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Fine-grained image classification is a challenging task because of the difficulty in

identifying discriminant features, it is not easy to find the subtle features that fully represent

the object. In the fine-grained classification of crop disease, visual disturbances such as

light, fog, overlap, and jitter are frequently encountered. To explore the influence of the

features of crop leaf images on the classification results, a classification model should

focus on the more discriminative regions of the image while improving the classification

accuracy of the model in complex scenes. This paper proposes a novel attention

mechanism that effectively utilizes the informative regions of an image, and describes

the use of transfer learning to quickly construct several fine-grained image classification

models of crop disease based on this attention mechanism. This study uses 58,200

crop leaf images as a dataset, including 14 different crops and 37 different categories of

healthy/diseased crops. Among them, different diseases of the same crop have strong

similarities. The NASNetLarge fine-grained classification model based on the proposed

attention mechanism achieves the best classification effect, with an F1 score of up to

93.05%. The results show that the proposed attention mechanism effectively improves

the fine-grained classification of crop disease images.

Keywords: crop disease, fine-grained, image classification, attention mechanism, fine-tuning

INTRODUCTION

Outbreaks of crop disease have a significant impact on the yield of agricultural production. Often,
large-scale disease outbreaks destroy crops that have taken considerable efforts to grow, causing
irreparable damage. Even without large-scale disease outbreaks, small-scale emergence can cause
serious losses to crop yield and quality (Mutka and Bart, 2015). Therefore, developing techniques
to accurately classify crop leaf disease categories is critical for disease prevention. With advances in
image classification technology, researchers in the field of crop disease have gradually come to use
deep learning approaches (Ramcharan et al., 2017; Fuentes et al., 2018; Liu B. et al., 2020). To date,
research on the general classification of crop diseases has made several remarkable achievements
in terms of better classification. However, for some fine-grained crop leaf diseases, there are still
many difficulties.

Fine-grained image classification aims to classify sub-categories of a single larger category
through fine-grained images (Peng et al., 2018). Examples include Stanford Cars (Yu et al., 2018;
Tan and Le, 2019), CUB-200-2011 (Chen et al., 2019; Zhuang et al., 2020), FGVC Aircrafts
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(Ding et al., 2019; Sun et al., 2020), and Oxford 102 Flowers
(Dubey et al., 2018; Touvron et al., 2019). Fine-grained image
classification models can be divided into algorithms based on
strong supervision and algorithms based on weak supervision,
which depends on how much supervision information can be
used. For classification models based on strong supervision
information, superior classification accuracy during model
training requires artificial annotation information, such as object
bounding boxes and part annotation, in addition to image-level
category labels. Fine-grained image classification models based
on weakly supervised information are similar, but also require
the use of global and local information. Weakly supervised fine-
grained classification attempts to achieve better local information
capture without resorting to the key point information of object
parts. As our goal is fine-grained image classification, we need to
build a model that can identify the most discriminating image
features. Therefore, it is vital to detect subtle discriminatory
features from similar regions (Ou et al., 2016; Zhang et al., 2016).
Because the occurrence of crop diseases is often not controlled
by humans, the fine-grained classification of crop diseases is
common, but remains challenging. In general, different sub-
categories have very similar appearance, although occasionally
the different sub-categories are completely inconsistent. More
seriously, the many visual disturbances (such as reflection,
dispersion, and blur) caused by dew, shooting jitter, and light
intensity seriously reduce the classification accuracy of crop
disease images (Lu et al., 2017).

In terms of both theoretical research and practical
applications, the fine-grained image classification of crop
leaf diseases is of great importance, and is thus the focus of this
study. Many researchers have studied the classification of crop
diseases based on pattern recognition andmachine learning. Guo
et al. (2014) utilized texture and color features using a Bayesian
approach for recognizing downy mildew, anthracnose, powdery,
and gray mold infection with respective accuracy levels of 94.0,
86.7, 88.8, and 84.4%. Zhang et al. (2017) developed a leaf disease
identification application in cucumber plants. This application
isolates the infected part of the leaf through k-means clustering
before extracting the color and shape, resulting in an accuracy
level of 85.7%.

Although the above methods have made some progress, the
identification and classification of diseases of different crops
under actual field conditions can be further improved. For
example, although some models can achieve extremely high
accuracy on datasets under laboratory conditions, they often
have poor identification effects when faced with actual field
conditions. We think this is because insufficient disease features
are extracted, resulting in a lack of disease details. In summary,
the main challenge of fine-grained image classification of crop
leaf diseases is undoubtedly the subtle discrimination between
different sub-categories. The primary difficulties can be roughly
divided into three aspects: (1) the similarity between the sub-
categories under the same disease category is very strong; (2) the
field environment has significant background interference; and
(3) the location of different crop diseases is inconsistent.

In an attempt to overcome these difficulties, many researchers
have applied convolutional neural network (CNN) to crop

disease classification. To investigate the impact of dataset size
and species on the effectiveness of crop disease classification
based on deep learning and transfer learning, Barbedo (2018)
showed that, although CNNs can largely overcome the technical
limitations associated with automated crop disease classification,
training with a limited set of image data can have many negative
consequences. Kaya et al. (2019) studied and demonstrated
that the transfer learning model can help crop classification
identification and improve the low-performance classification
model. Too et al. (2019) fine-tuned and evaluated the most
advanced deep CNN for image-based crop disease classification.
The data used in their experiments covered 38 different
categories, including disease and health images of the leaves of
14 crops from PlantVillage. The accuracy of DenseNet reached
99.75%, better than that of other models. Cruz et al. (2019)
used CNNs to detect leaf images of Grapevine Yellows (GY)
disease in red vines (cv. Sangiovese). ResNet-50 was found to
be the best compromise network in terms of accuracy and
training cost. Turkoglu et al. (2019) proposed a multi-model pre-
trained CNN (MLP-CNN) based on long short-term memory
for detecting apple diseases and insect pests. Their results were
comparable to or better than those of pre-trained CNN models.
Deep learning has been widely applied to various crop categories
and crop disease classification studies, and deep learning models
based on transfer learning can accelerate the training stage.
At the same time, to cope with the impact of complex scenes
on model classification performance, it is necessary to enhance
the performance of CNNs to better handle fine-grained image
classification tasks.

In recent years, it has been found that human cognitive
processes do not focus attention on the entire scene at one
time. On the contrary, they pay more attention to local regions
in the scene while extracting relevant information. Models
based on attention mechanisms have achieved good results
on many challenging tasks, such as visual question answering
(Malinowski et al., 2018), object detection (Li et al., 2019), and
scene segmentation (Fu et al., 2019). Although the attention
mechanism has been applied to different tasks, it has not been
used for the fine-grained classification of crop disease images.

In this research, we propose a novel attention mechanism and
use transfer learning to quickly build several fine-grained image
classification models of crop diseases based on the attention
mechanism, so as to solve the problem that the accuracy of CNN
model in complex scenes is low due to visual interference in
practical applications. Therefore, the contributions of this paper
are as follows:

According to the characteristics of crop disease images in
real scenes, a fine-grained fine-tuning classification algorithm
based on attention mechanism is constructed on the basis
of using pre-trained CNN to extract convolutional features
of fine-grained images as the input of the network. The
attention mechanism makes the classification algorithm pay
more attention to some more discriminative local regions of the
image, thereby improving the classification accuracy of themodel
in complex scenes.

We collect crop disease images in real scenes and added
these images to the PlantVillage dataset to form a new
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hybrid dataset for training the CNN model. We verify the
effectiveness of our proposed method by designing multiple
comparative experiments.

In addition, we also explore and prove the importance
of the image source to the classification results, as well as
the impact of problem scenes and special interference on the
classification results.

The rest of this paper is organized as follows. SectionMaterials
and methods introduces the main experimental dataset and
our proposed fine-grained fine-tuning classification algorithm
based on the attention mechanism. The experimental results are
described in section Results. In section Discussion, we discuss
the importance of training image sources, the impact of problem
scenes and special interference on the classification results.
Finally, this paper concludes in Section conclusion.

MATERIALS AND METHODS

Image Datasets
This study considered the PlantVillage public dataset of 52,629
images (except for images from the Tomato Two Spotted Spider
Mite, Tetranychus urticae, category) (Mohanty et al., 2016),
which covers a total of 37 categories including images of
14 different healthy or diseased crops. Using the Scrapy web
crawler on the Internet’s agricultural technology and consulting
platforms, we then extracted a total of 5,571 images uploaded
by users in the abovementioned 37 categories (images of crop
diseases under actual field conditions). Finally, CNNmodels were
trained and tested using the full dataset of 58,200 healthy and
diseased crop disease images (Figure 1).

Table 1 provides statistical data for the 37 categories of the
dataset, such as the number of images for each category and the
percentage of images taken under laboratory or field conditions.
It is well-known that there is a single color or no background in
the image of laboratory conditions, while the background in the
image of field conditions is relatively complex and changeable. As
shown in Table 1, nearly 10% of the available images were taken
under field conditions.

Figure 2 shows disease images of potato late blight, including
four disease images obtained under field conditions and four
disease images obtained under laboratory conditions. The
increase in complexity of the four diseased images under field
conditions is obvious (e.g., there are many leaves and other parts
in the images, different backgrounds, shadow effects, and so on).

The dataset includes images taken under laboratory
conditions and under field conditions (see Figure 2); the
percentages of each are presented in Table 1. The whole dataset
was randomly divided into a training set (80%) and a test set
(20%). Therefore, 46,560 images were used for CNN model
training, while the remaining 11,640 images were used to test the
performance of the model. The training set and the test set were
preprocessed to satisfy the model’s input size requirements, and
the image sizes were reduced and cropped to 256×256, 299×299,
and 331×331 pixels.

We conducted several experiments to evaluate the importance
of the conditions under which the leaf images were captured.
Namely, we first conducted the training using only laboratory

conditions images (PlantVillage, 52,629 photos) and the testing
using images of actual field conditions (Internet, 5,571 photos),
and then performed training using only images of actual field
conditions (Internet, 5,571 photos) and testing with images taken
under laboratory conditions (PlantVillage, 52,629 photos).

Experimental Methods and Parameters
Transfer Learning

VGG, ResNet, and other deep CNN models have achieved great
success in image classification. The pre-trained deep CNNmodel
has been fully trained on a large image dataset (ImageNet),
allowing many features required for image classification to be
learned. Therefore, we can use the idea of transfer learning
to fully utilize the large amount of knowledge learned by
pre-training the CNN model on the ImageNet dataset, and
apply it to crop disease image classification. This paper
describes how the transfer learning method of parameter
transfer was adopted to remove the maximum pooling and fully
connected layers after the final convolution, and introduces a
new fine-grained classification model based on the attention
mechanism. Compared with the random initialization of the
weight parameters of each layer of the network, the fine-tuning
method helps accelerate the convergence of the network.

For image classification, there are several CNN baseline
models that have been successfully applied to specific tasks.
Regarding the task of image recognition and classification of
crop diseases, six CNN models that were pre-trained using
ImageNet have been applied: (1) VGG16 and VGG19 (Simonyan
and Zisserman, 2015), (2) ResNet50 (He et al., 2016), (3)
InceptionV3 (Szegedy et al., 2016), (4) Xception (Chollet,
2017), and (5) NASNetLarge (Zoph et al., 2018). The training
and testing processes of these pre-trained models and of the
proposed fine-grained pre-trained model based on the attention
mechanism were implemented using the TensorFlow machine
learning computing framework. Model training and testing was
conducted with four NVIDIA Tesla V100 GPUs.

Attention Mechanism

The attention mechanism was first applied to natural language
processing. It is often combined with recurrent neural networks,
resulting in good prediction and processing ability for text
sequences. In recent years, the attention mechanism has also
been widely used for image classification (Meng and Zhang, 2019;
Xiang et al., 2020), object detection (Chen and Li, 2019; Xiao
et al., 2020), and image description generation (Liu M. et al.,
2020; Zhang et al., 2020). In the field of crop disease classification,
most researchers have tended to use transfer learning technology.
There has also been some research on crop disease identification
based on the attention mechanism (Nie et al., 2019; Karthik
et al., 2020). These previous studies have focused on a certain
crop, and so the disease category and scale of the dataset are
limited. Therefore, we conducted related experiments to verify
that increasing the attentionmechanism can improve the effect of
crop disease classification based on transfer learning technology.

The attention of an image refers to the process of obtaining
a target region that requires attention as the human eye rapidly
scans the global image. This target region is assigned more
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FIGURE 1 | Examples of crop leaf images in the dataset.
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TABLE 1 | Statistics of crop healthy/diseased images and related data.

Class Plant common name Disease common name Disease scientific

name

Images (PlantVillage) Laboratory conditions (%) Field conditions (%)

1 Apple Apple scab Venturia inaequalis 800 (630) 78.75% 21.25%

2 Apple Black rot Botryosphaeria obtuse 800 (621) 77.63% 22.38%

3 Apple Cedar apple rust Gymnosporangium

juniperi-virginianae

400 (275) 68.75% 31.25%

4 Apple — — 1,800 (1,645) 91.39% 8.61%

5 Blueberry — — 1,700 (1,502) 88.35% 11.65%

6 Cherry (and sour) — — 1,000 (854) 85.40% 14.60%

7 Cherry (and sour) Powdery mildew Podosphaera spp. 1,200 (1,052) 87.67% 12.33%

8 Com (maize) Cercospora leaf spot Cercospora

zeae-maydis

700 (513) 73.29% 26.71%

9 Com (maize) Common rust Puccinia sorghi 1,300 (1,192) 91.69% 8.31%

10 Com (maize) — — 1,300 (1,162) 89.38% 10.62%

11 Com (maize) Northern Leaf Blight Exserohilum turcicum 1,100 (985) 89.55% 10.45%

12 Grape Black rot Guignardia bidwellii 1,300 (1,180) 90.77% 9.23%

13 Grape Esca (Black measles) Phaeomoniella

chlamydospora

1,500 (1,383) 92.20% 7.80%

14 Grape — — 600 (423) 70.50% 29.50%

15 Grape Leaf blight Pseudocercospora vitis 1,200 (1,076) 89.67% 10.33%

16 Orange Huanglongbing Candidatus

Liberibacter

5,700 (5,507) 96.61% 3.39%

17 Peach Bacterial sport Xanthomonas

campestris

2,400 (2,297) 95.71% 4.29%

18 Peach — — 500 (360) 72.00% 28.00%

19 Pepper, bell Bacterial spot Xanthomonas

campestris

1,100 (997) 90.64% 9.36%

20 Pepper, bell — — 1,600 (1,478) 92.38% 7.63%

21 Potato Early blight Altemaria solani 1,200 (1,000) 83.33% 16.67%

22 Potato — — 300 (152) 50.67% 49.33%

23 Potato Late blight Phytophthora infestans 1,200 (1,000) 83.33% 16.67%

24 Raspberry — — 500 (371) 74.20% 25.80%

25 Soybean — — 5,200 (5,090) 97.88% 2.12%

26 Squash Powdery mildew Erysiphe

cichoracearum,

Sphaerotheca fuliginea

2,000 (1,835) 91.75% 8.25%

27 Strawberry — — 600 (456) 76.00% 24.00%

28 Strawberry Leaf scorch Diplocarpon earlianum 1,300 (1,109) 85.31% 14.69%

29 Tomato Bacterial spot Xanthomonas

campestris pv.

Vesicatoria

2,300 (2,127) 92.48% 7.52%

30 Tomato Early blight Altemaria solani 1,200 (1,000) 83.33% 16.67%

31 Tomato Late blight Phytophthora infestans 2,100 (1,909) 90.90% 9.10%

32 Tomato Leaf Mold Fulvia fulva 1,100 (952) 86.55% 13.45%

33 Tomato Septoria leaf spot Septoria lycopersici 1,900 (1,771) 93.21% 6.79%

34 Tomato Target spot Corynespora cassiicola 1,600 (1,404) 87.75% 12.25%

35 Tomato Tomato mosaic virus Tomato mosaic virus

(ToMV)

500 (373) 74.60% 25.40%

36 Tomato TYLCV Begomovirus (Fam.

Geminiviridae)

5,500 (5,357) 97.40% 2.60%

37 Tomato — — 1,700 (1,591) 93.59% 6.41%

TOTAL: 58,200 (52,629) 90.43% 9.57%

Images column gives the number of images in each category, where the figures in parentheses are from the public dataset.

Frontiers in Plant Science | www.frontiersin.org 5 December 2020 | Volume 11 | Article 600854

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yang et al. Image Classification for Crop Disease

FIGURE 2 | Image sample of potato late blight. (A–D) Field conditions, (E–H) laboratory conditions.

attention (weight distribution) to obtain the required detailed
information about the target, with other useless information
suppressed. Soft attention is most commonly used, because this
is a completely differentiable process that can realize end-to-
end learning in CNN models. Most soft attention models learn
an attention template to align the weights of different regions
in a sequence or an image and use this template to locate the
distinguishable regions. Different from soft attention, the hard
attention mechanism is a random, non-differentiable process
that determines the importance of individual regions one at a
time, rather than identifying the important regions within the
whole image.

For image classification, the weight of the arithmetic mean of
attention can be extracted through attention learning to form the
attention spectrum of the image. Similar to traditional natural
language processing, the image-based attention can be obtained
through the model illustrated in Figure 3.

In Figure 3, I is the input image. The attention model has
n parameters, a1, a2, · · · , ai, an, which respectively represent a
description of each part of the image. O is the return value of the
model’s attention spectrum (more specifically, the weight values
of the n parameters), which is determined from the importance
of each ai relative to the input I. By filtering the input image
through this output, the region that requires most attention can
be identified.

Proposed Model

Based on the pre-trained model described in Section transfer
learning and the attention mechanism introduced in Section
attention mechanism, this paper proposes a fine-grained
classification model based on the attention mechanism
(Figure 4). By learning the attention of the CNN feature

spectrum, the attention model calculates and identifies the
most important region of the feature spectrum for the final
classification task, and provides the maximum attention input
(weight distribution). However, adding the attention weight to
the last layer of the CNN features will cause different degrees
of suppression of the original features. To overcome this
suppression, the weighted feature spectrum is added to the
original feature spectrum. The fusion spectrum is then input
into the fully connected layer. In the second fully connected
layer, the attention feature spectrum transformed by the global
average pooling dimension is connected with the fully connected
feature spectrum in the channel direction, before being sent to
the classification layer for classification.

The attention model proposed in this paper adopts an
unsupervised training mode. There is no pre-labeled ground
truth to constrain the attention spectrum, so there is no separate
loss calculation. Instead, a backpropagation adaptive mode is
used to constrain the weight distribution of attention. The loss
function defined in this paper is expressed as:

loss=
1

2n

∑

||ytruth (x)−ypred(x)||
2 (1)

where n = 37 is the number of input samples, x is the input
sample, ytruth is the actual category, and ypred is the predicted
category output by the final layer of the network. In the process
of backpropagation, the output error of the Softmax layer is
backpropagated, and the parameters are updated using the
random gradient descent method, so that the final loss function
value decreases and the network converges.

Through the soft attention mechanism, the output of the final
convolutional layer of the CNN is obtained. This is taken as the
input of the attention model, and the corresponding attention
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FIGURE 3 | Schematic diagram of learning mechanism of attention.

FIGURE 4 | Fine-grained image classification network structure of crop diseases based on attention mechanism.

spectrum is calculated. The original feature spectrum is then
weighted by the attention spectrum, and the output attention
feature spectrum is provided as the input for the subsequent
network. Let the feature spectrum of the output of the final
convolution spectrum after the pooling operation be expressed as
f ∈ R

H×W×C, whereH andW refer to the height andwidth of the
feature spectrum of this layer, C refers to the number of channels
of the feature spectrum of this layer, and for each position (m, n)
on the spectrum, its feature value is expressed as fm,nǫR

C. The
corresponding attention weightWm,n can then be obtained as:

Wm,n = ATT(fm,n;Watt) (2)

where ATT is a mapping function learned by the attention model
andWatt is the weight parameter of the attentionmodel. Through
Softmax regression of wm,n, the final attention spectrum M =

[Mm,n] is obtained as a normalized probability matrix, where
Mm,n is expressed as:

Mm,n = Softmax(Wm,n) (3)

As can be seen from Figure 5, the attention model proposed in
this paper takes the output of the final convolution spectrum in
the neural network as its input. The attention model includes two
convolutional layers and one Softmax layer. The kernel sizes of
the convolutional layers are 3×3 and 1×1. The attention feature
spectrum f att = [f attm, n] is obtained by multiplying the attention
spectrumM by the CNN feature spectrum f , and is expressed as

f att=
[

f attm,n

]

= [Mm,n · fm,n] (4)

The 3×3 convolution kernel further extracts the CNN feature of
the final convolution spectrum. In order not to reduce the feature
receptive field and feature information, a convolution kernel
with the same size as the original network is selected. Compared
with the 3×3 convolution kernel, the 1×1 convolution kernel
enables information interaction and integration across channels.
By connecting features in the channel direction, nonlinear
components can be added to features to improve the feature
expression ability of the attention model.
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FIGURE 5 | Attention calculation model for images.

The attention spectrum of the final convolution spectrum
of the CNN is obtained through the attention model, and the
attention spectrum and the original CNN feature spectrum are
then multiplied to obtain the attention feature spectrum. The
attention spectrum is the spectrum obtained after normalizing
the weights of the features. According to this definition, the
attention feature spectrum obtained after multiplication has a
certain attenuation compared with the original CNN feature
spectrum. Additionally, during the convolution and probability
calculation, the spatial transformation of the CNN feature
spectrum and noise addition means that the calculated attention
spectrum may be distorted. In this case, the obtained attention
spectrum has no guiding significance for the original image
spectrum. To overcome this problem, once the attention feature
spectrum has been obtained, the original CNN feature spectrum
is added and fused to obtain the final attention f att

all
, which is

input into the subsequent fully connected layer, as shown in
Equation (5).

f attall = f+M · f (5)

By adding the attention spectrum to the CNN feature spectrum,
the distortion of the attention spectrum is overcome and the
original feature spectrum before the fully connected layer can be
effectively utilized.

By extracting and merging the attention spectrum, a spectrum
of features is obtained that is well-located and noticeable in space.
This spectrum is then input to the subsequent fully connected
layer. As the connection operation maps the convolutional
spectra of all channels to one point in the fully connected layer,
the spatial information is destroyed by the operation of the
fully connected layer. The original intention of introducing the
attention model is to extract and improve the significant regions
of the CNN feature spectrum in space. However, after the fully
connected layer, the spatial information of the extracted attention
feature has also been destroyed. Therefore, the attention space
feature is reused by connecting the attention feature spectrum in
the final fully connected layer, as shown in Figure 6.

Evaluation of the Model
The accuracy, precision (P), recall (R), and comprehensive F1
evaluation index were used to evaluate the crop disease image
classification model. The F1 value is the harmonic average of the
precision and recall, and has a maximum of 1 and a minimum of
0. It is calculated as follows:

F1 =
2PR

P + R
× 100% (6)

Experimental Details
In all our experiments, we preprocessed the images to sizes of
256×256, 299×299, and 331×331 pixels, conducted a total of
1,000 training epochs, and used a batch size of 32. We used
a momentum SGD initial learning rate of 0.001. When the
standard evaluation stopped increasing, the learning rate was
multiplied by 0.1 until it had dropped to 0.0001. After lowering
the learning rate, we waited for five epochs before returning to
normal operation. If the loss of the test set did not improve
after 20 epochs, the learning rate was reduced. We conducted
experiments using multiple pre-trained models, all of which are
robust to the selection of hyper-parameters.

RESULTS

Compared With the Pre-training Model and
the Effect of the Attention Mechanism
Tables 2, 3 present the classification accuracy, precision, recall,
and F1 values of various models on the test set. The results
indicate that the fine-grained fine-tuning classification models
based on the attention mechanism outperform the original pre-
trained models by 1–2% in terms of accuracy, precision, recall,
and F1 value. This demonstrates that the attention mechanism
improves the classification performance of the models and
allows them to focus on key regions in the image. The fine-
grained NASNetLarge model based on the fine-grained attention
mechanism achieves the highest accuracy, precision, recall, and
F1 values, and thus provides the best classification performance.
These 12 models were further trained using only the original
image to record the training period for the best performance. As
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FIGURE 6 | Dimension transformation and connection diagram of attention feature spectrum.

shown in Table 3, the fine-grained NASNetLarge model based
on the attention mechanism achieves the highest classification
accuracy of 95.62%. Thus, this model was used in subsequent
experiments for crop disease image classification.

Figure 7 provides a visual representation of some random
images from the test set. The table on the left of the
original image shows the predicted classification. The image
to the right of the original image is a visual representation
of the attention mechanism using the fine-grained fine-
tuning NASNetLarge model based on the attention mechanism.
The highest-ranked classification result for each image was
considered as the final classification result predicted by the
model. The images of the crop leaves shown in Figure 7 are
correctly classified. In most cases, the degree of certainty for
the correct classification is close to 100%, so there is no
actual ranking.

Testing on Different Dataset
We also comprehensively evaluated our algorithm on public
plant datasets of Flavia (Wu et al., 2007), Swedish Leaf
(Söderkvist, 2001), and UCI Leaf (Silva et al., 2013). These
datasets contain clear images, and they are widely used datasets in
this field, often used for algorithm development and comparison.
The statistics of three datasets are shown in Table 4. We follow
the same training/test split as in Section image datasets.

The Flavia dataset contains 1,907 images of 32 species of
plants. All images in the dataset have a white background, and
the number of each category varies from dozens of images and is
relatively unbalanced.

The Swedish Leaf dataset contains 15 plant species, with 75
images in each category. All plant leaf images are images with
white background, and the quality and resolution of each image
is high.

The UCI Leaf dataset contains 40 different plants and a total of
443 images. The background colors of the images in this dataset
are all pink. The number of images in each category ranges from
a few to a dozen.

As seen from Table 5 the NASNetLarge model based on
the attention mechanism constructed by our proposed method
can still get the best classification accuracy on the three public
plant datasets. Therefore, it can be proved that our model has
better performance across datasets and can achieve efficient
classification on datasets of different sizes.

Validation and Comparison of Proposed
CNN With Traditional Machine Learning
Models
The traditional machine learning methods used for comparison
in this paper are SVM, Decision tree, k-NN, and Naive Bayes.
Features such as Hu-moments, Haralick features, LBP features,
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TABLE 2 | Results of pre-trained model on test set.

Pre-trained model Size(MB) Accuracy (%) Precision (%) Recall (%) F1-measure (%) Parameters

VGG16 (Simonyan and Zisserman, 2015) 56.16 83.07 82.52 80.13 81.31 15,360,589

VGG19 (Simonyan and Zisserman, 2015) 76.42 85.79 83.45 81.75 82.59 20,670,285

ResNet50 (He et al., 2016) 90.38 85.82 85.21 83.63 84.41 25,769,613

InceptionV3 (Szegedy et al., 2016) 83.84 88.47 87.78 85.47 86.61 23,984,685

Xception (Chollet, 2017) 79.81 91.22 90.24 87.05 88.62 23,043,381

NASNetLarge (Zoph et al., 2018) 327.69 92.78 92.16 90.83 91.49 89,082,719

TABLE 3 | Results of fine-grained classification model based on attention on test set.

Model based on

attention mechanism

Size(MB) Accuracy (%) Precision (%) Recall (%) F1-measure (%) Parameters

VGG16* 59.23 85.53 84.68 81.32 82.97 15,514,783

VGG19* 79.75 86.40 84.93 82.05 83.47 20,823,653

ResNet50* 93.91 87.03 86.27 85.32 85.79 25,942,746

InceptionV3* 87.53 90.64 88.51 88.48 88.49 24,173,257

Xception* 83.28 92.89 91.82 90.95 91.38 23,218,425

NASNetLarge* 331.75 95.62 94.35 91.79 93.05 89,286,814

The * indicates that the pre-training model is used.

FIGURE 7 | Examples of correct classification of test set images and visualization of attention mechanism.

and HSV features have been used to evaluate the performance of
all traditionalMachine Learning algorithms. The results are given
in Table 6.

Table 6 shows that the accuracy, precision, recall and F1 of our
proposedmodel aremuch higher than those obtained using other
machine learning algorithms.
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TABLE 4 | Statistics of benchmark datasets.

Datasets Class Train Test

Flavia 32 1,526 381

Swedish leaf 15 900 225

UCI leaf 40 356 87

TABLE 5 | Comparison of methods for image classification in three datasets.

References Datasets Accuracy/% Method

Lee et al. (2017) Flavia 99.40 CNN, Fine-tuning

Yousefi et al.

(2017)

Flavia 97.50 Fourier and Wavelet

Descriptors, MLP

Murat et al. (2017) Flavia 95.25 HOG, Moments, ANN,

Swedish 99.89 RF, and SVM

Kaya et al. (2019) Flavia 99.00 DF – VGG16/LDA

Swedish 98.80 CNN – RNN

UCI Leaf 96.20 DF – Alexnet/LDA

Our Flavia 99.72 NASNetLarge –

Swedish 99.90 Attention

UCI Leaf 98.74

DISCUSSION

Importance of Training Image Type
The fine-grained NASNetLarge model based on the attention
mechanism produced the best classification effect, and
was therefore further tested to study the importance
of assessing the conditions under which the leaf image
was captured. The corresponding results are presented in
Table 7.

When only laboratory or field condition images are used
for training, the accuracy on the test set is significantly
lower than when both laboratory and field condition
images are used for training. The results show that the
model can obtain better performance when using images
obtained under field conditions for training and requiring
classification of laboratory condition images (F1 value is
nearly 60.47%). In contrast, when the laboratory condition
images are used for training and the field condition images
are classified, the classification performance is obviously
reduced (F1 value is about 34.11%). This shows that image
classification under field conditions is a more difficult and
complicated task than the classification of images obtained
under laboratory conditions, and proves that the construction
of an efficient automatic detection and diagnosis system for
crop diseases using images obtained under field conditions is of
great significance.

Problematic Situations and Indicative
Cases
The fine-grained NASNetLarge model based on the attention
mechanism reached an accuracy level of 95.62% on the test
set of 11,640 images, of which 11,130 images were correctly

classified. Among the 4.38% of misclassified images, there are
some “problematic” images that do not contain crop leaves at all
(as shown in Figures 8A,B). These images should be classified
into category 31 (Tomato late blight, phytophthora infestans),
but the model classifies their predictions into category 10 (Corn
healthy), as shown in the classification table in Figure 8. The
classification table shows the predicted classification ranking
output of the final model on the original image. These images
are misclassified by the model (the “correct” classification would
be category 31). In fact, they do not belong to any category,
because there are no crop leaves in the image. However, they are
all classified as category 10. We infer that the images in category
10 (Figures 8C,D) contain similar soils, while the corn leaves
are very slender and occupy a small portion of the image. If
such problematic examples are excluded, the accuracy of the final
model will be higher than 95.62%.

There are several other problems with the images obtained
under field conditions, including: (1) shadows on the leaves in the
images, with some images appearing dark and shaky; (2) other
objects in the image that are not related to the leaf itself, such
as a trunk, fruit, or fence. Note that these problematic images
occupy a very small portion of the dataset. In short, according
to the certainty levels provided by the final model, the attention
mechanism-based approach proposed in this paper overcomes
these problems in most cases.

A typical case is category 8 (Corn cercospora leaf spot,
cercospora zeae-maydis). Figure 9 shows the classification results
of the model for eight representative images of category 8,
including four incorrectly classified images (the lower four
images in Figure 9) and four correctly classified images (the
upper four images in Figure 9). The first three upper images
were correctly classified, with a certainty of ∼100%, while the
fourth image was correctly classified with a certainty of ∼79%
(the second ranking, with a certainty level of 16% for category
10, corresponds to corn crops with different diseases). The four
misclassified images (the lower four images in Figure 9) include
a wide range of partial shadows or complex backgrounds, which
increase the misclassification rate of the model. For the middle
two lower images, the correct classification is ranked second,
while the first ranking is category 10 or 11 (corn crop diseases).
Therefore, the model correctly identifies the crop species, but
does not accurately detect the particular crop disease.

CONCLUSIONS

This study constructed, trained, and tested a fine-grained neural
network model based on the attention mechanism for the
classification of simple leaves of healthy or diseased crops.
The model was trained using 58,200 publicly available images
obtained under both laboratory conditions and field conditions.
The data include 14 crop species in 37 different categories of
[crop, disease] combinations, including some healthy crops. The
optimal model was found to be a fine-grained NASNetLarge
neural network based on the attention mechanism, which
achieved an accuracy level of 95.62% (precision 94.35%, recall
91.79%, F1 value 93.05%) in the classification of the 11,640 images
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TABLE 6 | Comparison of methods for image classification in three datasets.

Models Features Accuracy/% Precision/% Recall/% F1-measure/%

Naïve Bayes Haralick, Hu 31.67 17.11 12.23 14.26

Hu-moments, HSV 35.61 20.92 15.56 17.84

Haralick, Hu, HSV 39.08 29.33 20.55 24.17

Haralick, Hu, HSV, LBP 43.24 36.76 25.64 30.21

Decision tree Haralick, Hu 41.33 23.24 18.85 20.82

Hu-moments, HSV 47.18 30.52 25.21 27.61

Haralick, Hu, HSV 53.91 43.45 34.69 38.58

Haralick, Hu, HSV, LBP 60.23 48.32 41.36 44.57

SVM Haralick, Hu 43.33 30.42 23.28 26.38

Hu-moments, HSV 52.67 41.23 33.01 36.66

Haralick, Hu, HSV 55.82 45.35 36.82 40.64

Haralick, Hu, HSV, LBP 61.45 54.51 43.24 48.23

k-NN Haralick, Hu 69.66 65.23 53.72 58.92

Hu-moments, HSV 75.38 73.57 61.34 66.90

Haralick, Hu, HSV 79.52 77.41 66.38 71.47

Haralick, Hu, HSV, LBP 84.45 80.65 74.77 77.60

Our model (NASNetLarge*) 95.62 94.35 91.79 93.05

The * indicates that the pre-training model is used.

TABLE 7 | Results of using different training sets and test sets with the optimal model under laboratory conditions and field conditions.

Model based on

attention mechanism

Training: laboratory Training: actual field conditions

Testing: actual field conditions Testing: laboratory

Accuracy (%) Precision (%) Recall (%) F1-measure (%) Accuracy (%) Precision (%) Recall (%) F1-measure (%)

NASNetLarge* 38.52 34.28 33.95 34.11 66.85 61.32 59.64 60.47

The * indicates that the pre-training model is used.

in the test set. The fine-grained NASNetLarge neural network
model based on the attention mechanism achieves excellent
classification performance by analyzing simple leaf images, so it
is highly suitable for the automatic detection and diagnosis of
crop diseases. In addition, the experimental results show that
the images taken under field conditions in the training set are
of high importance, indicating that when training such models,
the proportion of images obtained under field conditions in the
training set should be carefully considered.

For the backbone network of NASNetLarge, the results
show that the NASNetMobile neural network model, similar
to NASNetLarge, achieves state-of-the-art classification results
on related datasets, surpassing the performance of previous
lightweight networks such as MobileNet (Sandler et al., 2018)
and ShuffleNet (Ma et al., 2018). As NASNetMobile requires
little computing power to classify the given images, it can run
on mobile devices such as smartphones, drones, or automatic
agricultural vehicles for real-time monitoring and disease
identification of large open-air crops. At present, due to the
large-scale application of 5G, high-efficiency transmission, and
improvements to the hardware configuration of mobile terminal
equipment, it is possible to upload images locally to the cloud
server for processing, and then return the identification and
classification results to the terminal (Johannes et al., 2017; Toseef

and Khan, 2018; Picon et al., 2019), or to use a GPU/CPU at
the terminal to process and display the results (Barman et al.,
2020). For growers in remote areas, real-time detection and
diagnosis can be carried out through mobile terminals, thus
solving the practical problems of obtaining technical crop disease
diagnosis and finding experts in the production process. For
agricultural technicians, this is equivalent to having a valuable
auxiliary consultation tool. In the future, an intelligent crop
disease prevention and control recommendation system will be
developed based on the results of real-time diagnosis, allowing
growers to select different prevention and control methods
(e.g., physical or chemical methods) according to the specific
conditions. The process and dosage of the methods will also
be described in detail. Intelligent crop disease identification
and diagnosis, as well as intelligent crop disease prevention
and recommendation, will greatly improve production efficiency,
realize agricultural, scientific, and technological progress, and
push agriculture into the intelligent era.

Although the system developed in this study achieved a
high success rate, it is far from becoming a universal tool
under actual field conditions (Boulent et al., 2019). At present,
the existing research has only considered dozens of [crop,
disease] combinations (Ferentinos, 2018), so it is vital to
expand the existing database to include more crop species
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FIGURE 8 | (A,B): Images in category 31 and their corresponding “classification” results. (C,D): representative images in category 10.

FIGURE 9 | Examples of correct (upper four images) and incorrect (lower four images) classification of category eight images in the test set (corn cercospora leaf spot).

and corresponding diseases. The test set used to evaluate the
model was part of the dataset from which the training set
was extracted, which is a potential source of bias. This is a

common method for training and testing machine learning
models. However, to develop a system that can be used
effectively in field scenes, data from various sources should
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be used for testing to ensure that future users can obtain
effective classification results in different scenes (Barbedo,
2018). At present, some preliminary experiments carried out
with limited data show that when testing images different
from those used in training, the classification performance
of the model is significantly reduced to the range of 25–
35%. The experimental results show that the classification
effect depends on the data source. To improve this, more
extensive image datasets should be collected from different
geographical areas, field conditions, image capture modes,
and multiple sources. Improving the model by increasing
the size of the dataset would allow more effective and
widespread identification of crop categories and diseases under
field conditions.
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