples into the ABA and abiotic stress
response pathway by means of regulating MEE3 expression.

All of the above leads to the conclusion that regulation of
ABA-, auxin- and abiotic stress response may be partially
mediated by MEE3 as a secondary response gene of
cytokinin during early morphogenesis (Hamaguchi et al.,
2008; Yang et al., 2018).

LLM Domain-Containing GATA
Transcription Factors Mediate Multiple
Developmental Processes and Promote
Chloroplast Development
GATA transcription factors belong to one of four subfamilies
of the C2C2 zinc finger proteins. Characteristically, they bind
to the consensus sequence (T/A)GATA(G/A), which was found
in the promoters of many light-regulated genes (Teakle et al.,
2002; Reyes et al., 2004). Among them, CGA1/GNL/GATA22
was found to be transcriptionally regulated by cytokinin in a
number of transcriptomic studies (Kiba et al., 2004; Brenner
et al., 2005; Bhargava et al., 2013) as an early-responding gene,
probably directly activated by type-B response regulators. In
addition to cytokinin, the CGA1 transcript is also regulated
by nitrate (Price et al., 2004; Scheible et al., 2004; Wang
et al., 2004; Bi et al., 2005), (red) light (Manfield et al.,
2007), and sugar (Wang et al., 2003; Price et al., 2004;
Scheible et al., 2004), and is under the control of the circadian
clock (Harmer et al., 2000; Alabadì et al., 2002; Manfield
et al., 2007). Although CGA1 is co-regulated with seven other
GATA transcription factor genes (GATA15, GATA16, GATA17,
GATA17L, GATA21/GNC), all of which contain an LLM (Leu-
Leu-Met) domain (Ranftl et al., 2016), it is special with
regards to its particularly strong reaction to cytokinin. Of these,
the two paralogs GATA21/GNC and GATA22/GNL/CGA1 are
repressed by the homeotic floral organ identity transcription
factors AP3 and PI (Mara and Irish, 2008). Higher-order
mutants of these transcription factor genes showed defects in
several cytokinin-regulated developmental processes such as
phyllotaxis, cytokinin-induction of leaf greening and suppression
of chlorophyll degradation during leaf senescence, branching
and plant height, the number of floral organs and silique length
(Ranftl et al., 2016).

CGA1 has multiple roles in plant development and physiology.
In terms of crosstalk with other hormones, it represses
gibberellin signaling downstream of the DELLA proteins and
PIFs (Richter et al., 2010), enabling a negative regulation
of gibberellin signaling by cytokinin. Consistently, plants
overexpressing CGA1 show an altered timing of numerous
developmental events such as germination, leaf production,
flowering and senescence (Hudson et al., 2011). CGA1 was
suspected as a point of convergence of cytokinin, light, and
gibberellin signaling (Köllmer et al., 2011). The repressive
effect of CGA1 on flowering time is mediated by direct
transcriptional repression of the flowering time regulator SOC1,
simultaneously influencing greening (Bastakis et al., 2018) and
cold tolerance (Richter et al., 2013a). In addition, auxin signaling

converges at CGA1, repressing its expression through ARF7
(Richter et al., 2013b).

Mutant analysis revealed that CGA1 promotes chlorophyll
biosynthesis by modulating the expression of a number of
chlorophyll biosynthesis genes (Mara and Irish, 2008; Hudson
et al., 2011). However, not only chlorophyll biosynthesis
is regulated by CGA1, but chloroplast proliferation in all
aspects, development, growth, and division. For these processes,
CGA1 was assigned the role of a master regulator because
overexpression causes ectopic chloroplast development even in
roots or in darkness (Chiang et al., 2012; Zubo et al., 2018). From
the analysis of mutants, it was also concluded that the positive
effect of cytokinin on chloroplasts is at least partially transduced
through CGA1. During wound-induced root greening, CGA1
and GNC are important factors transducing the cytokinin signal,
but the exact way how CGA1 and other GATA transcription
factors induce the transcription of photosynthesis-related genes
is not known (Kobayashi and Iwase, 2017; Kobayashi et al.,
2017). These findings are consistent with the observation that
cytokinin shifts the root transcriptome toward a more shoot-like
profile, which may be largely due to chloroplast genes becoming
expressed in the root after an extended period of cytokinin
treatment (Brenner and Schmülling, 2012).

In terms of metabolism, CGA1 positively regulates the
expression of GLU1 encoding the chloroplast-localized
GLUTAMATE SYNTHASE1, the primary enzyme controlling
nitrogen assimilation in green tissue and providing substrate
for chlorophyll biosynthesis (Hudson et al., 2011). This may
be another section of nitrate signaling mediated by cytokinin,
coupling into processes related to greening and photosynthesis.

SIGNALING BY TARGETED PROTEIN
DEGRADATION

AFP2: An ABA Signaling Component
Targeting ABI5 for Proteasomal
Degradation
AFP2 (AT1G13740, ABI FIVE-BINDING PROTEIN) belongs
to a small family of five genes in Arabidopsis (Garcia et al.,
2008), whose members bind to the transcription factor and
key regulator of the ABA response ABI5, thereby attenuating
the ABA response by targeting ABI5 for ubiquitin-mediated
degradation (Lopez-Molina et al., 2003). All these proteins
share three conserved domains of unknown function (Garcia
et al., 2008). Additionally, the transcriptional repression of
ABI5 target genes may be mediated by recruitment of a co-
repressor of the TOPLESS family (Pauwels et al., 2010; Causier
et al., 2012; Lynch et al., 2017). AFP proteins also interact
with themselves and other members of the AFP family, and,
remarkably, also with histone deacetylases, providing another
level of gene regulation by chromatin modification. AFP2 has also
emerged as a regulator for breaking heat-induced secondary seed
dormancy (Chang et al., 2018) and as a factor delaying flowering
time (Chang et al., 2019).
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Cytokinin negatively regulates ABA-dependent responses
such as drought and salt tolerance (Tran et al., 2007). Thus,
cytokinin-induced upregulation of AFP2 may be one of the
molecular links mediating the negative influence of cytokinin
on ABA signaling. Another mechanism of cytokinin-ABA
signaling crosstalk is the direct interaction of several type-A
RRs with ABI5, inhibiting its function as a transcription factor
(Wang Y. et al., 2011).

CFB: A Cytokinin-Regulated Gene
Directly Interfering With a Key Enzyme of
Sterol Biosynthesis
CFB (At3G44326, CYTOKININ-REGULATED F-BOX
PROTEIN) has emerged as one of the most robustly upregulated
genes after cytokinin treatment in meta analyses of microarray
experiments and RNA-Seq transcriptomics (Bhargava et al.,
2013; Brenner and Schmülling, 2015). It is an early-responding
gene and as such probably directly activated by type-B response
regulators. It encodes an F-box protein belonging to a small
group of three related proteins in Arabidopsis (Brenner et al.,
2017). Orthologs exist in all land plants. The group of CFB-like
proteins is characterized by an F-box carrying the unique
motif ILTRLDG not found in the F-box domain of any other
F-box protein. In addition, the proteins possess five domains of
unknown function, two highly conserved sequence motifs, and a
C-terminal transmembrane domain.

The CFB protein interacts with the only cycloartenol
synthase enzyme in Arabidopsis, CAS1, thereby downregulating
a bottleneck step in plant sterol biosynthesis. The resulting
accumulation of 2,3-oxidosqualene in young shoot tissue causes
a disturbed and delayed development of chloroplasts resulting in
white shoot tips. In which tissues and for what purpose a possible
downregulation of sterol biosynthesis by cytokinin may be
relevant for plant development or other processes is not known.

SMALL DOWNSTREAM EFFECTORS

TPS1 and Trehalose-6-Phosphate:
Cytokinin Influencing Primary
Metabolism
Trehalose-6-phosphate (T6P) is a major signaling molecule in
plants regulating sucrose levels, hence it is referred to as “the
plant insulin.” Levels of free sucrose in tissues are regulated by the
formation or degradation of starch. This regulation is governed
by T6P, the levels of which are highly positively correlated
to sucrose levels, leading to the formation of a homeostatic
feedback regulatory circuit referred to as the sucrose-T6P nexus
(Figueroa and Lunn, 2016).

T6P homeostasis is governed by two enzymatic activities,
trehalose-6-phosphate synthase (TPS) for synthesis, and
trehalose-6-phosphate phosphatase (TPP) for degradation.
Transcriptomic experiments have revealed that genes encoding
these two types of enzymes are regulated in a reciprocal manner
by cytokinin: Upon cytokinin treatment, TPS transcripts are
more abundant and TPP transcripts are less abundant, while

in cytokinin-deficient plants the opposite is true (Brenner
et al., 2005). Thus, T6P levels are likely to be increased under
cytokinin treatment while T6P levels are probably reduced in
cytokinin-deficient plants. T6P directs primary metabolism
toward a more consumptive mode, thus a cytokinin-induced
increase would be consistent with the generally proliferative
action of the hormone. However, it is not clear whether
TPS1 (AT1G78580), which appears to encode the major T6P
biosynthetic enzyme (Fichtner et al., 2020), and the other
enzymes involved in T6P homeostasis are directly regulated
by the cytokinin-dependent TCS signaling network or whether
the homeostatic regulation mentioned above is an indirect
effect of altered sucrose levels due to cytokinin modulating
carbohydrate consumption by, e.g., growth processes. Motifs
that are demonstrated to bind type-B response regulators
(Franco-Zorrilla et al., 2014) or that are enriched in cytokinin-
responsive promoters (Brenner and Schmülling, 2015) are
present in the promoter region of TPS1, favoring the idea of
direct manipulation of T6P homeostasis and the associated
changes in primary metabolism by cytokinin.

PSK2: Phytosulfokine as a Downstream
Signal of Cytokinin Leading to Its
Proliferating and Chloroplast-Promoting
Action?
Phytosulfokine (PSK) is a 5 aa-long peptide sulfated at two
tyrosine residues that was first identified in conditioned medium
of plant cell cultures, where it is the primary signal molecule for
cell-cell communication promoting callus growth. Due to that
property, PSK can be regarded as a plant growth factor. There
are at least five PSK precursor genes in Arabidopsis, of which
the PSK2 gene (AT2G22860) is induced by cytokinin (Rashotte
et al., 2003; Brenner et al., 2005). Genes encoding proteases and
tyrosylprotein sulfotransferases processing the PSK precursor
proteins were also identified in the Arabidopsis genome, as well
as respective receptors (Matsubayashi et al., 2006a,b).

Besides its effects on callus proliferation, PSK is also associated
with a number of events associated with growth and proliferation
in whole plants. The PSK transcripts in rice are highly expressed
in the proliferating zones of the root and shoot meristems (Yang
H. et al., 1999). PSK promotes adventitious bud formation in
Antirrhinum (Yang G. et al., 1999), adventitious root formation
from hypocotyls in cucumber (Yamakawa et al., 1998b), somatic
embryogenesis (Kobayashi et al., 1999; Hanai et al., 2000;
Igasaki et al., 2003), and pollen germination and growth
(Chen et al., 2000; Stührwohldt et al., 2015). It also enhances
chlorophyll biosynthesis in the dark such as during the night
or under etiolating conditions (Yamakawa et al., 1998a; 1999).
Finally, PSK promotes the differentiation of tracheary elements
(Matsubayashi et al., 1999) and retards stress-induced senescence
(Yamakawa et al., 1999).

Many of these PSK functions overlap with the effects
observed by cytokinin and are in accordance with the generally
proliferative, growth-promoting and anti-senescence action of
the hormone. Thus, it is tempting to speculate that PSK may
be an important downstream signal of cytokinin. The PSK2
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promoter contains several motifs either found to be bound
by type-B response regulators or enriched in the promoters
of other cytokinin-induced genes, encouraging investigations
into the PSK2 gene as part of the downstream signaling
network of cytokinin.

TRANSPORT ACROSS MEMBRANES

PILS5, a Player in Cytokinin–Auxin
Interactions
PILS5 (AT2G17500, PIN-LIKES 5) encodes a PIN transporter-like
auxin efflux carrier protein and is induced by cytokinin during
the late response (≥120 min) (Brenner et al., 2005; Brenner and
Schmülling, 2015). There are seven members in the PIN-LIKES
family. PILS proteins have predicted topological similarities to
PIN-FORMED proteins, despite the circumstance that they only
share 10–18% of their sequence (Feraru et al., 2012; Sun L. et al.,
2020). PILS family members were identified by the presence of
the auxin carrier domain spanning nearly the whole length of the
PILS protein. Due to that domain, PILS proteins are predicted
to have auxin transport function (Barbez et al., 2012). However,
it is difficult to pinpoint functional residues within the domain.
Moreover, nothing is known about possible post-translational
modifications, but generic phosphorylation sites, kinase specific
phosphorylation sites and isoform variations were predicted
(Blom et al., 1999, 2004). Furthermore, different numbers of
serine, threonine and tyrosine phosphorylation sites were used to
assign three different classes of PILS proteins. PILS5 was grouped
into class one because it has less than 10 phosphorylation sites
(Feraru et al., 2012).

Interestingly and in contrast to the proper PIN transporters,
the subcellular localization of PILS proteins is in the ER (Barbez
et al., 2012). For that reason, expression of PILS transporters
results in a retention of auxin within cells. They sequester auxin
at the ER, limiting active auxin availability in the nucleus, thereby
attenuating auxin signaling and decreasing cellular sensitivity to
auxin (Barbez et al., 2012; Feraru et al., 2012, 2019; Béziat et al.,
2017). Furthermore, it affects auxin homeostasis and signaling
by regulating the auxin conjugation rate and its intracellular
accumulation. Consequently, PILS5 gain-of-function results in
multiple phenotypic changes consistent with a low auxin status
regarding root organ growth (lateral root formation positively,
root-hair elongation negatively), growth regulation in general, as
well as seedling growth and development (Barbez et al., 2012; Dal
Bosco et al., 2012; Feraru et al., 2012; Barbez and Kleine-Vehn,
2013; Sun L. et al., 2020).

Phylogenetic analyses revealed that PILS proteins are probably
older than PIN-FORMED proteins, hence intracellular auxin
accumulation is evolutionary older PIN dependent auxin
transport (Feraru et al., 2012). Nearly all family members except
for PILS4 originate from lineage specific duplications. They are
grouped into three different clades with PILS5 grouped into Clade
III (Feraru et al., 2012).

Transcription of PILS5 is strongly dependent on auxin,
cytokinin and brassinosteroid levels (Sun L. et al., 2020).
Additionally, abiotic factors such as light and temperature,

repress PILS5 expression, leading to growth effects reminiscent of
a higher auxin status (Feraru et al., 2012; Béziat et al., 2017; Sun
L. et al., 2020). The gene is expressed during all developmental
stages, specifically in mature pollen (Klepikova et al., 2016),
seedling, cauline leaves, and flowers (Barbez et al., 2012).
Through the well-known antagonistic action between auxin and
cytokinin, PILS5 indirectly affects homeostasis and signaling
of cytokinin (Kuderová et al., 2008; Naseem and Dandekar,
2012). That antagonism may be accomplished by auxin mediated
shifts in pH that regulate cytokinin receptor activity (Werner
and Schmülling, 2009). A more direct signaling mechanism is
the upregulation of certain type-A response regulator genes
by the auxin signal transduction (Müller and Sheen, 2008).
AUXIN RESPONSE FACTOR3 represses cytokinin biosynthesis
and signaling at multiple levels (Zhang et al., 2018). During
plant development these interactions are important, e.g., for cell
specification, growth and size of plant structures both below-
ground and above-ground (Müller and Sheen, 2007; Taniguchi
et al., 2007; Dello Ioio et al., 2008).

In summary, PILS5 promotes auxin accumulation at the ER,
thereby repressing auxin signaling (Barbez et al., 2012; Feraru
et al., 2012; Sun L. et al., 2020). As cytokinin supposedly increases
PILS5 activity by transcriptionally activating the corresponding
gene, PILS5 may be one of the players that mediate the negative
influence of cytokinin on auxin signaling, making it a factor in
mediating crosstalk of cytokinin and auxin.

DTX36: A Transmembrane Export Protein
Probably Involved in Abiotic Stress
Response
DTX36 (At1g11670, DETOXIFICATION 36) encodes a MATE-
related efflux protein located in membranes, particularly in the
plasma membrane (Li et al., 2002; Gaudet et al., 2011). It is part of
a gene family of at least 56 members mediating the efflux of endo-
and exogenous toxic compounds and heavy metals (Li et al.,
2002). Upregulated at 15 min after cytokinin treatment, DTX36 is
an early cytokinin response gene (Bhargava et al., 2013; Brenner
and Schmülling, 2015), probably directly activated by type-B
response regulators. Furthermore, the gene is regulated by the
cell cycle peaking in the G1 phase (Menges et al., 2002). Another
process during which DTX36 is regulated is photomorphogenesis
induced by the phytochrome pathway: fhy3 and far1 mutants
show reduced DTX36 expression (Hudson et al., 2003).

DTX36 is expressed in nearly every structure from seed, root,
shoot, leaves, to inflorescence structures (Schmid et al., 2005;
Obulareddy et al., 2013). The highest expression levels were
found in seeds after 3 days of soaking and in the root apex of
seedlings, whereas the lowest expression levels were found in dry
seeds (Klepikova et al., 2016). Generally, the expression in the
roots was higher than in aboveground organs.

Cytokinin has been implicated in stress responses in
numerous studies (Naseem et al., 2014; Bielach et al., 2017; Yang
and Li, 2017; Huang et al., 2018; Kieber and Schaller, 2018;
Cortleven et al., 2019). Here, an unspecific stress response gene
is induced by cytokinin in an immediate-early fashion, further
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corroborating the function of cytokinin as a hormone involved in
stress response.

At2g34350: A Nodulin-Like Major
Facilitator Superfamily Gene With Links
to Biotic and Abiotic Stress
According to sequence similarity, the gene At2g34350 is a
Nodulin-like major facilitator superfamily protein. As a member
of this family, it is probably involved in transmembrane transport
of hydrophilic molecules or water itself. Genes of this family are
mainly associated with the response to abiotic stress, but also to
biotic stress (Bezerra-Neto et al., 2019).

The gene is primarily expressed in the root apex (Klepikova
et al., 2016) and is induced by cytokinin as a late (120 min)
response gene (Rashotte et al., 2003; Bhargava et al., 2013). Its
cytokinin-dependent expression pattern was further confirmed in
plants overexpressing ARR22, a negative regulator of cytokinin
signaling (Wallmeroth et al., 2017, 2019), where its transcript
levels were lower (Kiba et al., 2004).

Furthermore, the gene is also regulated by salt stress
(Sottosanto et al., 2004) and the jasmonate signaling pathway
(Chini et al., 2007), corroborating the idea that it has a role in
biotic and abiotic stress response. Its exact function, however, has
not yet been investigated.

GENES WITH OTHER FUNCTIONS

AHK1: A Probable Osmosensor
Another gene induced by cytokinin is AHK1 (AT2G17820,
ARABIDOPSIS HISTIDINE KINASE 1) (Brenner and
Schmülling, 2012; Bhargava et al., 2013). The gene encodes
a member of the histidine kinase family and is involved in
response to osmotic stress, response to water deprivation, seed
maturation and stomatal complex patterning (Tran et al., 2007;
Wohlbach et al., 2008; Kumar et al., 2013). Unlike the three
cytokinin receptors AHK2, AHK3, and AHK4, which belong
to the same family, AHK1 is an osmosensor, but – lacking the
cytokinin-binding CHASE domain – not a cytokinin sensor.
Just like the cytokinin receptors, AHK1 acts according to the
principle of histidine phosphotransfer (Urao et al., 1999).

The gene is expressed in nearly every plant structure in
relatively even levels (Schmid et al., 2005; Obulareddy et al.,
2013; Klepikova et al., 2016). The subcellular localization
of the Arabidopsis protein and at least one of the poplar
orthologs is in the plasma membrane (Caesar et al., 2011;
Héricourt et al., 2013, 2016).

AHK1 is suggested to be a positive regulator in stress response
through ABA-dependent and ABA-independent signaling
pathways. Furthermore, it has a major role in plant growth (Tran
et al., 2007). Additionally, it is a necessary player to prevent
desiccation during seed development and also in vegetative
tissues (Wohlbach et al., 2008). How water limitation is actually
sensed is not finally clarified, however, the predicted extracellular
domain is essential for its activity (Urao et al., 1999). AHK1
most likely integrates mechanisms such as sensing of cell
volume, shape, turgor pressure, or macromolecular crowding to

a downstream signal that is so far unknown (Kumar et al., 2013).
Interestingly, it was shown in poplar that the cytokinin receptors
are also able to interact with those histidine phosphotransmitter
proteins through which the poplar orthologs of AHK1 signal
(Héricourt et al., 2019). Conversely, the poplar orthologs
of AHK1 are unable to interact with a subset of histidine
phosphotransfer proteins that are uniquely interacting with the
cytokinin receptors. Thus, in poplar, crosstalk can happen from
cytokinin into the osmosensing pathway, but not vice versa.
Similar investigations in Arabidopsis are missing.

MDL3: A Gene of Unknown Function
With Links to Diverse Abiotic Stresses
The MDL3 gene (At3G51660, MACROPHAGE MIGRATION
INHIBITORY FACTOR/D-DOPACHROME TAUTOMERASE-
LIKE PROTEIN 3) is expressed in nearly every Arabidopsis
plant structure including even plant sperm cells and guard cells
(Schmid et al., 2005; Obulareddy et al., 2013; Klepikova et al.,
2016). The highest expression levels were found in the petioles
of senescent leaves and in the pods of older siliques (Klepikova
et al., 2016). The encoded protein is an LS1-like protein belonging
to the tautomerase/MIF superfamily and is localized in the
peroxisomes (Reumann et al., 2007).

Proteins of this family are found in mammalian and non-
mammalian organisms and are known as upstream mediators
of various immune responses. In plants it most likely integrates
intracellular effects and induces precursor proteins which are part
of the secondary plant metabolite signaling pathway (Panstruga
et al., 2015; Sparkes et al., 2017). The transcript is induced
as early as 15 min after cytokinin treatment (Brenner et al.,
2005; Brenner and Schmülling, 2015), by cold stress (Mori et al.,
2018), osmotic stress, wounding, and UV-B radiation (Panstruga
et al., 2015). The protein is most likely a part of self-protection
of plants in response to pathogens and environmental stress
(Reumann et al., 2007; Ascencio-Ibáñez et al., 2008; Panstruga
et al., 2015; Mori et al., 2018) and therefore possibly also part of
cytokinin-mediated stress responses. Its subcellular localization
in the peroxisome substantiates a possible function in defense
and/or detoxification mechanisms (Reumann et al., 2007).

DISCUSSION

In the previous paragraphs, accumulated knowledge about
a selection of cytokinin-regulated genes was collected and
summarized (Table 1). The selection of genes was based on
the number of occurrences primary literature about cytokinin-
related transcriptomic studies (Brenner et al., 2012; Bhargava
et al., 2013; Brenner and Schmülling, 2015). These genes can
be regarded as a subset of the most reliably cytokinin-regulated
genes. We focused our selection on signaling genes, but included
genes with other functions as well if significant knowledge was
found in the literature.

Collecting information available in the literature has revealed
numerous functional connections between cytokinin and
processes such as plant development, primary metabolism,
biotic and abiotic stress response, cytokinin homeostasis and
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phytohormone crosstalk. These connections between cytokinin-
regulated genes and plant processes known to be controlled
by them are summarized in Figure 1. The scheme shows how
the cytokinin signal splits up into several strands, each one
transduced by its own component to result in the different
hormonal actions.

One conspicuous observation is that although the percentage
of kinase-encoding genes in the Arabidopsis genome is >3%,
there was only one cytokinin-regulated (0.05%) kinase found
among the set of genes considered as the most reliably cytokinin
regulated ones outside of the phosphorelay signaling system.
The activity of kinases is usually regulated by means other
than their mere abundance, and the transcript levels of genes
encoding kinases are often quite stable under a wide range of
conditions. Kinases are rather regulated by other means such as
the presence of ligands or posttranslational modification. This
way, transcriptomic experiments do not necessarily shed light
on the kinase parts of signaling pathways, limiting the approach
using transcriptomic data in this respect. On the other hand,
transcriptomic data are easy to generate and may serve as a
starting point for in-depth investigations leading to the discovery
of signaling chains involving events other than transcriptional
regulation such as kinase activities.

Feed-Forward and Feed-Back Loops
Must Be Spatially and Temporally
Separated
It is known that there is an immediate feed-back loop built into
the phosphorelay system in the form of the type-A response
regulators (Kiba et al., 2003; To et al., 2004; Lee et al., 2007). The
existence of feed-back at the level of hormone homeostasis by
deactivating and degrading enzymes has also been noted (Kieber
and Schaller, 2014). Generally, feed-back loops are a frequently
emerging theme in developmental biology, and their roles are
exhaustingly covered.

In contrast, the role of a feed-forward mechanism at the
level of cytokinin homeostasis has not found much attention.
It is generally contradicting the paradigm of the self-limiting
action of the hormone in order to maintain stable developmental
processes. One scenario that requires escalating a signal by a
feed-forward mechanism is rapid long-distance signaling as it
happens, for instance, during the propagation of the electrical
signal in the axons of nerve cells followed by a delayed feed-
back mechanism.

It is certain that cytokinin is the long-distance signal to
transmit nitrogen availability to the shoot tip in order to control a
sustainable growth rate of the shoot (Miyawaki et al., 2004; Takei
et al., 2004a). The cytokinins transported shootward in the xylem
belong to the tZ type, the members of which are catalytically
formed by the CYP735A enzymes from iP-type cytokinins (Takei
et al., 2004b; Kiba et al., 2013). The CYP735A2 gene is responsive
to both nitrate and cytokinin and mainly expressed in the root,
but it has not been determined in which cell types it is expressed.
It is tempting to speculate that CYP735A2 induced in cells
neighboring xylem elements (e.g., xylem parenchyma cells) may
lead to a rapid increase of tZ-type cytokinins in the xylem vessels,
even more so as the protein is predicted to be localized in

the apoplast. The increase of active tZ would in turn trigger
the induction of CYP735A2 activity in cells further upstream,
releasing more tZ into the xylem in the shootward direction.
This mechanism could speed up the migration of the tZ signal
beyond the velocity of the xylem stream. Thus, the signal would
travel at a speed largely independent of the velocity of the water
stream in the xylem vessels, which strongly depends on the
transpiration rate, and would be driven by the feed-forward loop
of biosynthesis, perception and signaling, rapidly propagating
over long distances. To this end, CYP735A2 should be expected to
be expressed in cells neighboring the xylem vessels, such as xylem
parenchyma cells. This hypothesis, however, remains to be tested.

Feed-forward and feed-back mechanisms have to be carefully
controlled as they may form a wasteful short-circuit if they are
active at the same time or place. Thus, it is to be expected to find
feed-forward components distinctly from feed-back components.
In certain situations, there may be a temporal succession of a
feed-forward phase followed by a feed-back phase to first escalate
the cytokinin signal before seeking homeostasis.

Multi-Layered Cytokinin–Auxin Interplay
Auxin and cytokinin action are closely interwoven and each of
the two hormone influences the status of the other at multiple
layers and through multiple signaling pathways, mostly in an
antagonistic fashion (Dello Ioio et al., 2008; Müller and Sheen,
2008). Components of that largely unknown network continue to
be discovered, such as SYAC1 very recently (Hurný et al., 2020).

Some of the cytokinin–auxin crosstalk components, however,
have been characterized. Polar auxin transport may be influenced
via CRFs transcriptionally regulating PIN expression (Šimášková
et al., 2015). The cytokinin-induced MYB-related transcription
factor MEE3 is a negative regulator of the HOOKLESS1-
dependent auxin signaling pathway during early seedling
morphogenesis (Hamaguchi et al., 2008). Cytokinin-stimulated
PILS5 expression may sequester auxin into the ER, removing
it from the nucleus where it is supposed to exhibit its activity
(Barbez et al., 2012; Feraru et al., 2012; Sun L. et al., 2020).
All three examples of crosstalk show a negative influence
of cytokinin to auxin action. On the other hand, cytokinin
upregulates auxin biosynthesis by increasing TAA1 and YUCCA8
expression (Jones et al., 2010; Zhou Z. et al., 2011; Schaller
et al., 2015; Di et al., 2016). The crucial function of the two
hormones acting in complementary patterns in many developing
structures of the plant has been reviewed to great detail
(Schaller et al., 2015).

Downstream Effectors Mediate Part of
the Cytokinin Action
Despite the discovery of multiple signaling hubs mediating
crosstalk between cytokinin and other pathways for hormone,
environmental, and developmental signals, it is still not
understood how the multitude of hormonal effects comes into
action. Light may be shed on parts of these unknown links
by investigating how cytokinin affects the levels and activities
of downstream effectors. Cytokinin has been implicated in the
regulation of sink–source relationships (Werner et al., 2008;
Kieber and Schaller, 2014). The finding that genes responsible

Frontiers in Plant Science | www.frontiersin.org 11 November 2020 | Volume 11 | Article 604489

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-604489 November 11, 2020 Time: 15:22 # 12

Kroll and Brenner Functions of Cytokinin-Regulated Genes

FIGURE 1 | Scheme showing selected cytokinin-regulated genes related to their functions described in published literature.
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for the homeostasis of a master regulator of primary metabolism,
trehalose-6-phosphate, are differentially regulated in cytokinin-
treated and cytokinin-deficient plants may give a clue on
how the cytokinin signal is integrated into the control of
primary metabolism.

The general proliferative effect of cytokinin may be mediated
by phytosulfokine (PSK), as one of the five PSK precursor genes
is positively regulated by the hormone. Not only is PSK regarded
as the plant growth factor, but it is also implicated in chloroplast
development and other processes driven by cytokinin. Thus, it
is tempting to speculate that PSK is a downstream regulator
for a significant part of the hormonal action of cytokinin
regarding plant development. However, a conclusive loss-of-
function experiment is missing due to difficulties obtaining a
pertinent mutant.
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