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Early prediction of pathogen infestation is a key factor to reduce the disease spread in
plants. Macrophomina phaseolina (Tassi) Goid, as one of the main causes of charcoal
rot disease, suppresses the plant productivity significantly. Charcoal rot disease is one of
the most severe threats to soybean productivity. Prediction of this disease in soybeans
is very tedious and non-practical using traditional approaches. Machine learning (ML)
techniques have recently gained substantial traction across numerous domains. ML
methods can be applied to detect plant diseases, prior to the full appearance of
symptoms. In this paper, several ML techniques were developed and examined for
prediction of charcoal rot disease in soybean for a cohort of 2,000 healthy and infected
plants. A hybrid set of physiological and morphological features were suggested as
inputs to the ML models. All developed ML models were performed better than 90%
in terms of accuracy. Gradient Tree Boosting (GBT) was the best performing classifier
which obtained 96.25% and 97.33% in terms of sensitivity and specificity. Our findings
supported the applicability of ML especially GBT for charcoal rot disease prediction in
a real environment. Moreover, our analysis demonstrated the importance of including
physiological featured in the learning. The collected dataset and source code can be
found in https://github.com/Elham-khalili/Soybean-Charcoal-Rot-Disease-Prediction-
Dataset-code.

Keywords: charcoal rot, gradient tree boosting algorithm, Macrophomina phaseolina (Tassi) Goid, machine
learning, prediction

INTRODUCTION

The production of global crops has to be doubled by 2050 to meet the increasing needs of the world’s
population (Khalili et al., 2019). Plant diseases are the lead causes of extensive economic losses in
the agricultural industry around the world. Recent statistics have confirmed that there is a decline
of worldwide crop yields by 14% worldwide due to plant diseases, weeds and insects, and hence,

Abbreviations: AUC, Area under the ROC curve; ELISA, Enzyme-linked immunosorbent assay; FCM, Flow cytometry;
FISH, Fluorescence in situ hybridization; FN, False negatives; FP, False positives; GBT, Gradient tree boosting; IF,
Immunofluorescence; LR, Regularized logistic regression; MCC, Matthews correlation coefficient; ML, Machine learning;
MLP, Multilayer perceptron; PPV, Precision or positive prediction value; R7, Yellowing of the leaves and yellow pods at
50% growing stage; RF, Random forest; ROC, Receiver operating characteristic; RT-PCR, Polymerase chain reaction; SVM,
Support vector machines; TN, True negatives; TP, True positive; t-SNE, t-distributed stochastic neighbor embedding; WB,
Western blotting.
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early detection of diseases is of a key importance to prevent
disease spread and reduce damage to crop production (Martinelli
et al., 2015). Macrophomina phaseolina (Tassi) Goid causes rot
diseases in about 700 plant species. It is an extremely robust
soil-borne fungus that damages several crops i.e., cotton, grains,
oilseeds, legumes, jute along with fruits and vegetable plants
(Ambrosio et al., 2015; Sun et al., 2016). A wide range of
physiological, morphological, and pathogenic diversity enables
M. phaseolina to adapt across various climatic conditions
(Ambrosio et al., 2015). Moreover, sclerotia and chlamydospores
structures enable the fungus to survive in the soil for a longer
period (Katan, 2017). Gaige et al. (2010) described that the
disease is dispersed by infected plant residues, wind, and soil. The
infestation of M. phaseolina pathogen may occur at any growth
stage whereas symptoms often appear after the midseason or
at maturity i.e., growth stage R7 where yellowing of the leaves
and yellow pods can be observed (Hartman et al., 2016). Other
symptoms may include the development of “blackleg” in infected
plants which results in weaker plants and lower productivity
(Santos et al., 2016). The infected plants ultimately die due
to various reasons such as vascular blockages that weaken the
nutrient transport (Santos et al., 2016) or exposure to phytotoxic
metabolites released by M. phaseolina.

For decades, agricultural management strategies for
controlling plant diseases were mainly based on cultural
practices e.g., soil solarization, crop rotation, cultivation of
tolerant cultivars, alone or combined with other techniques such
as low doses of pesticides and biological agents (Holmes et al.,
2020). Generally, fumigants and fungicides are used to control
M. phaseolina infections in crops that can be ineffective and
inefficient due to different environmental factors as reported in
Abbas et al. (2019). In a work presented by Khalili et al. (2019), a
higher dose of fungicides was suggested for an economical yield.
An increased dose of these chemicals leads to concerns over
the long-lasting harmful impacts of pesticides on human health
and ecology as agricultural run-offs contain pesticides which
pollute the water resources (Chamorro et al., 2015; Pastrana
et al., 2016). Moreover, the bioaccumulation of these toxic
compounds in the food chain and further ingestion by bird
populations and mammals pose vital health-associated threats
(Brevik et al., 2020).

The efficient detection of diseases can be a key factor
in the sustainability of the agroecosystem. The developments
in molecular biology and biotechnology have improved the
detection of plant diseases. Reverse Transcription Polymerase
Chain Reaction (RT-PCR), Enzyme-Linked Immuno-Sorbent
Assay (ELISA), and Western blotting (WB) are examples of
plant disease diagnostic techniques (Jeong et al., 2014; Golhani
et al., 2018). However, these techniques are not able to predict
the fungal disease despite their diagnostic efficiency (Sakudo
et al., 2006; Thanarajoo et al., 2014). Moreover, RT-PCR,
ELISA, and WB are limited in terms of cost-effectiveness,
efficiency, and accuracy for the prediction of disease infestation
(Eun et al., 2002).

Therefore, an automated diagnostic system is important to
prevent and control diseases in soybean. It would minimize the
yield and economic losses, reduce pesticide residues, and enhance

product quality (Nagasubramanian et al., 2018). Effective soybean
disease classification is critical to predict the disease at the early
stages. Machine learning (ML) techniques have found application
in several areas of research such as crop management, yield
prediction (Chlingaryan et al., 2018), disease detection (Kouchaki
et al., 2019), and weed detection crop quality (Liakos et al., 2018;
Wang et al., 2019). These algorithms learn through examples
(training data), to predict the unseen data (Ashfaq et al., 2017).
Researchers have also applied learning algorithms in predicting
the pest attack and disease infestation in crops (Patricio and
Rieder, 2018).

In this work, a number of ML algorithms, including linear
regression with L1 and L2 regularization terms (LR-L1 and
LR-L2), neural network (Multilayer perceptron, MLP), random
forest (RF), gradient tree boosting (GBT), and support vector
machines (SVM) were developed and compared for soybean
disease prediction. These algorithms have been used to classify
healthy and infected plants using spectral imaging data of aerial
parts of plants (Ur Rahman et al., 2017). ML methods have also
been proven successful in monitoring morphological traits (Singh
et al., 2017; Mochida et al., 2019). Nonetheless, variations in
symptoms may lead to an improper prediction due to dynamic
nature of plant changes. Consequently, the appearance-based
identification of diseases is not reliable enough to accurately
detect unhealthy plants especially in the early growth stages. An
appropriate method is vital for detection of the causal agent
as charcoal rot does not have any visible symptoms until the
midseason (Sladojevic et al., 2016). Hence, we have proposed
a hybrid feature set for the prediction of charcoal rot disease
using physiological features and morphological characteristics
(including growth attributes as well as yield-related features).
As a result, ML algorithms are trained and assessed based on
the hybrid feature sets of healthy and infected soybean plants.
The available dataset contains both experimental setups and
real cultivation conditions in the field. The work shows the
application of ML techniques to detect unhealthy plants from
the healthy group.

Currently, no public dataset for soybean charcoal rot disease
classification is available. The applicability and success of
supervised ML algorithms on predictive disease modeling have
been reported but for other diseases and mainly based on
image datasets. Therefore, our main focus is to suggest a
set of informative features to enhance charcoal rot disease
prediction as well as providing a comprehensive comparison of
several ML techniques.

MATERIALS AND METHODS

Dataset Collection
Soybean (Glycine max L.) plants were collected from 10 different
areas of Mazandaran province which is the most prolific
geographical region for the production of soybean in Iran
(Supplementary Figure 1). Soybean healthy plants were collected
based on the symptomless features of leaf, stem, and root of
mature during the ripeness stage. In this study, the R7 was
chosen for infected plants based on the physical properties e.g.,
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the existence of bright gray and sclerotia on the stem and root
and suspicious of diseases. All samples were transferred to the
laboratory of the Agricultural and Resource Research Center
of Mazandaran (Iran) and stored at 4◦C until further analysis.
Overall, 2,500 plants were randomly chosen from healthy and
infected plants.

Symptoms of Infected Soybean Samples
The infection of this pathogen is observed on all parts of the
plant i.e., branches, leaves, pods, petioles, root, stem, and seeds
on soybean (Gupta et al., 2012), however, the key indications
of disease are observed after the flowering stage in infected
plants, i.e., R7 stage, especially in low humidity level and high-
temperature conditions (Schoving et al., 2020). Chlorosis of
leaves, premature defoliation, and reduced vigor are the major
symptoms observed in the infected plants (Romero Luna et al.,
2017), which result in reduced productivity, sterility of pod, and
formation of crinkled and tiny seeds. A brown discoloration in
the vascular tissues of the taproot advanced into the stem is seen
in infected plants. An appearance of powdery black sclerotia is
found under the epidermis and root at the seed formation stage
in the infected plants. Sometimes, the plant symptoms of this
disease are confused with other plant abiotic stresses like drought
or abiotic stress like cyst nematode, therefore the detection of this
disease based on morphological aerial plant parts is challenging
(Sanchez et al., 2019).

Laboratory Assessment
Determination of Morphological Parameters
All soybean healthy and infected samples were collected and
transferred to the laboratory and then cleaned with tap water
until all noticeable soil and sand spots were removed. Forceps
were used to remove the remaining particles manually. The
mature seedlings were observed on the 54th day after sowing
while mature pods were observed on the 80th day after sowing.
Specifically, the length and thickness of the stem and root as well
as length, width, and thickness of the seeds were examined (Fenta
et al., 2014). Length of the mature seedlings, stem and root of
a soybean plant was measured and reported in cm. A pair of
calipers were used to measure the length of root, pods and seeds
and thickness of the seeds. Meanwhile, the thickness of the seeds
was measured using a micrometer screw gauge. At each harvest,
the number of seeds and pods per each plant were manually
categorized based on the date of pod or flowering set to count the
numbers of empty and filled pods (with or without rudimentary
seeds) (Joshi et al., 2015).

Determination of Fresh Weight and Dry Weight
An electronic top pan balance was employed to calculate the
fresh weights (FW) of soybean seedlings, stems and roots (Model
BL-210-S, Sartorius, Germany). On the other hand, Samples
were oven-dried at 70 ± 2◦C for 72 h for weighting the dry
weight (DW). DW and FW were stated in grams per plant
(Schnyder and Baum, 1992).

Yield-Related Parameters Assessment
Seed Quality Index
Germination percentage (GP) and Seedling vigor index
(VI) of the soybean seeds were measured after 2 weeks.
Daily observations of seed emergence were carried out. Seed
germination percentage is calculated as follows (Islam et al.,
2009):

GP =
∑

(N − i) × Gi
N× GN

× 100 (1)

where i and N are the number of days since the day of sowing and
the total number of days, respectively. Gi and GN are the number
of seeds germinated on day i, and the total number of germinated
seeds, respectively.

Furthermore, seedling vigor index (SI) is calculated by Islam
et al. (2009):

VI = GP × SL × 100 (2)

where, GP is germination percentage, SL is the
seedling length in cm.

Thousand Seed Weight
It is highly useful for calculating the optimal seeding rate for a
given crop type. A large variation was observed across measured
seed weights. We grouped the weights in two groups of light
(<100 g) and medium or intermediate (>100–200 g). Individual
seeds were weighted by calculating the weight of 1,000 fresh seeds
(empty seeds were discarded). The frequency distribution of the
seed weight was determined by checking its normality using the
K-S test (Brzezinski et al., 2015).

Determination of Physiological
Parameters
After the harvest, the soybean seeds were taken to the laboratory
for physiological quality assessments, through the following tests:

Protein Content and Seed Oil Content
The oil content was calculated and expressed in percentage
of the dry matter using petroleum ether and in a Soxhlet
instrument (technique 920.85, AOAC, 1990). The protein content
was obtained and expressed in percentage of the dry matter
by indicating the total nitrogen based on the micro Kjeldahl
method (technique 920.87, AOAC, 1990) by considering a 6.25
conversion factor (Vaknin et al., 2011).

Amount of Chlorophyll and Carotenoid
Samples with 0.1 g of leaves (fresh material) was chosen
randomly. Each soybean sample was grounded in 0.5% (w
v−1) magnesium carbonate and 10 mL of 80% acetone. Then,
10 ml of 100% acetone was added. A spectrophotometer
was used to measure the absorbance (Jenway 6105 UV/VIS)
in 663 nm (chlorophyll a—Chl a), 645 nm (chlorophyll
b—Chl b) and 480 nm (carotenoids—Cx+c) wavelengths.
Equations described by Hendry and Price (1993) was employed
to calculate the chlorophyll concentrations. The fraction of
photosynthetically active irradiance absorbed by the leaf (α)
depends on the chlorophyll content (µmol m−2) and it was
calculated as α = Chltot/(Chltot + 76) by considering the
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TABLE 1 | List of features for prediction of charcoal rot disease in soybean.

Features

Morphological

Growth attributes Yield- related Physiological

Stem length Germination percentage Seed oil content

Root length Seedling vigor index Amount of chlorophyll

Thickness of seed Thousand seed weight Amount of carotenoid

Stem bark thickness Number of pods per plant Protein content

Root bark thickness Number of seeds per plant

Stem fresh weight Empty pods per plant

Stem dry weight

Root fresh weight

Root dry weight

Seedling fresh weight

Seedling dry weight

work of Evans and Poorter (2001). The data obtained was
subject to a regression analysis using the SigmaPlot 8.02
package for Windows.

Morphological and Physiological Feature
Extraction
An observation was conducted to check the morphological
and physiological characteristics of each soybean plants. In
order to carry out the ML experiments, two categories
were considered; healthy and infected. Healthy (negative) and
infected (positive) plants were separated based on symptoms
of charcoal rot. Appropriate attributes were selected based
on the differences between the healthy and infected plants.
Some data within each category of healthy or infected
samples had very similar feature values. Therefore, as a
preprocessing step, we dropped all but one of very similar
data samples as they would not add any extra information to
the learning or validation of the proposed pipeline. Finally,
1,000 healthy soybean plants (negative) and 1,000 infected
plants (positive) were selected for charcoal rot disease prediction
(Supplementary Table 1).

Feature Selection
Feature selection was designed and optimized to enhance the
performance and generalizability of ML models. In order to select
the relevant features, analysis of variance and F-test were used
(Elssied et al., 2014). These analyses were based on p-value for
feature selection by skipping the irrelevant attributes from the
data set (Eskandari and Javidi, 2016). F-test was performed to
compute the statistical significance value and to calculate the
p-value for the difference in means at the 5% level of significance.
We finally ended up with a list of 21 features to be analyzed by ML
techniques. Results of the F-test confirmed that morphological
and physiological characters parameters were among the most
important features for prediction of charcoal rot disease in
soybean (Table 1).

Computational Methods for Predicting
Infected Soybeans
Our pipeline for predicting infected soybean has four main
steps: (1) data gathering; (2) feature extraction; (3) training the
predictors; and (4) performance assessment. These steps have
been described and have been schematically shown in Figure 1.
Data gathering is the first step of the healthy soybean prediction
(Figure 1A). After creating the positive and negative datasets,
incomplete instances were removed. In order to have a balanced
positive and negative dataset, a random subset of the negative
dataset with an equal number of positive samples was selected.
In the feature extraction step, the positive and negative samples
(soybeans) are coded into numerical feature vectors to be used to
learn the classifiers.

There is a variety of classifiers that can be learned and based
on the performance of different classifiers, a suitable classifier
can be selected (Figure 1B). A standard procedure for assessing
the performance of a classifier is k-fold cross-validation. In this
process, the available dataset is randomly divided into k subsets
without an overlap. Then, k− 1 of them is utilized as a training
dataset, and the remaining as the test set for evaluating the model
(Lyons et al., 2018). This process is repeated k times to allow
every subset to be used precisely once as the test set. Finally, the
average performance for all k test sets is calculated (Figure 1C).
The most important performance assessment measures are used
in the prediction of the healthy soybeans are described in the
following subsections. All of these measures are based on the
four basic elements of the confusion matrix (true positive, false
positive true negative, and false negative represented as TP, FP,
TN, and FN, respectively).

Machine Learning Methods
After the data collection and feature extraction steps, six ML
techniques (LR-L1, LR-L2, MLP, RF, GBT, and SVM) were
developed and applied to the training set. We used 10-fold cross-
validation while the threshold was set based on the training data
considering false positive and false negative rates. All the ML
techniques were run by the open-source ML toolkit scikit-learn
(version 0.20.1) in python 3.6.7. The parameters of the models
(e.g., number of ensembles for RF or GBT) were optimized
through an internal cross-validation on the training data. This
was done by a grid search over a range of values and selecting
parameters that generated the best area under the area under the
receiver-operator characteristic (ROC) curve (AUC). The model
with the highest performance was reported in the paper.

Regularized Logistic Regression (LR-L1 and LR-L2)
LR is a linear classification model that predicts binary outcomes
based on a set of explanatory variables (i.e., features). This
model is performed using LIBLINEAR library and L1 or L2
regularizations (LR-L1 and LR-L2). L1 regularization and L2
regularization are two common techniques to reduce the model
over-fitting (Couronne et al., 2018).

Multilayer Perceptron (MLP)
MLP maps the input data to a non-linear latent representation.
MLP contains several fully connected layers of nodes in which a
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FIGURE 1 | Flowchart of the statistical and ML techniques for the detection of charcoal rot disease. (A) Data set creation. (B) Feature selection and design. (C) ML
models train and test.

non-linear activation function is considered for each node, except
at the input layer. MLP employs back-propagation for training
(Breiman, 2001) and has shown to be a highly applicable network,
thus a popular choice among researchers (Shan et al., 2018). Two
hidden layers of size 10 and 4 and Adam optimization were
considered in this work.

Random Forest (RF)
RF is a non-linear ensemble method that consists of multiple
decision trees. The final prediction is determined from the results
of the individual trees (Basu et al., 2018), which improves the

generalization ability of the model for a better prediction. The
accuracy of an individual tree and a correlation between these
trees are key points in the generalization ability of RF. RF
is not usually sensitive in the choice of parameter selections
(Teixeira et al., 2013).

Gradient Tree Boosting (GBT)
GBT (Friedman, 2002) is another ensemble algorithm based on
decision trees that can be considered for both classification and
regression problems (Cheng et al., 2018). In contrast to RF, this
model sequentially builds decision trees by a weighting strategy
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to put more emphasis on harder samples. A weighted majority
vote is then used to make the final prediction.

Support Vector Machines (SVM)
SVM aims to find a hyperplane that minimizes the structural
risk (Czarnecki and Tabor, 2015) in kernel space. Gaussian
radial basis function, Linear, and polynomial are several common
kernel functions. SVM has two important hyperparameters, the
kernel coefficient γ and the penalty parameter C. This model
follows two goals of finding a low complexity model that best
separates the data to have a better generalizability ability (Uddin
et al., 2019). Linear kernel was considered in this work.

Model Evaluation Criteria
The considered ML classification models are evaluated by
calculating several evaluation parameters, true positive (TP)
that indicates the number of correctly classified infected
plants, true negatives (TN) that indicates the number of
correctly classified healthy plants, false positives (FP) that
denotes the number of healthy plants incorrectly classified
as infected plants and false negatives (FN) that represents
the number of infected plants incorrectly classified as healthy
plants. The classification performance is often evaluated by
accuracy, specificity, sensitivity, precision, Negative Predictive
Value (NPV), F1 score and, Matthews Correlation Coefficient
(MCC) value as shown in Figure 1C. Besides, we also assessed
AUC as an indicator of model performance. The threshold for
reporting the classification performance on the test sets was set on
the train data. All performance criteria in this work are explained
as follows:

Accuracy
Accuracy (Acc) is a ratio between the correctly classified data
points to the total number of samples as described by Sokolova
et al. (2006):

Acc =
TP + TN

TP + FP + TN + FN
× 100% (3)

Sensitivity and Specificity
Sensitivity describes the correctly classified positive samples to
the total number of positive samples:

Sensitivity =
TP

TP + FN
× 100% (4)

whereas specificity is stated as a ratio of the correctly classified
negative samples to the total number of negative samples:

Specificity =
TN

TN + FP
× 100% (5)

Precision
Precision or positive prediction value (PPV) shows the correctly
classified positive samples to the total number of samples
predicted as positive and described by Sokolova et al. (2006) as:

Precision =
TP

TP + FP
× 100% (6)

Negative Predictive Value (NPV)
Inverse precision, or true negative accuracy measures the
proportion of negative samples that were correctly classified to
the total number of negative predicted samples (Sokolova et al.,
2006) as:

NPV =
TN

FN + TN
× 100% (7)

F-Measure
F-measure shows the harmonic mean of recall and precision and
calculated as:

F1score =
2TP

2TP + FP + FN
× 100% (8)

Matthews Correlation Coefficient (MCC)
MCC shows the correlation between true and predicted labels and
described in Boughorbel et al. (2017) as:

MCC =
TP × TN − FP × FN

√
(TP + TN) (TP + FN) (TN + FP) (TN + FN)

× 100%

(9)

Area Under the ROC Curve (AUC)
ROC has been used over the past years within ML community to
visualize and evaluate the trade-off between the true positive rates
and the false-positive rates (Fawcett, 2006). In order to compare
classifiers, ROC can be reduced to the single scalar value called
the area under the curve (AUC) and defined as the area under
the ROC curve, a measure of the quality of the classification
(Marrocco et al., 2008). AUC is not impacted by the arbitrary
selection of a specific classification threshold and we thus use it
as the primary evaluation metric.

t-Distributed Stochastic Neighbor
Embedding (t-SNE) Data Visualization
The t-Distributed Stochastic Neighbor Embedding (t-SNE) has
been successfully applied to visualization problems. Schubert and
Gertz (2017), described that it attempts to preserve pairwise
distance distribution of points in the lower dimensions. As the
prediction in the lower dimensions includes the distribution of
relative distances, it needs large data points to determine an
expressive depiction. The t-SNE is a new technique in ML, which
has been employed in biological data analysis (Grimes et al., 2013;
Irish, 2014; Dimitriadis et al., 2018). It has also been successfully
applied to visualize the infected rice leaf data in Zhang et al.
(2020). In our work, t-SNE was used to visualize distinctions
among positive (infected) and negative (healthy) samples.

RESULTS

Model Verification and Evaluation
We employed 10-fold cross-validation to measure and relate the
strength and trustworthiness of all models as a model build by
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TABLE 2 | Performance comparison of various ML techniques on the full features for prediction of soybean charcoal rot disease.

Method TP FP TN FN Accuracy Sensitivity Specificity Precision NPV F1 score MCC AUC

LR-L1 1153 47 1149 51 95.92 ± 8.32 95.75 ± 8.74 96.08 ± 7.93 96.01 ± 8.05 95.84 ± 8.60 95.88 ± 8.39 91.84 ± 16.63 97.37 ± 5.82

LR-L2 1143 57 1151 49 95.58 ± 9.00 95.92 ± 8.90 95.25 ± 9.16 95.31 ± 9.11 95.87 ± 8.90 95.61 ± 8.99 91.18 ± 17.99 97.05 ± 6.58

MLP 1139 61 1138 62 94.88 ± 9.58 94.83 ± 10.66 94.92 ± 8.51 94.72 ± 8.97 95.06 ± 10.16 94.77 ± 9.83 89.76 ± 19.14 96.69 ± 7.39

RF 1143 57 1147 53 95.42 ± 9.64 95.58 ± 9.27 95.25 ± 10.01 95.34 ± 9.80 95.50 ± 9.47 95.46 ± 9.54 90.83 ± 19.28 97.20 ± 6.35

GBT 1168 32 1155 45 96.79 ± 6.49 96.25 ± 7.88 97.33 ± 5.16 97.16 ± 5.55 96.49 ± 7.29 96.68 ± 6.75 93.62 ± 12.90 98.42 ± 3.42

SVM 1150 50 1155 45 96.04 ± 7.55 96.25 ± 7.88 95.83 ± 7.26 95.81 ± 7.36 96.29 ± 7.76 96.03 ± 7.61 92.09 ± 15.10 97.86 ± 4.65

FIGURE 2 | A comparison of different evaluation criteria for the prediction of healthy and infected soybean plants with charcoal rot disease considering different ML
algorithms.

only one random scale may tend to be over-fitting or occasional.
The mean performance of six ML models for the test sets were
shown in Table 2 and Figure 2. MLP performed the worst in terms
of all the evaluation criteria with the lowest accuracy (94.88%),
sensitivity (94.83%), specificity (94.92%), precision (94.72%),
NPV (95.06%), F1 score (94.77%), and MCC (89.76%).The final
analysis shows that GBT classifier performed the best with the
highest classification accuracy (96.79%), specificity (97.33%),
precision (97.16%), NPV(96.49%), F1 score (96.68%), and MCC
(93.62%). SVM classifier is the second best with a classification
accuracy of 96.04%, with TP (1150) and specificity (95.83%),
precision (95.81%), NPV (96.29%), F1 score (96.03%), and MCC
(92.09%) and LR-L1, LR-L2, and RF attained an average accuracy
of more than 95%. Similarly, sensitivity for GBT and SVM were
almost the same and ranked the highest. LR-L1 and LR-L2 also
performed quite well with only slightly lower than GBT and SVM;
their sensitivity was more than 95%. It could be summarized that
the GBT and SVM models outperformed the other six models for
the prediction of charcoal rot disease.

Determination of the Prediction
Performances
ROC curve is one of the most robust approaches for evaluating
ML techniques (Bradley, 1997). Here, the ROC curve was
generated by varying the output threshold of the LR-L1, LR-L2,

MLP, RF, GBT, and SVM classifiers and plotting the true positive
rate (sensitivity) against the false positive rate (1—specificity)
for each threshold value. An accurate classifier leads to a ROC
curve which is close to the left-hand and top borders of the
plot and hence AUC can be used as a performance measure
(Robin et al., 2011). The maximum value of AUC is 1 while
weak classifiers and random guessing have AUC values close
to 0.5. We plotted the ROC curves and calculated the AUC
for six models based on 10-fold cross-validation for prediction
of charcoal rot disease. The evaluation was performed using
2,000 data which consists of 1,000 positive and 1,000 negative
samples. In Supplementary Figure 2, the ROC curve of the GBT
model is highlighted by the red color with the highest AUC
value of 98%. Results demonstrated that the average AUC values
of LR-L1, LR-L2, RF, and SVM were very close (97%), which
means that the four models have equal sorting or accumulation
ability in prediction probability. Meanwhile, MLP model gave
the lowest AUC value (96%). GBT is a robust prediction system
for charcoal rot disease on soybean considering AUC as the
performance measure.

GBT Model Performance
In the proposed system, we have classified healthy and infected
plants of soybean dataset learning various ML classifiers on a
hybrid feature set. After classification, we have calculated and
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FIGURE 3 | Two-dimensional t-SNE visualization of the data.

compared their performance scores. The t-SNE was also applied
to our dataset (Figure 3) to visualize the data in two-dimensions.
As can be seen, most of the healthy and infected samples shape
their clusters, although some characters of healthy and infected
plants were identical which had the lowest difference in some
physiological and morphological features. Consequently, having
only 32 + 45 samples that were not correctly classified in our
10-fold cross-validation, demonstrates the application of ML
techniques to classify most of such samples.

Effectiveness Analysis of Feature
Selection
To further evaluate the effectiveness of the full features on
ML performance for prediction of charcoal rot, we took 12
morphological features for classification algorithms (LR-L1, LR-
L2, MLP, RF, GBT, and SVM). Then, the prediction results are
evaluated on the 12 features using the 10-fold cross-validation.
For accuracy, GBT reached the highest value of 96.13%, followed
by SVM and LR-L1 which performed only slightly lower than
GBT with an average accuracy of 95.58%. The lowest classification
accuracies of 94.50%, was resulted from MLP. The averaged
prediction performance is listed in Table 3 and compared with
that the full feature set. As can be seen from Table 2, the accuracy,
sensitivity, specificity, precision, NPV, F1 score, MCC, and AUC
of the full features are slightly higher to the morphological feature
set. As shown in Tables 2, 3, the GBT algorithm has a higher

performance by considering the hybrid feature set in comparison
to the morphological features (96.79% vs. 96.13%).

Feature Ranking
Table 4 shows the importance of the features by considering
the ML models. The features were ranked according to their
importance in the classification. The incremental usefulness is
important in relevance from the perspective of feature ranking
where the presence of such features enhances the performance
of a classification system. The top 10 features ranked by each
ML algorithm in this work are represented and highlighted by
different colors in Table 4. To further understand the importance
of individual features on model predictions, SHAP analysis
(SHapley Additive exPlanations) was performed on the GBT
model, and the results are presented in Figure 4. SHAP values can
be used to interpret the impact on model prediction of the value
of a given feature, in comparison to a baseline value (Padarian
et al., 2020). According to the results, top features were mostly
among the physiological features showing their importance in
comparison with the morphological features for predicting the
early stage of charcoal rot disease on soybean. Observing protein
content, seed oil content and amount of chlorophyll in the top
10 feature means that they are predictive features for all the ML
methods. The amount of amount of carotenoid and empty pods
per plant is listed in the top 10 by all of the methods except
MLP and GBT. Following thousand seed weight, thickness of
seed, and number of seeds per plant are selected by at least
four ML methods. Root length, stem bark thickness, root bark
thickness, and seedling vigor index features are examples of
the least informative features. On the other hand, features that
are not in this list or are just selected by one method can be
categorized as the least informative features. This information is
significant as the most important features can be checked first to
evaluate the seeds.

DISCUSSION

Fungal diseases can be predicted through direct or indirect
procedures. Direct procedures include polymerase chain
reaction, immunofluorescence, fluorescence in situ hybridization,
ELISA, flow cytometry, gas chromatography-mass spectrometry,
and Western blotting. These could be used for high-throughput
analysis when large numbers of samples are needed to be
analyzed to get precise information (Fang and Ramasamy,
2015). Whereas, indirect methods estimate the plant diseases

TABLE 3 | Performance comparison of various ML techniques based on 12 morphological features for prediction of soybean charcoal rot disease.

Method Accuracy Sensitivity Specificity Precision NPV F1 score MCC AUC

LR-L1 95.58 ± 8.51 95.25 ± 10.27 95.92 ± 6.97 95.66 ± 7.59 95.61 ± 9.28 95.41 ± 8.97 91.21 ± 16.92 97.24 ± 5.84

LR-L2 94.96 ± 9.63 94.50 ± 12.51 95.42 ± 7.32 94.99 ± 8.32 95.15 ± 10.55 94.64 ± 10.54 90.03 ± 18.99 96.96 ± 6.40

MLP 94.50 ± 8.64 94.17 ± 12.04 94.83 ± 5.88 94.46 ± 6.57 94.90 ± 10.32 94.17 ± 9.41 89.18 ± 16.98 97.29 ± 5.45

RF 95.46 ± 9.33 95.08 ± 10.33 95.83 ± 8.41 95.64 ± 8.88 95.31 ± 9.73 95.35 ± 9.62 90.93 ± 18.63 97.12 ± 6.35

GBT 96.13 ± 7.64 95.92 ± 8.34 96.33 ± 6.97 96.22 ± 7.22 96.05 ± 8.04 96.06 ± 7.78 92.26 ± 15.27 98.00 ± 4.28

SVM 95.58 ± 7.73 95.67 ± 9.05 95.50 ± 6.53 95.34 ± 6.92 95.88 ± 8.49 95.48 ± 7.99 91.20 ± 15.41 97.46 ± 5.51
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TABLE 4 | Feature ranking results for various ML techniques.

Number Features LR-L1 LR-L2 MLP RF GBT SVM

1 Stem length 13 13 21 2 2 13

2 Root length 3 3 9 14 3 3

3 Thousand seed weight 18 18 19 16 5 19

4 Stem bark thickness 19 19 18 8 13 18

5 Root bark thickness 6 6 16 5 14 6

6 Thickness of seed 14 9 14 13 19 14

7 Stem fresh weight 17 1 6 18 21 1

8 Stem dry weight 1 14 12 11 7 16

9 Root fresh weight 16 17 13 17 17 4

10 Root dry weight 4 16 7 21 16 17

11 Seedling fresh weight 15 15 2 19 11 15

12 Seedling dry weight 21 4 3 10 10 21

13 Protein content 9 20 20 20 4 9

14 Seed oil content 12 21 17 4 1 11

15 Germination percentage 20 7 11 7 11 20

16 Amount of chlorophyll 5 12 15 1 15 7

17 Amount of carotenoid 7 11 5 3 9 5

18 Empty pods per plant 11 5 8 9 8 12

19 Number of seeds per plant 10 10 10 15 6 10

20 Seedling vigor index 8 8 1 6 20 8

21 Number of pods per plant 2 2 4 12 18 2

Colors indicate the top 10 features ranked from high (blue) to low (red).

FIGURE 4 | Mean SHAP values for the GBT model.

by measuring the morphological and physiological changes
or compounds released by infected plants in their defense
(Golhani et al., 2018). The most popular indirect methods such
as ML approaches offer a wide range of techniques for the
detection of plant diseases (Golhani et al., 2018). The advantages
and disadvantages of different types of detection methods for
charcoal rot disease in crops are listed in Supplementary Table 2.

In agriculture research, ML methods are mainly used to detect,
identify, and predict crop diseases and plant stress phenotyping
(Yang and Guo, 2017). An efficient and precise prediction of
plant diseases is a prerequisite in plant protection management.

Moreover, early detection of disease minimizes the interference
of humans (Golhani et al., 2018) which has been recently
employed successfully (Saleem et al., 2019). However, prediction
and quantification of charcoal rot disease are more crucial than
the identification and classification of this disease in the future
due to the implications of precise agriculture (Nagasubramanian
et al., 2018). Such research works could lead to prevent the
crop diseases at an early stage and cut costs of the pesticides
(Barbedo, 2018).

In this work, specialized ML models were developed,
for identification of charcoal rot disease by scrutinizing
the symptoms of different parts of the soybean plants. In
consequence of the lack of dataset for this disease, we have created
our dataset; details of the dataset are provided in the dataset
section. The main advantage of our proposed method is the
identification of soybean charcoal rot disease at its early stage.
A database of 2,000 soybean plants in natural field conditions
was established. Supervised ML classifiers of LR-L1 LR-L2 MLP,
RF, GBT, and SVM were trained to differentiate the healthy and
infected soybean plants. Among these models, GBT classifier
achieved a success rate of 96.79% through the analysis of the
suggested feature set.

The occurrence of charcoal rot disease is regular, and
the type and the probability of the soybean disease change
during the soybean growth. Therefore, different charcoal rot
disease identification techniques can be established by using the
developed methods in this study. Furthermore, the automated
charcoal rot disease prediction can be realized by combining
identification models and domain knowledge of soybean disease.
It has been previously reported that image processing and
computer vision techniques can help to identify plant diseases
(Golhani et al., 2018). The accuracy of the classification along
with the image pre-processing could yield 90.5% recognition
rate (Azlah et al., 2019). Thus far, only a few studies have
been carried out to predict the charcoal rot disease development
onset (Nagasubramanian et al., 2018). An algorithm such as
image classification and image segmentation are mostly used for
diseased charcoal rot identification (Saleem et al., 2019). These
algorithms are used to classify healthy and no healthy plant leaves
and stems of soybean (Saleem et al., 2019). By using the SVM
approach, the highest classification accuracy was 95.76% and F1-
score was 87% to identify the charcoal rot disease in soybeans
(Nagasubramanian et al., 2018).

Although image processing and ML have provided significant
evidence in the early prediction of disease, but different
illumination conditions impact their performance (Mujika et al.,
2018). Therefore, physiological evaluations can help to tackle this
challenge (Khanna et al., 2019). Presented results have shown
the applicability of the physiological features for the prediction
of charcoal rot in soybean. As stated in Table 2, the result
after using hybrid features, compared with only morphological
features detailed in Table 3 has slightly higher performance.
Moreover, Table 4 indicates the feature ranking based on various
ML models highlighted the importance of physiological features
in disease prediction.

In terms of classification performance, all methods performed
well. GBT was the best preforming classifier as it tries to
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sequentially improves the performance and also it includes
the feature interactions in the learning. MLP had the lowest
performance among others. It could be due to our small
data size as neural networks usually needs larger data size to
perform well. We note that the small size of the dataset and
considering all features to have the same importance are the
limitations of this study.

CONCLUSION

This paper investigated different ML algorithms for soybean
charcoal rot disease detection and classification using
morphological, physiological features. In this research effort,
we presented an evaluation and comparison of six ML
techniques on predicating charcoal rot disease. The results
indicated that various ML techniques were slightly different
in terms of their performance considering different evaluation
metrics. Quantitative analysis of results indicated that GBT
and SVM performed almost the same and demonstrated
better performance compared with LR-L1, LR-L2, MLP, and
RF approaches. Moreover, the feature ranking has shown
the importance of including various features in the learning.
Including other feature types such as chemical compositions
and molecular structures and more data in the learning can be
investigated as future work.
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