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A fast and nondestructive method for recognizing the severity of wheat Fusarium
head blight (FHB) can effectively reduce fungicide use and associated costs in wheat
production. This study proposed a feature fusion method based on deep convolution
and shallow features derived from the high-resolution digital Red-green-blue (RGB)
images of wheat FHB at different disease severity levels. To test the robustness of
the proposed method, the RGB images were taken under different influence factors
including light condition, camera shooting angle, image resolution, and crop growth
period. All images were preprocessed to eliminate background noises to improve
recognition accuracy. The AlexNet model parameters trained by the ImageNet 2012
dataset were transferred to the test dataset to extract the deep convolution feature of
wheat FHB. Next, the color and texture features of wheat ears were extracted as shallow
features. Then, the Relief-F algorithm was used to fuse the deep convolution feature
and shallow features as the final FHB features. Finally, the random forest was used
to classify and identify the features of different FHB severity levels. Results show that
the recognition accuracy of the proposed fusion feature model was higher than those
of models using other features in all conditions. The highest recognition accuracy of
severity levels was obtained when images were taken under indoor conditions, with high
resolution (12 MB pixels), at 90◦ shooting angle during the crop filling period. The Relief-
F algorithm assigned different weights to the features under different influence factors; it
made the fused feature model more robust and improved the ability to recognize wheat
FHB severity levels using RGB images.

Keywords: Fusarium head blight, transfer learning, Relief-F, fusion feature, random forest

INTRODUCTION

Fusarium head blight (FHB) mainly caused by Fusarium graminearum is a devastating disease of
wheat and has a serious impact on wheat production worldwide, especially in China (Huang and
Mcbeath, 2010). FHB-infected wheat will produce deoxynivalenol (DON) toxin that is poisonous
to humans or animals and can persist for a long time in the food chain (Palacios et al., 2017;
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Peiris et al., 2017). If FHB can be detected effectively and disease
severity level can be determined precisely, it can be controlled
timely by applying fungicides. Particularly, the right number
of doses of fungicides can be appropriately allocated according
to the severity level to reduce the cost of fungicide application
and protect ecological environment to a great extent (Yuan and
Zhang, 2000). Recognition of wheat FHB was usually performed
visually by experienced plant protectors in fields (Fernando et al.,
2017). It is subjective, time-consuming, and laborious. Recently,
some studies have utilized hyperspectral technology and image
processing technologies for FHB recognition. Hyperspectral
technology has high-level technical requirements and high costs.
And also, it has a high demand for the natural environments
such as light and wind and so on when collecting hyperspectral
data (Bauriegel et al., 2011; Jin et al., 2018). Image processing
technologies have strong generality, high efficiency, low cost, and
low operating requirements in disease recognition (Mohd et al.,
2019; Pantazi et al., 2019). Red-green-blue (RGB)–based images
have been widely used in wheat crops. Although some valuable
progress has been made (Jin et al., 2017; Aarju and Sumit, 2018),
there is still a need to improve rating FHB severity level accurately
by utilizing RGB images.

The first key request is to extract effective features from RGB
images (Wang and Paliwal, 2003). Zahra and Davud (2015)
extracted texture, color, and shape features of RGB images to
recognize wheat fungal diseases with an accuracy of 98.3%.
Frederic and Pierre (2007) extracted color and texture features
of wheat ear RGB images to identify the wheat ear regions. Liu
and Cui (2015) distinguished wheat from the background based
on RGB and Lab color space and used the random forest (RF)
algorithm to accurately segment the targeted winter wheat from
RGB image of the canopy. The abovementioned color and texture
features are widely used for crop disease identification (Zhu
et al., 2017; Xiao et al., 2018), so they are fundamental references
for wheat FHB identification. Among color features, the RGB
channel, HSV channel, and Lab channel are widely used because
they can effectively express the differences between diseased
and other areas (Pydipati et al., 2006; Meunkaewjinda et al.,
2008; Yao et al., 2009). Among texture features, the gray-level
co-occurrence matrix (GLCM) can reflect the comprehensive
information of the image about the direction, adjacent interval,
and amplitude change (Chaki et al., 2015; Gavhale et al., 2015;
Xie and He, 2016). Compared to color and texture features,
deep convolution feature can well excavate the deep features
information in images (Shervin et al., 2016; Lu et al., 2017).
The LeNet-5 model proposed by Yann et al. (1998) has made
the convolutional neural network achieve excellent results in
the field of handwritten digit recognition for the first time
and established the reputation of convolutional neural network
in image recognition. In the ImageNet 2012 competition, the
AlexNet deep convolutional neural network proposed by Alex
et al. (2012) won the championship. Its classification results
were much better than other traditional machine learning
classification algorithms. The AlexNet deep convolutional neural
network has attracted widespread attention since it was used
in crop identification with good accuracy (Mostafa et al., 2017;
Wei et al., 2018).

The accuracy of disease recognition from RGB images
depends on the contribution from each extracted feature.
Researchers have proposed feature selection algorithms for
feature screening (Mitra et al., 2002; Marko and Igor, 2003;
Valliammal and Geethalakshmi, 2012). Peng et al. (2005)
proposed a minimal-redundancy-maximal-relevance criterion
(mRMR) algorithm. The basic idea of mRMR was to use the
theory of relevance in information theory and the size of mutual
information as a measure of the correlation between features,
as well as the sexual standards of features and category labels.
Kira and Rendell (1992) proposed the Relief-F algorithm, which
assigns different weights to all features according to the relevance
of each feature and category. This algorithm is favorable by
researchers because of its high efficiency, good results, and no
limitation on data types (Durgabai et al., 2014; Wang et al., 2016).

Therefore, in this study we proposed the following procedure,
especially a feature fusion method, to recognize the severity of
wheat FHB. First, the deep convolution features of RGB images
was extracted using the AlexNet convolutional neural network,
and the color features and texture features of the images were
extracted as shallow features. Next, to improve the recognition
accuracy of wheat FHB severity levels, the Relief-F algorithm was
used to fuse the extracted deep convolution feature and shallow
features. Finally, the RF algorithm (Bosch et al., 2007) was used
to model the features under different influence factors to explore
the performance of the fusion features.

MATERIALS AND METHODS

Study Area and Image Acquisition
The experimental base in this study locates at Anhui Academy
of Agricultural Sciences (117◦14′E, 31◦53′N), in Auhui Province,
China. The field experiments of wheat FHB were conducted from
April 28, 2018 (flowering period), to May 14, 2018 (ripening
period). Figure 1 shows the experimental field, which was
divided into two sections: one was inoculated with FHB fungus
inoculation, and the other was naturally grown. The inoculation
section was gradually infected to form different levels of infection.
A Nikon D3200 camera (Table 1) (effective pixels 6,016 × 4,000,
focal length: 26 mm, aperture: f/8, exposure time: 1/250 s) was
used to collect wheat ear images on sunny and cloudless days
to reduce image distortion due to changing weather conditions.
A total of 3,600 images of the wheat ear with FHB infection were
collected. Among them, 1,200 images were randomly selected for
the AlexNet learning, and the remaining 2,400 images were used
for wheat FHB classification.

Images were acquired to ensure that only one wheat ear was
in the lens with a black cloth as background, while the following
influence factors were considered (Table 2):

1. Light condition

Outdoor—under the influence of natural light and the
light is uneven.
Indoor—to minimize the influence of other illumination, a
halogen lamp provides the light source in the dark room to
make the wheat ears receive the light evenly.
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FIGURE 1 | Location of the study site and an RGB image of the experimental plot was taken by a DIJ Spirit 4Pro drone at an altitude of 50 m on May 14, 2018.

2. Shooting angle

The angle of camera lens and wheat ear was set up at 30◦,
45◦, and 90◦ (Zhao et al., 2013).

3. Image resolution

Nikon D3200 was adjusted to the resolution of 12 million
effective pixels (4,512× 3,000) and 6 million effective pixels
(3,008× 2,000), respectively.

4. Wheat growth period

Flowering, filling, and ripening period. The data were
collected in the middle of each growth period.

While images were taken, the actual disease level of the ear
in each image was manually identified by professional personnel.
The GBT 15796-2011 Rules for Monitoring and Forecast of the
Wheat Head Blight was referred to determine the infected level
of FHB. The disease was classified into six levels based on the
ratio (R) of wheat ear lesion area to wheat ear area, as Level 0:
0 ≤ R ≤ 0.01, Level 1: 0.01 < R ≤ 0.1, Level 2: 0.1 < R ≤ 0.2,
Level 3: 0.2 < R ≤ 0.3, Level 4: 0.3 < R ≤ 0.4, and Level 5:
R > 0.4 (Figure 2).

TABLE 1 | Nikon D3200 manufacturing parameters.

Nikon D3200 manufacturing parameters

Boundary dimension 125 × 96 × 76.5 mm

Sensor type CMOS

Sensor size APS frame
(23.2 × 15.4 mm)

Maximum pixels 24.72 million

Effective pixels 24.16 million

Image processor EXPEED 3

Image resolution 16 × 4,000 (L),
4,512 × 3,000 (M),
3,008 × 2,000 (S)

Methods
The overall procedure to determine the FHB-infected level
by RGB images is shown in Figure 3. First, the raw images
were preprocessed to remove interference information. Then,
the deep convolution feature of the preprocessed images was
extracted based on the AlexNet transfer learning, and then
the color and texture features of the preprocessed images were
extracted as shallow features. Next, the deep convolution feature
and shallow features were merged, and the Relief-F algorithm
was used to calculate the weights of the merged features. The
weight values were normalized to make the weights more
numerically comparable. Then, the weight value was multiplied
by its corresponding feature. To improve the accuracy of the
model, the final features were normalized and used as fusion
features. Finally, all fusion features were input into a RF model
to recognize the FHB severity level. Details on each step are given
in the following sections.

Image Preprocessing
Figure 4 shows an example of preprocessing raw images.
First, the raw image was gray-scaled (Dougherty and
Lotufo, 2003a), and the Otsu (Feige, 1999) threshold
method was used for binarization. Next, a morphological
region threshold filter (Dougherty and Lotufo, 2003b)
was used to remove the noises such as the small dust
on the black cloth. Then, a morphological open–close
operation was used to remove the awn from the wheat ear
to obtain the binary image of interest. Finally, the binary
image was combined with the original image to produce a
pseudocolor image.

Transfer Learning Based on the AlexNet to Extract
Deep Convolution Feature
The AlexNet (Alex et al., 2012) was used as the research network
to extract the deep convolution feature of FHB images. It was not
enough to train an excellent network with a small sample size,
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TABLE 2 | RGB images of the wheat ears were taken under different influence factors.

Influence factor Control influence factors

Light Camera shooting
angle (degrees)

Image resolution
(MB pixels)

Wheat growth
period

Design of influence factors in
the experiment

Light Indoor 90 12 Filling

Outdoor 90 12 Filling

Shooting angle
(degree)

30 Outdoor 12 Filling

45 Outdoor 12 Filling

90 Outdoor 12 Filling

Image resolution
(MB pixels)

12 Indoor 90 Filling

6 Indoor 90 Filling

Wheat growth
period

Flowering Outdoor 90 12

Filling Outdoor 90 12

Ripening Outdoor 90 12

FIGURE 2 | The images of FHB-infected wheat ears. (A) Healthy wheat ear with a disease level of 0; (B) wheat ear with a disease severity level of 1, (C) 2, (D) 3,
(E) 4, and (F) 5.

so the AlexNet model parameters trained using the ImageNet
2012 (Alex et al., 2012) dataset were transferred to FHB image
sets for training. The parameters of the first five convolutional
layers and corresponding pooling layers were retained, and the
parameters of the three fully connected layers were trained. In
addition, as the requested input of the AlexNet network was a
227 × 227 RGB image, the edges of the original FHB images
were filled with 0 so that the aspect ratio of each image was 1.
And then the images were resampled to 227× 227 using bilinear
interpolation (Kirkland, 2010). The network structure was shown
in Figure 5.

A total of 1,200 images were used for the AlexNet transfer
learning, where the training set had 840 images and the validation
set had 360 images. The training parameters were set as follows:
the learning rate was set to 0.0001, Maxepochs was set to 300, and
the batch size was set to 20. The learning rate determines how

quickly the parameter moves to the optimal value. Maxepochs
represent the total number of trainings. The batch size indicates
the number of samples used in each training batch in the training
set. The final training time was 0.33 h, and the verification
accuracy was 0.867. Results show that the AlexNet’s transfer
learning could be used to recognize FHB, but accuracy was not
good enough. Therefore, this study proposed to extract the deep
convolution feature of the disease images through the network
obtained by transfer learning and recognize the severity of the
disease based on the deep convolution feature.

Shallow Features
The shallow features were extracted from the color and texture of
FHB images as follows:

1. Color features: Select the B component of the RGB
color space, the a component of the Lab color space
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FIGURE 3 | Flowchart of image processing procedure used in the study.

FIGURE 4 | (A) A raw image of a wheat ear. The red circle indicates some fine dust on the black cloth; (B) binary image after removing background noise; (C) binary
image after removing wheat awn from the ear; (D) pseudocolor image of the wheat ear in the area of interest.

(Gauch and Hsia, 1992), and the S component of the HSV color
space (Sural et al., 2002) of the disease image to describe the color
features. Among them, the a color ranges from dark green (low
brightness value), gray (medium brightness value), to bright pink
(high brightness value). S stands for saturation. The higher the
saturation, the darker the color.

2. Texture features: The mean and variance of energy,
entropy, inverse different moment, correlation, and contrast in
GLCM (Haralick et al., 1973) were selected to describe the
texture features of FHB images. Energy reflects the uniformity
and texture of the gray distribution of the image. Entropy
is a measure of the amount of information in the image.
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Inverse different moment reflects local changes in the texture
of the image. Correlation reflects the consistency of the image
texture. Contrast reflects the image sharpness and depth of
texture grooves.

Feature Fusion of Deep Convolution Feature and
Shallow Features
The deep convolution feature and shallow features were
combined. The Relief-F algorithm was used to iterate 100 times
to calculate the average weight of the combined features and
normalize the weight value. The weight value was multiplied
with its corresponding feature to obtain the weighted feature.

Finally, the fused features were obtained by normalizing the
weighted features to improve the accuracy of the model. The
fusion formula was as follows:

Fweightl =
wl∑k
l=1 wl

× Fcascadel (1)

Fnormalizationi,j =
Fweighti,j∑n
j=1 Fweighti,j

(2)

where Fcascadel is the l feature set specially collected for cascade
sample, l = 1, 2,. . ., k, k is the feature dimension, wl is the feature
weight of the l, Fweightl

is the l feature set after calculating the

FIGURE 5 | Diagram of the AlexNet network structure. The black numbers represent the size of the feature map. The red number represents the size of the kernels.
CONV represents the convolution. POOL represents the maximum pooling. FC represents the fully connected.

FIGURE 6 | Structure of feature fusion network.
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FIGURE 7 | The numerical performance of features at each disease severity level. (A) Color features, (B) color features after fusion, (C) texture features, (D) texture
features after feature fusion, (E) deep convolution feature, and (F) deep convolution feature after feature fusion. The color lines are the average eigenvalue of all
samples at each severity level.
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TABLE 3 | Number of images in the training and test set of each disease level
under different influence factors.

Influence
factor

Sample
set

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Light Training
set

90 307 164 157 117 215

Indoor Test set 39 131 70 68 51 91

Outdoor Test set 39 131 70 68 51 91

Angle Training
set

73 222 96 93 57 82

30◦ Test set 32 96 42 42 27 38

45◦ Test set 32 96 42 42 27 38

90◦ Test set 32 96 42 42 27 38

Resolution Training
set

67 277 137 132 79 148

Low
resolution

Test set 29 119 58 57 35 62

High
resolution

Test set 29 119 58 57 35 62

Growth
period

Training
set

57 185 93 77 73 142

Flowering
period

Test set 24 80 39 34 32 64

Filling period Test set 24 80 39 34 32 64

Ripening
period

Test set 24 80 39 34 32 64

weight; Fweighti,j
is the eigenvalue of the row i, column j of the

feature set after weight calculation, i = 1,2,. . ., m, j = 1,2,. . .,
n, and m are the number of rows in the feature set, n is the

number of columns in the feature set, and Fnormalizationi,j is the
normalized feature set.

The feature fusion structure is given in Figure 6. The
six-dimension deep convolution feature and shallow
features (13-dimension) were extracted from input images.
Relief-F was used to calculate the weights of the deep
convolution feature (six-dimension) and shallow features
(13-dimension) and the final fused features had 19
dimensions.

Random Forest
Random forest algorithm (Cutler et al., 2011) was a machine
learning algorithm composed of multiple decision tree
classification models. First, N training sets were extracted
from the original dataset using the bootstrap (Cutler et al., 2011)
sampling technique. Then, a classification regression tree was
established for each training set, N decision tree models were
generated, and N classification results were obtained. Finally, the
prediction results of N decision trees were set to determine the
category of the new sample by voting. RF gives results based on
the prediction results of multiple decision trees, so even if some
decision trees are misclassified, the final classification results
were still correct.

RESULTS

The results were compared based on the measured
severity level and the fusion feature classification.

FIGURE 8 | Classification error diagram of the models at each severity level under different conditions. (A) The misclassification of each model under different light
conditions. (B) The misclassification of each model under different shooting angle conditions. (C) The misclassification of each model under different resolution
conditions. (D) The misclassification of each model under different growth periods.
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The algorithm was developed in Pycharm2017 and
completed on Windows 10 PC with 12-core Intel
core i7-6800k CPU (3.40 GHz), 16 GB RAM, and

dual GTX1080Ti GPU. The influence factors of light,
shooting angle, image resolution, and growth period
were considered.

TABLE 4 | Model performance under different influence factors.

Influence factor Model Model
accuracy

Cross validation
accuracy

Time (s)

Light Outdoor Shallow features + RF 0.8889 0.8880 15.70

Outdoor Deep convolution feature + RF 0.8711 0.8746 13.34

Outdoor Fusion features + RF 0.9244 0.9213 16.25

Indoor Shallow features + RF 0.9000 0.9000 15.54

Indoor Deep convolution feature + RF 0.8956 0.8933 12.91

Indoor Fusion features + RF 0.9378 0.9310 15.87

Angle 30◦ Shallow features + RF 0.8664 0.8685 7.02

30◦ Deep convolution feature + RF 0.8736 0.8783 6.41

30◦ Fusion features + RF 0.9025 0.9087 7.08

45◦ Shallow features + RF 0.8809 0.8804 6.92

45◦ Deep convolution feature + RF 0.8773 0.8728 6.35

45◦ Fusion features + RF 0.9025 0.9098 6.99

90◦ Shallow features + RF 0.8989 0.8925 6.99

90◦ Deep convolution feature + RF 0.8917 0.8807 6.90

90◦ Fusion features + RF 0.9206 0.9170 7.23

Resolution Low resolution Shallow features + RF 0.9056 0.9002 9.25

Low resolution Deep convolution feature + RF 0.8944 0.8920 7.67

Low resolution Fusion features + RF 0.9250 0.9225 9.16

High resolution Shallow features + RF 0.9222 0.9212 9.14

High resolution Deep convolution feature + RF 0.9056 0.9050 8.50

High resolution Fusion features + RF 0.9417 0.9339 9.33

Growth period Flowering period Shallow features + RF 0.9194 0.9165 6.98

Flowering period Deep convolution feature + RF 0.9158 0.9176 6.02

Flowering period Fusion features + RF 0.9414 0.9484 7.13

Filling period Shallow features + RF 0.9304 0.9286 6.95

Filling period Deep convolution feature + RF 0.9267 0.9264 6.26

Filling period Fusion features + RF 0.9524 0.9516 7.21

Ripening period Shallow features + RF 0.9158 0.9143 7.05

Ripening period Deep convolution feature + RF 0.9194 0.9165 6.31

Ripening period Fusion features + RF 0.9377 0.9407 6.92

FIGURE 9 | Disease level prediction distribution of each model using (A) raw images and (B) preprocessed images. The blue symbol indicates the actual disease
severity level, and the red symbol indicates the predicted disease severity level.
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Feature Extraction
Figure 7 shows the numerical performance of features at each
severity level. The value of each feature was obtained from
averaging 2,400 images.

Before fusion (Figure 7A), only the RGB (B) feature was
significantly different at each severity level, whereas after fusion
(Figure 7B), the features were significantly different in RGB (B)
and Lab (a). However, HSV(S) feature was the same before or
after fusion, so this S feature is not able to distinguish FHB. The
texture features before fusion could not effectively distinguish
severity levels in Figure 7C, whereas after fusion they show some
differences. It indicates that the ability of disease classification
was improved by feature fusion. Figures 7E,F show that the deep

convolution feature was able to distinguish disease severity levels
both before and after fusion.

Model Construction
To compare the performance of each model under different
influence factors more intuitively, this study constructed each
model based on the collected sample set and comprehensively
evaluated the model results. The image distribution at each
disease level under different influence factors was shown in
Table 3.

Random forest algorithm was used to build the models
under different influence factors, and the classification errors
of the models at each severity level are shown in Figure 8.

FIGURE 10 | Evaluation diagram of each model under different influence factors. (A) The accuracy of each model. (B) The training and prediction time of each model.
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Under all influencing factors, the fusion features model has the
least number of misclassifications. When the disease levels are
1 and 2, each model has more misclassifications than other
disease levels. It shows that the fusion features performed better
than other features in the models under different influence
factors with a smaller number of misclassifications. But when
the disease level was 1 or 2, the recognition accuracy of each
model is poor. To further study the efficiency and stability of
the model, the 10-fold cross-validation (Kohavi, 1995) was used
to cross-verify the data, and the predicted time of each model
training was calculated. The results are shown in Table 4. The
accuracy of each model was better under indoor than outdoor
lighting conditions. Under three observation angles, the 90◦
observation angle was the best in terms of accuracy. The images
with higher resolution appropriately improved model accuracy.
The identification accuracy was the highest for images taken
during the crop filling period. Considering both model accuracy
and training prediction time, the fusion features proposed in
this study performed better than using the shallow features
or deep convolution feature independently under different
influence factors. This result indicates that the fusion features
had high accuracy and strong robustness in the recognition of
FHB severity level.

DISCUSSION

Analysis of Image Preprocessing Results
In order to better discuss the advantages of preprocessing in this
article, a total of 2,400 disease images under different influence
factors were made into one sample set including 1,680 images

in the training set and 720 images in the test sets. The raw and
preprocessed images were used to build the models through the
method proposed in this article, respectively. Figure 9 indicates
that the model established using preprocessed images has a
better prediction distribution of the disease level and higher
model accuracy (0.943) than using the raw images (0.922). After
preprocessing, the noises and wheat ears were removed, so the
accuracy of the model was improved.

Analysis of Fusion Feature
To better evaluate the goodness of fusion features, we evaluated
the goodness of fusion features through the accuracy of each
model and the prediction time of model training (Figure 10).

Figure 10A shows that the proposed fusion feature had a
better performance on the accuracy of the model than the
model constructed by other features. Under different influence
factors, the proposed fusion method had stronger robustness,
and model accuracy was greater than 90%, which was 2–
5% higher than the recognition accuracy of deep convolution
feature or shallow features. The efficiency of an algorithm is
also important in practical applications (Yu et al., 2013). The
predicted runtime of the model was used to evaluate the efficiency
of the method. Figure 10B shows that although the fused
features were higher in dimensions than other features, the
model training time still performed good. To better analyze
the effectiveness of the feature fusion method, FHB images
with different influence factors were mixed as one sample set.
After extracting the features of the sample set, 100 iterations
were performed using Relief-F. The weight results obtained each
time are shown in Figure 11. As the sample set was generated
by mixing all influence factors, this increases the difficulty of

FIGURE 11 | Relief-F iterates 100 times for each weight value. X-axis 1–6 correspond to deep convolution feature (AlexNet0, AlexNet1, AlexNet2, AlexNet3,
AlexNet4, and AlexNet5); 7–9 correspond to color features [RGB(B), Lab(a), and HSV(S)]; and 10–19 correspond to texture features (average energy, energy
variance, entropy mean, entropy variance, inverse different moment mean, inverse different moment variance, correlation mean, correlation variance, contrast mean,
and contrast variance).
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FIGURE 12 | The average of final normalized weight value. The orange bar in the figure represents the weight value of different features calculated by the Relief-F
algorithm.

training. In the meanwhile, the sample size of 2,400 was relatively
small for deep learning. Therefore, the weight value of the
deep convolution feature fluctuated greatly during the iteration
process. For different growth periods and light conditions, the
corresponding contribution of each color feature was different,
resulting in a large fluctuation in the weight value of each
color feature. For different resolution and shooting angles, the
extracted texture features were different, so the weight values
of texture features also fluctuated. Notice that the weight values
of the deep convolution feature and shallow features fluctuated
from low to high. It indicates that some features made more
contributions when identifying certain influence factors than
other factors. Therefore, when some features do not perform
well in recognition, their weight values can be decreased so
the weight values of other favorable features can be increased.
Our results confirm that FHB image sets in this article can
be well described by both deep convolution feature and the
shallow features.

In Figure 12, the bar in the figure represents the weight
value of different features calculated by the Relief-F algorithm.
The larger the value was, the greater the contribution of
the feature made. There were similar maxima in both deep
convolution feature and shallow features, indicating that both
deep convolution feature and shallow features made great
contributions to identifying disease severity levels. The shallow
features can well reflect the situation of different disease levels
from the color and texture information of the images. Among
the color features, the channel a of Lab color space performed
better. In the texture features, except for the entropy variance and
contrast variance, the other features performed well. The deep
convolution feature can discover deep information well through
convolutional processing.

Analysis of Different Influence Factors
To investigate the influence of different factors on the fusion
feature method, FHBs under different conditions were analyzed,
respectively (Figure 13).

In Figure 13(1), the image taken in the outdoor environment
was influenced by the difference of light and mirror effect
(Barbedo, 2018), which has an impact on feature extraction. In
an indoor environment, the image received relatively uniform
light. Although there was a partial shadow in the gap between

FIGURE 13 | The example images of FHB-infected wheat ears under different
influence factors. In (1), (A) outdoor and (B) indoor; in (2), (C) 30◦, (D) 45◦,
and (E) 90◦; in (3), (F) low-resolution and (G) high-resolution; in (4), (H)
flowering period, (I) filling period, and (J) ripening period.
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the ears in some images, it had little effect on disease recognition.
However, it can be seen from the results that the accuracy
difference of indoor and outdoor on the fusion feature model was
less than 1% (Table 3), which shows that the fusion method has
a certain resistance to the influence of light. In Figure 13(2), the
larger the angle, the more information the camera can capture
and the better the description of the disease. The smaller the
angle, the more likely overlap will appear in the image and
cause certain errors. According to the results, the recognition
accuracy of 30◦ and 45◦ was similar, and the performance of
90◦ was the best among the three angles. In Figure 13(3), high-
resolution images were more informative and performed well
in feature extraction. It can be seen from the results that the
accuracy of high-resolution images was higher than that of low-
resolution images. In Figure 13(4), the color of the disease
was not the same at different growth periods. FHB has just
erupted during the flowering period, so the disease features were
not obvious. FHB was more obvious in the filling period. The
color difference between the normal wheat ear and FHB in
the ripening period was small. Thus, the recognition accuracy
during the filling period was the highest, and the recognition
accuracy during the flowering period and the ripening period was
basically the same.

To sum up, the model constructed with the fusion feature
method has a certain resistance to different influence factors.
More comparative experiments to explore a good collection
environment should be considered in future research with
valuable information provided by the study.

CONCLUSION

The study proposed a method to recognize disease severity levels
of FHB-infected wheat ears using RGB images, which were
taken under different influence factors, such as light condition,
shooting angle, image resolution, and crop growth period. The
deep convolution feature and shallow features extracted from
these images were analyzed as contrast experiments for FHB

identification. The feature fusion method was then proposed
based on the deep convolution and shallow features under
different influence factors. Results show that the recognition
accuracy of the fusion features model was higher than that of
using the deep convolution feature or shallow features alone.
The prediction time of the feature fusion model was good, and
it performed more robust under different influence factors. The
highest accuracy of recognizing severity levels was obtained when
images were taken indoor, with high resolution (12 MB pixels),
at 90◦ shooting angle and during the crop filling period. The
proposed feature extraction method has significant advantages
in the identification of wheat FHB disease severity levels and
provides important technical support for plant protection in
precision fungicide application and the development of disease
control methods.
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