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High concentrations of heavy metal (HM) ions impact agronomic staple crop production
in acid soils (pH ≤ 5) due to their cytotoxic, genotoxic, and mutagenic effects.
Among cytotoxic ions, the trivalent aluminum cation (Al3+) formed by solubilization of
aluminum (Al) into acid soils, is one of the most abundant and toxic elements under
acidic conditions. In recent years, several studies have elucidated the different signal
transduction pathways involved in HM responses, identifying complementary genetic
mechanisms conferring tolerance to plants. Although epigenetics has become more
relevant in abiotic stress studies, epigenetic mechanisms underlying plant responses
to HM stress remain poorly understood. This review describes the main epigenetic
mechanisms related to crop responses during stress conditions, specifically, the
molecular evidence showing how epigenetics is at the core of plant adaptation
responses to HM ions. We highlight the epigenetic mechanisms that induce Al tolerance.
Likewise, we analyze the pivotal relationship between epigenetic and genetic factors
associated with HM tolerance. Finally, using rice as a study case, we performed a
general analysis over previously whole-genome bisulfite-seq published data. Specific
genes related to Al tolerance, measured in contrasting tolerant and susceptible rice
varieties, exhibited differences in DNA methylation frequency. The differential methylation
patterns could be associated with epigenetic regulation of rice responses to Al stress,
highlighting the major role of epigenetics over specific abiotic stress responses.

Keywords: abiotic stress, aluminum tolerance, epigenetic response, heavy metals, rice

INTRODUCTION

Plants deal with multiple challenges to adapt to different environmental conditions given their
sessile lifestyle. Abiotic stresses such as drought, salinity, extreme temperatures, nutrient deficiency,
and heavy metal stress, represent some of the most limiting factors for plant growth (Zhu, 2016).

Heavy metals (HMs) are elements with densities above 5g/cm3 that belong to the Earth’s crust
natural components. High concentrations of heavy metals can generate cytotoxic, genotoxic, and
mutagenic effects in living organisms. Under physiological conditions, HMs can be divided into
two groups: (i). Essential elements that are necessary for plant growth being structural blocks in
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proteins with an enzymatic function, such as iron (Fe),
manganese (Mn), zinc (Zn), magnesium (Mg), molybdenum
(Mo), and copper (Cu), and (ii). Non-essential elements like
Cadmium (Cd), chromium (Cr), lead (Pb), aluminum (Al),
and selenium (Se). While essential elements are necessary for
plants in small amounts, high concentrations of both types of
elements can lead to inhibition of plant growth and development
(Rascio and Navari-Izzo, 2011). Heavy metals have a strong
impact on acid soils, caused by the excess of cationic species
such as magnesium (Mg2+), calcium (Ca2+), phosphorus (P),
sodium (Na+) and aluminum (Al3+) which in turn, affect plant
physiological responses leading to crop yield losses for breeders
and farmers (Samac and Tesfaye, 2003; Fryzova et al., 2017).

Acid soils represent nearly 30% of worldwide arable land, with
13% of staple crops cultivated in these areas. These types of soils
classified as ultisols or oxisols are characterized by a pH lower
than 5.5 (Figure 1A; Bojórquez-Quintal et al., 2017; Rahman
et al., 2018). Al toxicity on acid soils has been reported as one of
the major factors limiting crop production, and becoming worse
due to current fertilization practices, pasture management, and
climate change (Zheng, 2010; Kochian et al., 2015).

Staple food crops such as maize, wheat, sorghum, and rice have
been extensively studied to increase their Al tolerance (Famoso
et al., 2010). Among these crops, rice has been used as a model
thanks to its high tolerance to Al toxicity (Famoso et al., 2010;
Mustafa and Komatsu, 2016). Rice is a staple crop for over half
of the world population with a cultivated area of 167.25 million
hectares, and with an increment of 5.55 million hectares between
2010 and 2017 period (Food and Agriculture Organization of
the United Nations, 2020; Figure 1B). Yet, there is still a need
to increase 50% of rice production by 2050 to feed a growing
population (Lin et al., 2019).

Important advances in elucidating the genetic mechanisms
associated with HM tolerance and, especially, the molecular
network involved in Al toxicity responses, have been reported
in the last decade. Several studies on different crops have
focused on genetic mapping to identify either quantitative
trait loci (QTLs) or up/down-regulated genes associated with
the response to Al stress (Famoso et al., 2011; Zhang et al.,
2019). However, an increasing number of studies highlight
the role of epigenetic mechanisms in the regulation of plant
stress responses (Sudan et al., 2018; Chang et al., 2020).
Therefore, the aim of this review is to explore and analyze
the existing scientific literature on epigenetics as an important
factor that regulates HM stress responses. Additionally, the
direct relationship between epigenetic and genetic elements
related to HM tolerance is revised, with a special focus on Al
tolerance in rice.

GENETIC MECHANISMS UNDERLYING
HEAVY METAL TOLERANCE

Plants have evolved different strategies to cope with HMs,
diverging according to distinct factors as the plant species or the
HMs exposure time and concentrations (Horst et al., 2010). These
strategies fall into two general mechanisms: (i) An exclusion

mechanism, where plants exudate organic compounds to the
rhizosphere to chelate HM ions, transforming them into non-
toxic compounds, and avoiding their chemical intake through
root cells; and (ii) A detoxification mechanism, where plants
allow the entrance of HM ions for internal detoxification and
sequestration (Figure 2; Kochian et al., 2015).

Hyperaccumulator plants have been important models to
understand the possible mechanism by which plants have adapted
to high HM concentrations, and to elucidate the putative
genetic elements that could be involved in these processes (Yang
et al., 2005; Chaudhary et al., 2018; Fasani et al., 2018). One
recurrent mechanism reported in these plants as an overall
HM detoxification strategy is HM chelation by a ligand, either
to keep HMs out of the roots or to target them to vacuoles.
Diverse metal-binding ligands have been reported in plants.
The peptide ligands phytochelatins (PCs) and metallothioneins
(MTs) are different classes of cysteine-rich proteins that bind to
HMs and have been reported as the most important genes in
HM detoxification (Chaudhary et al., 2015). Complexes of PC-
HM lower the binding capacity of HMs to the cell walls while
MTs control the ROS accumulation and HM sequestration. For
more information see Chaudhary et al. (2018) for a review of
different PC and MT genes expressed in various plants and tissues
under different HM stresses. Another mechanism involved in
HM tolerance is the HM transport into the cell, and later, into
the vacuole. Various genes have been reported to be involved in
HM transport including heavy metal ATPases and the natural
resistance-associated macrophage protein (Nramp) (Yang et al.,
2005; Chaudhary et al., 2015).

Several studies have reported that tolerance or
hyperaccumulation of HMs in plants is related to gene
transcription modulation of metal chelators or transporters
that favor exclusion or detoxification of the HMs (Arbelaez
et al., 2017; Gulli et al., 2018; Zhang et al., 2019). These genes
are potentially regulated by a reversible epigenetic mechanism,
especially on hyperaccumulator plants which can live in soils with
or without high HM concentrations. In this sense, epigenetic
mechanisms represent an option to modify gene expression
patterns enabling a rapid adaptation to environmental stressors
(Mirouze and Paszkowski, 2011; Ou et al., 2012). Table 1 shows
the main genetic players in plant responses to Al, including genes
involved in the exclusion or sequestration of Al3+ ions.

One of the main strategies reported for Al exclusion is
mediated by organic acid (OA) efflux from the root apex
(Yang et al., 2013; Poschenrieder et al., 2019), a ubiquitous
mechanism in all plant cells that reduces Al damage by
forming stable compounds with Al3+ ions in the rhizosphere
(Bojórquez-Quintal et al., 2017). The first genes linked to Al
tolerance were malate and citrate organic acid transporters in
wheat (Triticum aestivum), sorghum (Sorghum bicolor), and
barley (Hordeum vulgare) (Sasaki et al., 2004; Furukawa et al.,
2007; Magalhaes et al., 2007). Subsequently, it was found that
members of two transporters families, the Al-activated malate
transporter (ALMT) and the OA/H + transport channel (Multi-
antimicrobial extrusion protein - MATE), are responsible for the
exudation of malate and citrate, respectively, from root cells to
the rhizosphere in response to Al (Kochian et al., 2015). However,
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FIGURE 1 | Worldwide distribution of acidic soils and rice crop areas (1 km2 resolution). (A) Areas with a weighted averaged soil pH (0-30 cm) less than or equal to
5.5 (acidic soils) using data extracted from Soilgrids (Hengl et al., 2017). (B) Worldwide rice crop area coverage (pixel probability > 0) (Jackson et al., 2019).

other transporters like ABC carriers and aquaporins are also
required for OA transport (Liu et al., 2014).

RICE AS A GENETIC MODEL TO STUDY
ALUMINUM TOLERANCE IN PLANTS

Rice is a model species to study Al tolerance being one of the
plants with highest tolerance to this element (Famoso et al.,
2010, 2011). Rice has a complex response against Al stress,
involving a wide range of strategies and a diversity of genes
(Magalhaes et al., 2004). These genes are potentially involved in
the exclusion of Al3+ ions through OA efflux; for instance, the
MATE transporters OsFRDL2 and OsFRDL4, has shown a role in
OA transport (Famoso et al., 2010; Delhaize et al., 2012; Yokosho
et al., 2016). Other rice Al responses include the modification of
the cell wall properties (Kochian et al., 2015; Che et al., 2016), and
Al3+ ions uptake and subsequent sequestration/translocation
into the vacuole by different Al transporters like bacterial-type
ABC and Nramp Al transporters (Huang et al., 2009; Xia et al.,
2010; Li et al., 2014). Other genetic elements associated with
Al tolerance include genes encoding transcription factors as
ART1, ASR1 and ASR5 (Yamaji et al., 2009; Arenhart et al.,
2016; Che et al., 2016). The upregulation of specific genes
as OsMGT1, a magnesium transporter, is also linked to high
Al tolerance (Chen et al., 2012). More recently, Zhang et al.
(2019) reported 69 potential candidate genes related to Al
tolerance, identified in a collection of 150 rice landraces using
a combined GWAS-transcriptomic approach. Complementarily,

several QTLs associated with Al tolerance have been identified in
rice using different inter and intra-specific mapping populations
(Wu et al., 2000; Ma et al., 2002; Nguyen et al., 2003; Xue et al.,
2006, Xue et al., 2007; Famoso et al., 2011; Zhang et al., 2019).
Famoso et al. (2011) reported 48 QTLs located on chromosomes
1, 3, 9, and 12. The QTLs were generated based on mapping
populations exposed to Al stress, using relative root growth
as the experimental phenotypic readout. The major QTL was
found on chromosome 12, explaining 19% of the phenotypic
response. Findings reported in above mentioned studies support
the hypothesis that Al tolerance in rice involves multiple genes,
genomic regions and mechanisms.

The previous evidence relates both, genic elements and
specific genic mechanisms with the phenotypic response to
cope with HMs stresses. Besides the genetic control that exists
to regulate these responses, additional regulation layers might
exist, being epigenetics a controlling mechanism of paramount
importance in order to adapt to abiotic stresses, and specifically,
to HMs restrictive conditions. In the following sections we will
revise the current evidence that associates epigenetics with HMs
stress responses. Giving its agronomic relevance, special attention
is put on rice epigenetics as integrated strategies to cope with
HMs and aluminum stresses.

EPIGENETIC MECHANISMS IN PLANTS

Epigenetics refers to the study of heritable and stable changes
in gene expression without DNA sequence modifications
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FIGURE 2 | Schematic representation of physiological, genetic, transcriptional and epigenetic mechanisms involved in plant responses to heavy metals (HM)
exposure. Plant exposure to HMs induces different physiological deficiencies that could be countered by two principal tolerance mechanism shown at the bottom
right of the figure: an exclusion mechanism, where the plant secretes organic acids (OAs) out of the root, avoiding the entrance of HM ions or, a detoxification
mechanism and sometimes bioaccumulation, wherein plants internalize HM ions through membrane transport proteins such as ALMT or MATE carriers, and
subsequently, HMs can be chelated by organic acids (OA) or translocated into the vacuoles through ABC carriers or aquaporins. The regulation of HM responsive
genes has been related to epigenetic mechanisms as DNA methylation and histone modifications which can repress or activate gene expression through promoter
or gene body methylation as well as avoiding transposon movement (top right). Another important epigenetic mechanism involved in the HM stress response is the
hypermethylation along the genome to protect DNA from possible damages caused by metal subproducts.

(Wu and Morris, 2001). Three epigenetic mechanisms have been
described in gene expression regulation: (i) DNA methylation
(modifications at genomic level), (ii) histone modifications
(chromatin modifications) and (iii) Small RNA modifications
(RNA directed DNA Methylation-RdDM pathway) (Sudan
et al., 2018; Chang et al., 2020). Currently, DNA methylation
is the most documented epigenetic modification, and it is
recognized as a relatively stable, and inheriting transgenerational
mark involved in a set of biological processes such as
the activity of transposable elements, genomic imprinting,
alternative splicing, and regulation of temporal and spatial gene
expression (Zhang et al., 2006; Ou et al., 2012). Mammals
and plants differ in their DNA methylation patterns. In
plants, DNA methylation is more widespread and complex,
and occurs mainly in cytosine residues in the CG, CHG,
and CHH sequence context (H can be A, C, or T), while
in mammals it occurs only in a CG context (Bender, 2004;
He et al., 2010). Studies on general DNA methylation profiles
conducted on the model crop, Oryza sativa L. (cultivated
rice), have shown that transposable elements and repetitive

sequences are the most heavily methylated DNA regions
in the rice genome (He et al., 2010; Yan et al., 2010; Li
et al., 2012). Overall, gene methylation occurs mainly in
the CG context, while transposon methylation occurs in all
three described contexts (He et al., 2010; Yan et al., 2010;
Li et al., 2012).

The methylome in plants is mainly monitored and
maintained during DNA replication and cell division by
DNA methyltransferases. There are three major classes of DNA
methyltransferases: DNA methyltransferases (METs), which
are the main CG methylases in charge of CG methylation;
the plant specific enzymes chromomethyltransferases (CMTs),
that are known to establish CHH and CHG methylation;
and the domain rearranged methyltransferases (DRMs), that
are involved in the maintenance of non-CG methylation
and de novo methylation in all three contexts: CG, CHG
and CHH (Lanciano and Mirouze, 2017). In contrast, DNA
demethylation is performed by DNA glycosylases such as ROS1
(Repressor Of Silencing 1) and the DME (Demeter) enzyme
(Lanciano and Mirouze, 2017).
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TABLE 1 | Summary of main exclusion and tolerance mechanisms reported in plants.

Species Genes Mechanism Specific mechanism Function References

P. vulgaris, T. aestivum, S.
bicolor, H. vulgare, Zea mays,
snapbean, oat, rye, Glicine
max, Colocasia esculenta,
Triticale sp., Helianthus annuus

ALMT, MATE, OSALMT4 Exclusion Organic acid exudation Chelate Al3+ (release of
malate, citrate, or oxalate)
located in the root apex

Kochian et al., 2004, 2015;
Liu et al., 2018

Zea mays, Cinnamomum
camphora, Eucalyptus
camaldulensis

Exclusion Phenolic compounds
exudation

Release of other organic
compounds (e.g., catechol,
catechin, and quercetin),
oenothein B,
proanthocyanidin in roots

Kochian et al., 2015

Cucurbita pepo, wheat, tea ATPases Tolerance (Al detoxification) Changes in the
Rhizosphere pH

pH rhizosphere changes to
induce to Al detoxification
mechanisms

Bojórquez-Quintal et al.,
2017

Oryza sativa, Solanum
tuberosum, Arabidopsis
thaliana, petunia inflata

XTH, XET, XTH31,pectin
methylesterases,OsFRDL4,
STAR1, STAR2, ABC
transporters, HMG2,
HMG3, WAK1

Tolerance (Al detoxification) Cell wall modification Changes in the structural
properties of cell wall such
as reduction of wall
plasticity/elasticity,
carbohydrates, methylated
pectins, and reduced pectin
methylesterases; increased
sterols biosynthesis;
negativity of apoplast to
enhance Al transport

Schmohl et al., 2000; Horst
et al., 2010; Kochian et al.,
2015; Morkunas et al.,
2018; Wagatsuma et al.,
2018

Arabidopsis thaliana, Oryza
sativa,

Nramp, OsNrat1, OsALS1,
aquaporine family,
ABC,ALMT,OsCDT3

Tolerance (Al detoxification) Al transportation Arrest Al from cell wall to
root cell vacuole

Kochian et al., 2015;
Arbelaez et al., 2017

Brassica napus, Nicotiana
tabacum, wheat, Arabidopsis
thaliana, Zea mays

ALMT,MATE,SbMATE,
TaALMT1,OsFRDL4

Tolerance (Al detoxification) ALMT/MATE proteins Al
transportation

Passive efflux of malate;
carriers that mediate citrate
efflux coupled to H + influx

Liu et al., 2014; Kochian
et al., 2015

Oryza sativa, Arabidopsis
thaliana, Andropogon virginicus

Nramp,OsALS1, Nrat1 Tolerance (Al detoxification) Nramp proteins Al
transportation

Specific transporter for
aluminum ions (no divalent
cations) transport from cell
wall to vacuoles

Yokosho et al., 2011; Ezaki
et al., 2013; Kochian et al.,
2015

Oryza sativa, Arabidopsis
thaliana

OsSTAR1, OsSTAR2,
AtALS3, OsALS1, AtALS1

Tolerance (Al detoxification) ABC proteins Al transport ATP-driven pumps (ABC
transporters);

Huang et al., 2009;
Delhaize et al., 2012;
Kochian et al., 2015

Oryza sativa, Arabidopsis
thaliana, Hydrangea
macrophylla

Aquaporins such as
HmVALT, HmPALT1

Tolerance (Al detoxification) Aquaporins transportation Transport and store in shots Negishi et al., 2012;
Kochian et al., 2015

The relationship among genes, mechanisms and molecular functions of the reported genes is shown.
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EPIGENETIC REGULATION OF PLANT
STRESS RESPONSE

Abiotic stresses can generate a diverse range of phenotypes
in plants, which are a consequence of complex molecular,
biochemical, and physiological changes. Plants responses and
adaptation to these stress conditions vary in different ways and
at various levels, including short term physiological responses
such as metabolic and gene expression changes, and long-term
responses such as genetic and epigenetic genome modifications
(Turner, 2009). The mechanisms of signal transduction, as
well as the genetic variability underlying plants responses to
stress, have been widely studied and, in many cases, successfully
exploited by plant breeders to improve resistance to abiotic
stress through traditional breeding or marker-assisted selection
(Kantar et al., 2015; Zhu, 2016). Recently, epigenetic marks have
gained attention as important factors of abiotic stress-related
gene control (Kumar, 2018). For example, a stress signal can
promote DNA methylation changes in the promoter regions of
stress-responsive genes, thus modifying their expression pattern,
generating histone conformational changes, and promoting
transcriptional repression by preventing transcription factors
binding to their target sites (Boyko et al., 2010; Ou et al.,
2012; Ueda and Seki, 2020). Since methylation affects how
genes are transcribed, it is hypothesized that DNA methylation
is involved in the long-term transgenerational maintenance of
epigenetic changes.

DNA methylation states can be complemented by additional
mechanisms such as histone modifications (Mirouze and
Paszkowski, 2011). Although considered a more dynamic and
transitory mechanism, because the majority of changes that
occur under stress conditions revert to their initial state quickly,
histone modifications could play a role in the inheritance of
certain stress-tolerant phenotypes (Pecinka and Scheid, 2012).
For example, Kim et al. (2012) showed that H3K4me3 and
H3K9ac histone modifications were abundant in several drought-
associated genes in Arabidopsis thaliana plants subjected to
water-deficit regimes. When plants were irrigated, the H3K9ac
modifications were rapidly eliminated, while H3K4me3 ones
remained, indicating that the latter modification can be stably
inherited through generations.

Histone modification effects on gene regulation have also been
reported for other stress conditions. Sokol et al. (2007) reported
transient H3Ser-10 phosphorylation, H3 phosphoacetylation,
and histone H4 acetylation under salinity and cold-stress
related to the expression of stress-specific genes. Likewise, the
trimethylation of H3K4 and acetylation of H3K9 in A. thaliana
was generated by exposure to drought, ABA, and salt stress,
causing stress-responsive genes expression (Kim et al., 2008).

Stress-induced epigenetic changes, especially DNA
methylation, occur regularly in all plant species, reinforcing
the importance of this mechanism for regulating plant responses
to environmental changes; most of these changes are heritable
and play an important role in plant adaptation (Feng et al.,
2010). Genomic sequences whose changes in their methylation
status are maintained over generations, without altering the

acquired methylated pattern, are known as epialleles (Kalisz and
Purugganan, 2004). There is evidence that epialleles can occur
over stress-related genes, however, they can also be present in
genetic regions that are not directly related with the specific
stress response, generating random changes across the genome.
Moreover, both types of variations could be affected by natural
selection according to the phenotypic effects they may cause
(Verhoeven et al., 2010).

Transposons can also play a role in suppressing gene
expression. This can occur due to the methylation state of a
transposon located in or near a gene, which can directly affect the
regulation of that gene through a methylation spread mechanism.
Thus, transposon silencing through epigenetic marks contributes
to the establishment of epigenetic variations affecting gene
modulation in plants (Saze and Kakutani, 2007; Galindo-
González et al., 2018).

Although the heritability of stress-induced methylation in
plants remains poorly understood, some studies show that
most of the induced variations are faithfully inherited to
the offspring. For instance, Boyko et al. (2010) showed
that A. thaliana plants exposed to salinity, cold, heat, and
flooding, showed an overall increase in DNA methylation,
associated with a higher stress tolerance in the progeny. In
addition, Herman and Sultan (2016) reported that in Polygonum
persicaria, DNA methylation is involved in increasing offspring
drought tolerance when parental plants are subjected to this
stress. Some studies have even found epialleles with direct
effects on economically important traits; for instance, heritable
methylation changes induced in rice due to nitrogen deficiency
(Kou et al., 2011), heavy metal toxicity (Ou et al., 2012),
and drought (Zheng et al., 2017) have been described. This
last study showed the conservation of several non-random
methylation changes generated under drought conditions
(>40%) through several generations. Zheng et al. (2017) also
found that these epigenetic changes are related to stress-
responsive genes and they seemed to influence rice long-
term adaptation to drought conditions. Thus, these studies
support the potential role of epigenetic variation, and its
inheritance across generations, as a relevant evolutionary process
in crops. Similarly, they show that in rice, the mechanisms of
epigenetic regulation of stress responses may be related to the
type of stressor.

EPIGENETIC MECHANISMS INVOLVED
IN HEAVY METAL TOXICITY

A recent recurring question is whether there is a general
pattern of DNA methylation related to HMs exposure in plants.
Evidence from previous studies suggests that DNA methylation
might play a role in the regulation of plant responses to
HMs through at least two mechanisms (Aina et al., 2004;
Choi and Sano, 2007; Greco et al., 2012; Kumar et al.,
2012; Arif et al., 2016). The first mechanism is related to
a protective effect of methylation against HM-induced DNA
damage through single-strand breaks or multi-copy transposition
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(Figure 2; Bender, 1998). For example, Aina et al. (2004)
compared methylation levels between clover (Trifolium repens
L.), which is sensitive to Cr, Ni, and Cd, and hemp (Cannabis
sativa L.), which is partially tolerant to these HMs. The
study found that in the absence of HM stress, the level
of methylation of hemp roots was significantly higher than
in clover. Similarly, Gulli et al. (2018) found that Noccaea
caerulescens plants (a Ni hyperaccumulator species) grown under
high Ni concentrations were significantly hypermethylated at
the genome level in comparison to A. thaliana Ni susceptible
plants exposed to high Ni concentrations. These authors also
showed that MET1, DRM2, and HDA8 genes, which are
involved in DNA methylation and histone modification, were
differentially expressed between N. caerulescens and A. thaliana.
Hypermethylation has also been reported to act as a defense
mechanism to counteract radiation genotoxic effect as shown by
Kovalchuk et al. (2003); Volkova et al. (2018) who reported that
pine trees plants (Pinus silvestris) adapted to survive high ionizing
radiation, exhibited significantly hypermethylated loci compared
to less adapted plants.

A second type of epigenetic response to HM stresses involves
gene expression control (Figure 2). This regulation is not limited
to the promoter region of genes but includes their coding regions
(Choi and Sano, 2007). DNA methylation on gene promoters
usually represses genetic transcription but, in some cases, it
can also promote it (Zhang et al., 2006). In the meantime,
exon/intron methylation occurs mainly on CG context and its
function remains unclear. Gene body methylation has been
related to transcriptional upregulation and has been suggested
to protect genes from aberrant transcription caused by cryptic
promoters (Zhang et al., 2006; Feng et al., 2016). The local
acetylation of histones located near the promoter region of genes
can induce transcriptional activation (Finnegan, 2001). Although
there are no reports of specific histone modifications related to
HM stresses in plants, some studies in animals have revealed a
direct relation between HM exposition and histone modifications
(Cheng et al., 2012).

Gene expression changes generated by HM exposure in
rice have been described extensively in the literature and
linked to variations in DNA methylation levels. For instance,
Oono et al. (2016) showed a positive correlation between Cd

dose-response in plants and the expression of genes coding for
metal ion transporters where DNA methylation marks were
detected. Similarly, using whole-genome bisulfite sequencing
(WGBS), Feng et al. (2016) evaluated DNA methylation changes
induced by specific Cd stress in rice plants (Oryza sativa
ssp japonica cv. Nipponbare). The authors found specific
differentially methylated regions after Cd treatment, with
patterns of methylation closely associated with transcriptional
differences of stress response genes involved in metal transport,
metabolic processes and transcriptional regulation. Likewise,
some studies have shown the heritability and stability of
HM stress-induced methylation changes (Rahavi et al., 2011;
Ou et al., 2012). For instance, in A. thaliana, improved
tolerance to HMs has been observed in the progeny under
the same stress experienced by parental plants (Ou et al.,
2012). More recently, Cong et al. (2019) showed that specific
methylation changes induced by HM stress, specifically
methylation changes at the Tos17 retrotransposon, displayed
transgenerational inheritance through three generations.
Therefore, the evidence suggests that epigenetic mechanisms
contribute to HM stress adaptation through successive
plant generations.

EPIGENETIC MECHANISM INVOLVED IN
ALUMINUM TOXICITY

Al exposure can trigger DNA damage and cell death through
a strong binding of Al ions to pectins and other structural
components of the cell wall (Murali Achary and Panda, 2010).
Although there are currently few studies that have explored
the relationship between epigenetic regulation and aluminum
tolerance (Table 2), current evidence suggests that Al tolerance
might be conferred through DNA methylation as specific
methylation changes frequently occur after Al exposure. For
example, Bednarek et al. (2017) subjected five Al-tolerant
and five non-tolerant triticale lines to Al exposure. Using
methylation-sensitive amplification polymorphisms (MSAP)
(Box 1), the study showed that Al exposition in both Al-
tolerant and non-tolerant plants induced demethylation. These
findings are consistent with other reports that describe the

TABLE 2 | Summary of epigenetic studies related to aluminum stress responses in plants.

Plant Variety Epigenetic modification Method References

Nicotiana tabaccum Xan-thi nc DNA methylation HPLC, direct bisulfite
sequencing

Choi and Sano, 2007

Sorghum bicolor inbred lines, YN336 and YN267 DNA methylation MSAP Kimatu et al., 2011

Zea Mays Kenyan tropical maize (KTM) DNA methylation MSAP Kimatu et al., 2013

Arabidopsis thaliana Col-0 ecotype DNA methylation, histone
modifications

Chromatin
Immuno-precipitation
(ChIP), direct bisulfite
sequencing.

Ezaki et al., 2016

Triticale inbred lines DNA methylation MSAP Bednarek et al., 2017

Zea mays cultivar RX9292 DNA methylation CRED–RA Taspinar et al., 2018

Triticale inbred lines DNA methylation metAFLP, MSAP, HPLC Agnieszka, 2018

Triticum aestivum Haymana 79, Kı lçıksız, and Bezostaja 1 DNA methylation CRED-iPBS Pour et al., 2019
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BOX 1 | Methods to study DNA methylation.
metAFLP (Amplified fragment length polymorphism) – metAFLP is a variation of the AFLP method. Nowadays it is poorly implemented given the emergence of
genomic-scale methods. It is a cost-effective methodology that was used to elucidate methylation patterns in plants. The technique is able to detect global
methylation marks throughout the studied genome. It is based on isoschizomers implementation to cut the DNA inside specific sites that display differential sensitivity
to DNA methylation. A fragment comparison analysis reveals specific methylation polymorphisms. A major limitation is that it can only assess a small percentage of a
global DNA methylation scenario. An important advantage is that these methods can be used for any species, even with limited or no information about their DNA
sequence composition (Bednarek et al., 2007).

MSAP (Methyl Sensitive Amplified Polymorphism) – This technique is a modification of the metAFLP technique described above. The protocol uses the EcoRI
restriction enzyme in combination with the methylation-sensitive enzymes HpaII and MspI. These last isoschizomers recognize and cleave the same tetranucleotide
sequence 5′-CCGG, but differ in the sensitivity to cytosine methylation. The method can differentiate among methylated, hemimethylated, or non-methylated sites.
This technique was broadly implemented because of its cost-effective advantages, but one of its principal limitations is that it cannot specify the region or gene
influenced by methylation (Bednarek et al., 2017).

CRED-RA (Coupled restriction enzyme digestion and random amplification) – Similar technique as the ones previously described. It is based on the use of
restriction enzymes, specifically the isoschizomers HpaII and MspI implemented as Random Amplified Polymorphic DNA (RAPD) (Erturk et al., 2015).

HPLC (high-performance liquid chromatography) – There are several variants for this methodology but in general it involves the enzymatic hydrolysis of DNA to
its deoxyribonucleotide components and subsequent separation and quantification of the nucleotides by high-performance liquid chromatography. The system gives
highly reproducible results and, under suitable conditions, it is capable of measuring 5-methylcytosine levels even at low DNA concentrations. This method is
implemented by comparing control samples versus treatments to evaluate genome-wide methylated cytosines. A major drawback is that the method is incapable of
determining the sequence context of the methylated cytosine (Ramsahoye, 2002).

WGBS (Whole-genome bisulfite sequencing) – It is considered as the “gold standard” method in DNA methylation studies. This technique is based on
whole-genome sequencing protocols, after bisulfite conversion of DNA. The bisulfite DNA treatment mediates the deamination of non-methylated cytosines into
uracil, and these converted residues will be read as thymine, after subsequent high throughput sequence analysis. The main limitations are cost and bioinformatic
analysis of NGS data, which can be overcome with reduced representation bisulfite sequencing (RRBS), where only a genome fraction is sequenced (Kurdyukov and
Bullock, 2016).

effects of HMs on methylation patterns (Aina et al., 2004;
Filek et al., 2008; Ou et al., 2012; Feng et al., 2016). However,
the opposite pattern has also been reported; for example,
by using coupled restriction enzyme digestion and random
amplification (CRED-RA) in corn (Zea mays cv. RX9292),
Taspinar et al. (2018) established that exposure to Al induced
mobilization of long terminal repeat retrotransposons (LTR)
and triggered DNA hypermethylation as a protective response
to the stress condition. Complementarily, Agnieszka (2018)
compared liquid chromatography (RP-HPLC), MSAP analysis
and methylation amplified fragment length polymorphisms
(metAFLP) (Box 1) to detect DNA methylation levels of triticale
lines showing contrasting tolerance to Al treatments. After
Al exposure, a reduction in DNA methylation across non-
tolerant lines was identified with the RP-HPLC technique, in
contrast, increased methylation was seen in tolerant plants; this
outcome was independent of the Al dose. When MSAP was
used, increased demethylation was found in the roots of both,
non-tolerant and tolerant lines, with no differences between
them. Finally, metAFLP results demonstrated no differences in
DNA methylation under stress conditions, suggesting that only a
portion of the genome responds to Al stress.

Pour et al. (2019) used CRED_RA in three wheat cultivars (cv.
Haymana79, Kılçıksız, and Bezostaja1) to evaluate genetic and
epigenetic variations to different Al conditions (7.5 and 30mM).
DNA hypermethylation was observed in wheat plants at higher
Al concentration (30 mM) and hypomethylation at lower Al
concentration (7.5 mM). These results suggest a gradual effect of
Al on methylation, with concomitant cellular damages associated
with increased Al toxicity. A methylation increase along the
genome was concluded to confer a protective response in the
affected plants. Thus, the existing evidence points to a complex
influence of DNA methylation on the response to Al-induced
stress in a species-dependent manner.

Methylation changes caused by Al exposure can be targeted
to specific genomic locations. Choi and Sano (2007) showed a
direct effect of Al over methylation changes in stress response
genes in wild tobacco plants (Nicotiana tabaccum cv Xan-thi
nc). The study showed that Al stress promotes demethylation in
the coding region of the glycerophosphodiesterase-like protein
gene (NtGPDL) resulting in enhanced expression. NtGPDL
belongs to the glycosylphosphatidylinositol-anchored protein
(GAP) family linked to the extracellular matrix. Although the
function of this gene is unclear, it seems to be involved in
stress responses, including Al stress in tobacco (Borner et al.,
2003). Similarly, in transformed S-adenosylmethionine (SAM)
Arabidopsis plants. The inserted gene derived from the Al-
tolerant plant, Andropogon virginicus (AvSAMS1), conferred
enhanced Al tolerance to A. thaliana. This enzyme represents
the main methyl group donor in plants and appears to play an
important role in the epigenetic stress response. Overexpression
of the AvSAMS1 resulted in changes both in DNA and histone H3
methylation after plant exposure to Al. More interestingly, there
were differences in the demethylation and methylation patterns
at different positions in the promoter and coding regions of this
gene (Ezaki et al., 2016).

Transposable elements play a role in Al stress responses.
Kashino-Fujii and colleagues analyzed Al-tolerant accessions
of barley derived from a multi-retrotransposon-like (MRL)
insertion, located upstream of the coding region of the HvAACT1
gene. This gene is responsible for citrate efflux in roots, a
mechanism involved in Al detoxification. The MRL insertion
acted as a promoter and significantly enhanced HvAACT1
expression in Al-tolerant plants. This study showed that
both the MRL insertion and gene expression, are due to
demethylation processes, and are necessary for Al tolerance in
barley. Additionally, transposon insertions close to genes have
been proposed as a source of epialleles, and as a mechanism
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affecting the transcriptional regulation of specific genes (Slotkin
and Martienssen, 2007; Kashino-Fujii et al., 2018). Moreover,
methylation would have a role in controlling genes associated
with Al tolerance in plants.

DNA METHYLATION AS A REGULATORY
FACTOR IN PLANT RESPONSES TO
ALUMINUM STRESS: RICE AS A STUDY
CASE

Epigenetics has the potential to explain mechanistically, at
least part of the molecular responses to different abiotic
stresses, including HM toxicity (Figure 2). Although there
are no studies related to the epigenetic regulation of Al
tolerance in rice, we hypothesize that epigenetic mechanisms,
like DNA methylation, could play an important role as
a regulatory factor in this response. Potentially, several of
the genes mentioned in this review might be regulated
through differential patterns of DNA methylation. To test this
assumption, we performed a brief analysis to quantify the
methylation status of specific Al responsive genes in three
different rice varieties (IR64, Nipponbare, and Pokkali) with
contrasting responses to Al exposure.

For this evaluation, we analyzed publicly available data from
Stroud et al. (2013) obtained from the Nipponbare cultivar
(highly tolerant to Al toxicity) and from Garg et al. (2015) for
IR64 and Pokkali varieties (susceptible to Al toxicity). To explore
the possible role of methylated cytosines over gene expression, in
a set of 250 genes associated with Al tolerance in rice (Arenhart
et al., 2014; Arbelaez et al., 2017), we calculated the number
of methylated cytosines considering the different methylation
contexts (counting was performed 1000 bps before and after
the transcription initiation site). According to the reported
experimental data, these 250 genes showed significant changes
in expression after Al exposure (upregulated genes Log2FC ≥ 1,
downregulated genes Log2FC ≤ −1) (Supplementary Table 1).
Additionally, to increase the probability that the effects over
gene expression were caused by an epigenetic regulation solely,
we filtered out from this list, those genes with differences in

copy number or with SNP variations in the coding region,
retaining for the analysis only single-copy genes identified from
the rice genes paralogous list generated by Lin et al. (2008) and
without SNPs variants identified from the database Rice SNP-
Seek database (Mansueto et al., 20171). As a result, a group of
72 genes was kept, representing 10% of genes with the highest
counts for methylated cytosines (Supplementary Table 2). After
filtering by gene duplication and SNPs variants, we retained 26
candidate genes (Supplementary Figure 1 and Supplementary
Table 3). Among the three analyzed varieties, taking into account
the different methylation contexts, and the localization of the
methylated cytosines, Nipponbare exhibited more methylated
sites than the other two varieties (p ≤ 0.01 in an FDR analysis),
while IR64 and Pokkali did not show differences in methylation
(Figure 3). These results are interesting since Nipponbare has
been extensively reported as a cultivar highly tolerant to Al
(Famoso et al., 2010).

At the top of the list, representing highly methylated genes
(Table 3), we found some genes previously reported as important
players in rice Al tolerance. For example, the Calmodulin binding
protein (Loc_Os09g13890) is a calcium ion-binding molecule
that regulates different cellular processes, and recently, the
association of the Calmodulin signal transduction pathway to Al
stress has been reported (Zhang et al., 2016). This study showed
that transgenic Saccharomyces cerevisiae strains transformed
with the Calmodulin gene were more tolerant to Al toxicity,
suggesting that the gene is a good candidate for improving Al
tolerance in plants through transgenic approaches. Similarly, our
analyses also showed the proteins STAR1 (Loc_Os06g48060) and
ART1 (Loc_Os12g07280) as relevant in Al-related methylation.
STAR1 encodes a nucleotide-binding domain that associates with
STAR2, which encodes a transmembrane domain, to form a
bacterial-type ABC transporter required for Al detoxification in
roots (Table 1; Huang et al., 2009). On the other hand, the ART1
zinc finger protein is a transcription factor that regulates around
31 genes, probably involved in Al detoxification at different
cellular levels, including STAR1 and STAR2 genes (Yamaji et al.,
2009). Our results suggest that the methylation status of reported
Al response genes, could play a role in Nipponbare’s Al tolerance.

1https://snp-seek.irri.org/

TABLE 3 | Top 10 of genes with the highest methylated cytosines counts for three O. sativa varieties with different Aluminum tolerance levels.

Gene (MSU id) Annotation IR64 Nipponbare Pokkali

Loc_Os12g32850 Cytochrome P450 71E1, putative 202 949 273

Loc_Os09g13890 Calmodulin binding protein, putative, expressed 202 1075 159

Loc_Os12g42860 Cysteine dioxygenase 161 937 219

Loc_Os03g11950 CRAL/TRIO domain containing protein, expressed 137 1059 156

Loc_Os06g48060 Protein STAR1 130 1155 175

Loc_Os05g51470 2-aminoethanethiol dioxygenase, putative, expressed 115 1053 143

Loc_Os12g07280 Zinc finger protein ART1 109 1024 99

Loc_Os12g06660 Actin-7, putative, expressed 99 990 121

Loc_Os04g33640 Glycosyl hydrolases family 17, putative, expressed 83 1357 94

Loc_Os09g37510 DUF292 domain containing protein, expressed 69 941 82

Annotations were performed using the uniprot database.
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FIGURE 3 | Boxplots showing methylated cytosine frequency in three sequence contexts: CG (blue), CHG (red), and CHH (green) among three different rice varieties
with contrast responses to aluminum exposure: Nipponbare (Tolerant), Pokkali, and IR64 (Susceptible). The results are discriminated according to the location of the
epigenetic mark, either inside the gene body region (GB), the promoter (PR), or both the promoter and inside the gene body region of analyzed genes (PR + GB).

ALUMINUM BENEFICIAL EFFECTS FOR
PLANTS

Although Al has been mainly studied for its toxic effects
on plants, it can also generate benefits by inhibiting other
toxic minerals, increasing defense against pathogens and by
stimulating the absorption of specific nutrients as Mg, Ca, K,
and P (Bojórquez-Quintal et al., 2017). Likewise, several reports
show that Al can stimulate growth of both, plants adapted
to acid soils (Gulli et al., 2018; Muhammad et al., 2019),
and growth of commercially important crops as rice (Famoso
et al., 2011) and corn (Wang et al., 2015). In plants like tea
the presence of Al in soil stimulates root growth whereas its
absence results in stunned plants (Fung et al., 2008). Both
beneficial and negative effects are related to Al availability
(Bojórquez-Quintal et al., 2017).

Some beneficial effects generated by Al are consequences
of Al3+ cellular interactions. For example, organic acids that
are exudated as a response to Al exposure, promote root
growth and can increase the availability and uptake of P
when it is present at limiting conditions (Muhammad et al.,
2019). Currently, there are no reports of epigenetic mechanisms
directly related to positive responses to Al toxic conditions,
but it is possible to hypothesize that the epigenetic regulation
of genes associated with the biosynthesis of organic acids,
can indirectly and positively influence tolerant phenotypes in
certain plants. Likewise, there are many other genes involved
in metabolic processes as antioxidant enzymes, for which
changes in their expression can be epigenetically regulated
(Bojórquez-Quintal et al., 2017).

CONCLUSION AND PERSPECTIVES

Current knowledge of HM and Al tolerance in plants has
been extensively documented with a direct focus on the

physiological, and biochemical effects of these molecules, and
their negative impacts on crop production. In rice, there is
abundant information about genes and QTLs involved in Al
tolerance in comparison with other staple cultivars such as
barley or even the model plant A. thaliana. Nevertheless,
recently, epigenetic mechanisms have emerged as important
factors in the response of plants to HM stresses. Two
main epigenetic strategies are relevant: (i) epigenetic marks
are used as a mechanism to protect plants from possible
DNA damage caused by metal ions through random DNA
methylation along the genome, and (ii) epigenetic changes are
used for the regulation of transposon and stress-responsive
genes (Figure 2).

The studies carried out so far are evidence of putative
epigenetic changes caused by HM exposure. However, it is
necessary to evaluate the patterns of DNA methylation, as
well as histone modifications occurring in precise genome
regions to understand the possible epigenetic mechanisms
underlying the regulation of the complex gene networks of Al
tolerance responses. Likewise, there is a need for development of
bioinformatics pipelines for epigenetic analyses. Future studies
will be mandatory to evaluate the stability of the reported
epigenetic changes through generations, given that epialleles can
become permanent marks affecting genotypes and phenotypic
responses. Finally, we report an overall greater abundance of
methylated cytosines in an Al-tolerant rice variety, showing a
contrasting methylation pattern related to differentially expressed
Al responsive genes. This supports the hypothesis of DNA
methylation as a fundamental key factor in the rice response to
Al exposure.
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