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It is still an important aspect of global climate research to explore a low-cost method
that can effectively reduce the increase of CO2 concentration in the global atmosphere.
Oxalotrophic bacterial communities exist in agricultural or forest soil with ubiquitous
oxalate as the only carbon and energy source. When soil oxalate is oxidized and
degraded, carbonate is formed along with it. This process is called the oxalate carbonate
pathway (OCP), which can increase soil inorganic carbon sink and soil organic matter
content. This soil carbon sink is a natural CO2 trapping system and an important
alternative if it is properly managed for artificial sequestration/storage. As the main
driver of OCP, the oxalate degrading bacteria are affected by many factors during the
oxalate conversion process. Understanding this process and the synergy of oxalogenic
plants, saprophytic decomposers, and oxalotrophic bacteria in agricultural or forest
soil is critical to exploiting this natural carbon capture process. This article aims to
provide a broader perspective of OCP in CO2 sequestration, biomineralization, and
elemental cycling.
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INTRODUCTION

Carbon dioxide (CO2) assimilation by photosynthesis is ubiquitous, whereas mineralization of CO2
into inorganic carbon compounds is majorly underrated, which usually involves the synergy of
oxalogenic plants, saprophytic decomposers, and oxalotrophic bacteria. The metabolic pathway
from oxalate to the mineralization of CO2 into carbonates, such as calcium carbonates is “The
Oxalate Carbonate Pathway” (OCP) (Braissant et al., 2004; Cailleau et al., 2005; Rowley et al.,
2017a; Durand et al., 2018). Mineralized carbon (carbonate) is substantially stable (102–106 years),
unlike organic biomass and plays an important role in regulating CO2 content in the global
C cycle (Cailleau et al., 2011, 2014). Hence, the OCP plays an important role in reducing
atmospheric CO2 and increasing soil carbon content (Braissant et al., 2004; Cailleau et al., 2005;
Rowley et al., 2017a; Durand et al., 2018), but requires numerous, autonomous, biotic, and
abiotic components rendering OCP a unique and highly complex phenomenon with limited
comprehensive studies (Martin et al., 2012; Cailleau et al., 2014; Rowley et al., 2017b). Despite
such tremendous potential of OCP, current research is limited to the mechanism, participating
and influencing agents with negligible quantitative characteristics (i.e., quantitative data regarding
like net CO2 assimilated or carbonate formed is not available in most cases, only qualitative data
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are presented as OCP is extremely variable). Research on the
management and enhancement of net assimilation/sequestration
of CO2 via OCP in different soil environments can have
major global implications by impacting net CO2 release in
major ecosystems like the Amazon rainforest. Furthermore,
management/regulation of CO2 mineralization via OCP
influencing CO2 net release or assimilation has vast significance
in remediating global climatic change. Research into OCP
must focus on identifying the beneficial factors or habitat
characteristics that result in a net increase in mineralized
CO2 so that strategies can be used to make maximum use
of this phenomenon in large terrestrial ecosystems. In this
review, we intend to provide a perspective for the future use
and deployment of CaOx generating plants and oxalotrophic
bacteria across different scenarios, offering a realistic approach to
impacting the natural environment with an outcome including,
but not limited to, CO2 emissions mitigation, and soil organic
carbon (OC) restoration.

SOIL HABITAT AND OCP-CARBON SINK

Soil is the most complex ecosystem from a biological and
geological point of view and is known to be the most vulnerable,
prone to various impacts, ranging from erosion to pollution
caused partly by nature but mostly due to human activities
(Bellard et al., 2012). Furthermore, soil destabilization activities
such as deforestation and intensive agricultural practices have
reduced soil carbon both above and below ground, resulting in
high CO2 emissions rather than reduction (Tanveer et al., 2019).
The CO2 should be sequestrated as stable compounds for the
simultaneous reduction of atmospheric CO2 concentration and
OC depletion (Gross and Harrison, 2019). This can be achieved
partly by the microflora involved in oxalate transformations,
generating an increase in microcosm density and retaining
the carbon sequestrated continuously over a long period,
retarding environmental change (Lal, 2004; Lian et al., 2008;
Sun et al., 2019a).

Oxalogenic Plants—Oxalate
Bacteria-OCP-Soil Carbon Sink
The biomineralization process involves oxalogenic plants
(source of oxalate/oxalic acid) and oxalotrophic bacteria
and is very important for certain barren soil ecosystems,
particularly in desert soil and Karst topography, since they
contain abundant precursors (Lal, 2002; Khaleghi and
Rowshanzamir, 2019). Recent studies show many plants
species (oxalogenic plants) contain oxalates (of calcium) as
part of their metabolism and accumulate in various parts
(commonly in roots, leaves, and barks) depending on the
type of plant (Figure 1). Oxalogenic plants are imperative for
the induction, maintenance, and strengthening of inorganic
carbon assimilation (Borrelli et al., 2016; Pierantoni et al.,
2018). Furthermore, the termites, saprophytic fungi, and
rhizosphere microbial community carry out the degradation of
oxalogenic biomass releasing and maintaining the oxalate pool
(Cailleau et al., 2011).

The oxalotrophic bacteria (having tolerance to different
stresses—pH, moisture content, nutrient availability,
contaminants) and oxalogenic crops (Amaranth, Rhubarb,
Spinach, etc.) when grown together has the potential to
precipitate atmospheric CO2 as carbonates (Gadd et al., 2014;
Hervé et al., 2018). Oxalotrophic bacterial biomineralization is
also beneficial in high calcite soils where OC is limited and rich
in mineral calcium which serves as a substrate and is transformed
into inorganic carbon (carbonates) (Zhu and Dittrich, 2016).
Additionally, the carbonates formed influence the soil’s physico-
chemical properties (particularly its pH), which in turn regulate
the microbial community and its metabolic activities. Thus, the
biomineralization enhances soil modifications that can help crop
cultivation (Kalantary and Kahani, 2018; Kurganova et al., 2019;
Liu et al., 2019).

Forest Soil-OCP-Carbon Sink
Forests are the largest reserves of carbon both in the form of
vegetation as well as soil OC. The diverse vegetation is crucial
to absorb the CO2 released by natural and human activities
(Zhang et al., 2015, 2018). Atmospheric CO2 is assimilated
into plants as biomass, much later it accumulates in soil
accounting for soil organic matter. Mismanagement of forests
leads to deforestation, enhancing CO2 emissions during the post-
industrial era. CO2 concentration in the atmosphere increased
drastically to 400 from 270 ppm (pre-industrial era). Forest
ecosystems aid in capturing 45% of terrestrial carbon and are
responsible for 50% net ecosystem production (Ramachandra
and Bharath, 2020). Terrestrial forests play a vital role in the
carbon cycle, evident from the sequestration of about 30%
of annual global anthropogenic CO2 emissions [2 petagrams
(Pg) of carbon per year] from the atmosphere (Achat et al.,
2015). Thus, soil carbon is the major pool of carbon in
terrestrial ecosystem, with a vital role in nutritional security,
water quality, biodiversity conservation, and elemental recycling
(Chen et al., 2019) (Supplementary Figure S1). The afforestation
efforts aimed to increase forest cover should consider the need
to develop and sustain biodiversity to mitigate deforestation
effects, as observed by some researchers (Qi et al., 2012;
Brancalion et al., 2019).

CO2 retention in forest soil is dependent on land-use,
anthropogenic stress, regimes of disturbance, and prevailing
climatic conditions. The natural and intact forests increase the
meantime of assimilated carbon’s residence with significantly
limited re-emissions (Lal et al., 2015). The Iroko tree (Milicia
excelsa), a prime example of an oxalogenic tree, produces and
stores excess oxalates in its bark and roots, which enter soil
over time to be metabolized into carbonates by the oxalotrophic
microbiota. This results in the formation of indurated carbonate
soils (calcrete forming) in semi-arid soils and affects the cycling
of mineral nutrients like calcium, iron, and aluminum. The
association and interdependent biomineralization of CO2 via
oxalogenic plants, fungi and oxalotrophic bacteria can therefore
be used in monoculture models to establish a healthy terrestrial
carbon sink, as proposed by various researchers (Verrecchia et al.,
2006; Whiffin et al., 2007; Peng et al., 2008). The oxalotrophic
bacteria and oxalogenic trees can be used to cultivate barren
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FIGURE 1 | Simplified representation of relationship between plants and fungi (oxalate producers) and oxalotrophic bacteria (oxalate degraders) in creating a
soil-based carbon sink.

landmasses and abandoned agroforestry strips to enhance soil
organic content via sequestration of soil carbon through OCP.
The increase in the forest cover would also mitigate the effect
of deforestation and help to stabilize the local and global climate
system (Bellassen and Luyssaert, 2014; Borchard et al., 2019).

Agricultural Soil-OCP-Carbon Sink
Topsoil or the upper layer of the soil is crucial for many
of the soil-based operations, such as plant growth, elemental
cycling and also serves as a habitat for diverse soil microflora
(Ducklow, 2008; Falkowski et al., 2008; Escalas et al., 2019).
As previously mentioned, the presence of oxalotrophic bacteria
around oxalate-producing plants can cause a pH shift (toward
alkaline), promoting the formation of microbial assemblages
that further improve carbon assimilation in the soil (Mazen,
2004). This induces OCP, which fixes atmospheric CO2 in
the form of carbonates. The inorganic component is made
of readily available metal in the soil either accumulated
from mineral weathering or plant exudates/released from the
decay of plant debris and ectomycorrhizal assemblages (mostly
calcium) (Aragno and Verrecchia, 2012; Qin et al., 2013). The
downside of this phenomenon is the need for the proximal
coexistence of oxalogenic plants or oxalate minerals and oxalate-
dependent heterotrophic microbiota that use the oxalate and
acidic conditions in the habitat (oxalotrophy), leading to OCP
(Dauer and Perakis, 2013; Lal et al., 2015). This is particularly
effective in soils affected by mining, inorganic contaminants, and
low OC content (Karst and sandy soils). With the increase in
OC, the physical properties of the soil change dramatically due
to the existence of a microbial population and thus affect crucial
properties such as water-holding ability and pH (Ye et al., 2018).

These findings can lead to arid, dry, low fertile agroforestry
strips being used to create green or agroforestry zones, creating
soil-based carbon sinks specifically in areas without previous
plant coverage (Supplementary Figure S2). These green zones
would fix CO2 into plant biomass and create an opening for
microbial community establishment. Besides, if the microbial

community is controlled by human involvement, the organic
biomass can be effectively mineralized, and added to the
soil carbon sink.

OXALATE CARBONATE
PATHWAY—ENVIRONMENTAL
SUSTAINABILITY

OCP-Carbon Sink-Soil Stability
The primary cause of soil instability is loose compaction of soil
particles and the minerals with which it is made up of Pankova
and Gerasimova (2012). The instability of soil leads to the loss
of water holding capacity subsequently increasing soil aridity,
the foremost reason for desertification. Moreover, desertification
decreases biomass generation via plant photosynthesis, a major
threat to grasslands and agricultural lands throughout the world.
To fight desertification, many activities and methods are being
utilized, yet the most effective approach, i.e., stabilizing soil
particles, thus prevent desertification is left neglected (Cheng
et al., 2014, 2017). The precipitation of CO2 through OCP
by oxalogenic plants and oxalotrophic bacterial populations
is efficient in binding the sand grains together, increasing the
stability of the topsoil and also creates a carbon sink through
carbonate accumulation (Mujah et al., 2016; Jiang et al., 2019;
Seifan and Berenjian, 2019). In our laboratory experiments,
when Streptomyces NJ10, an oxalotrophic bacteria with
exceptional oxalate metabolizing potential isolated from bacterial
assemblages in the ectomycorrhizosphere (Sun et al., 2019a),
was grown in the presence of oxalate mineral in soils, cementing
bridges were formed between the soil particles increasing the
compaction of the soil (Supplementary Figure S3). Therefore,
it is deduced that induction of CaCO3 precipitation binds sand
grains together at the particle–particle contacts, increasing
soil stability, particularly in loose soils with limited or low
OC (DeJong et al., 2010; Mortensen et al., 2011; Chu et al.,
2012). Many researchers have reported improvement of soil
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fertility and OC content when microbial communities capable
of enhancing the mineral weathering are established, the CO3

2−

ions precipitate with Ca2+ as calcite crystal, which generates
cementing bridges between soil particles (Frankel, 2003;
Dhami et al., 2013).

OCP-Heavy Metal Immobilization
Heavy metals like lead (Pb), mercury (Hg), arsenic (As), cadmium
(Cd), chromium (Cr, hexavalent), aluminum (Al), etc., are
increasingly becoming a severe threat to the environment and
the resident biota (Akoto et al., 2018; Al Osman et al., 2019;
Obiora et al., 2019). The major sources of heavy metal pollution
are inorganic fertilizers, metal-based pesticides and insecticides,
industrial effluents, mine, and dumping yard leachate. Among
many routes to stop and remove heavy metal contamination,
microbial-based remediation techniques are preferential as
they are effective, economical, and ecofriendly in their action
(Jáuregui-Zúñiga et al., 2005; Pongrac et al., 2018; Tamayo-
Figueroa et al., 2019). The oxalotrophic bacteria have great
potential in this regard, as they can metabolize oxalic acid and
produce carbonates (Aragno and Verrecchia, 2012; Xu et al.,
2014; Pongrac et al., 2018), a stable end product, thus modifying
the habitat pH and affecting the solubility and mobility of
the heavy metals and prevent seeping into the subsoil (as the
majority of the metals are insoluble in alkaline pH) (Zhang
et al., 2020). Application of oxalic acid-producing heterotrophic
fungi like Aspergillus spp. along with the oxalotrophic bacteria
would possibly be a more effective way to precipitate the heavy
metals as carbonates, neutralizing the heavy metal toxicity (Anbu
et al., 2016). It is observed in our research when Aspergillus
niger is grown in the presence of heavy metal Lead, it produced
lead oxalate (Unpublished data). Additionally, Streptomyces NJ10
an oxalotrophic bacteria when grown in the presence of lead
oxalate was able to utilize lead oxalate and grew well. Based on
these findings, it can be concluded that heterotrophs capable

of producing organic acid and oxalotrophic bacteria may be
converted into a microbial preparation and applied to polluted
sites to reduce the toxicity of heavy metals.

SOIL CARBON SINK-FACTORS IN PLAY

Soil carbon sink is suitable for many CO2 capture and storage
routes but has much slower CO2 assimilation rates. The
assimilation of CO2 in the soil depends on many factors including
pH, microbial assemblies, water movement, soil geology, and
seasonal weather variability. It is also well established that the
microcosms created by ectomycorrhiza of many higher plants
support diverse oxalotrophic bacteria and provide a stable oxalate
pool along with a more suitable environment for the oxalate
mineralization (Guggiari et al., 2011; Sun et al., 2019a). Besides,
carbon capture, storage and stability in the form of inorganic
compounds is typically dependent on microbial assemblies,
plant diversity and geological characteristics in the soil and can
be enhanced/influenced by human interventions such as the
introduction of organic mineral fertilizers (Lian et al., 2008; Liu
et al., 2012; Sun et al., 2019b) (Figure 2). The addition of nitrogen
to the soil in the form of bio-organic fertilizer also increases
CO2 assimilation in the form of OC by the growth of plant
biomass as observed in several studies that can be adapted in the
agricultural sector (Yang et al., 2020). However, this lacks stability
and is promptly moved to the global carbon cycle as CO2 within
a limited time (approximately 101–103 years). In comparison,
mineralized carbon takes longer periods but is greatly influenced
by soil pH, since acidic pH dissolves the mineralized carbon
(HCO3

-). Some researchers have demonstrated that silicate-rich
clay mineral soils are significantly better choices for carbon sinks
as they can provide the inorganic (metal) component for carbon
mineralization through soil biological activity (Chen et al., 2017;
Xiao et al., 2017). Furthermore, deeper studies are required on

FIGURE 2 | A typical oxalate carbonate pathway showing different biotic and abiotic influencing factors.
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factors that have a significant impact on the soil carbon sink but
have received little attention, including soil carbon management.

CONCLUSION AND PROSPECTS

The carbon cycle has been extensively studied concerning climate
change research and the sequestration of carbon is mostly
attributed to OC storage alone in the global carbon cycle. Soil-
mineral carbon sinks are of great interest for two reasons:
(1) the stability of mineralized carbon (102–106 years) is up
to 100,000 times longer than for soil organic matter carbon
(101–103 years) and (2) thousands of plant species are known to
mineralize atmospheric carbon but are usually ignored, whereas
sequestration of carbon in soil may only be considered as OC
sink. However, it represents a potentially more effective carbon
sink if contained in large amounts, due to the resilience of
mineralized carbon in soils. Oxalate and its transformations
in various oxalogenic plants can affect the carbon sink of soil
and global carbon beyond what was previously understood.
Measures such as the conservation of carbon-mineralizing trees
such as Iroko (M. excelsa) and other biomineralizing plant
species in depleted or low-carbon soils are potentially important
for significant mineral carbon sinks development. Research on
the quantitative assimilation of CO2 into mineralized carbon
is therefore required to create a commercially viable soil
carbon sink, which is practically accessible via OCP. And
hence, the cultivation of carbon-mineralizing trees in the
form of agroforestry projects can serve multiple purposes of
carbon assimilation and soil recovery. Finally, the major factor
required to resolve sustainable mineralization of carbon is its
potential disintegration by metabolic activities of soil bacteria and
modifications of soil pH.
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