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Food legumes are important for defeating malnutrition and sustaining agri-food systems
globally. Breeding efforts in legume crops have been largely confined to the exploitation
of genetic variation available within the primary genepool, resulting in narrow genetic
base. Introgression as a breeding scheme has been remarkably successful for an
array of inheritance and molecular studies in food legumes. Crop wild relatives (CWRs),
landraces, and exotic germplasm offer great potential for introgression of novel variation
not only to widen the genetic base of the elite genepool for continuous incremental
gains over breeding cycles but also to discover the cryptic genetic variation hitherto
unexpressed. CWRs also harbor positive quantitative trait loci (QTLs) for improving
agronomic traits. However, for transferring polygenic traits, “specialized population
concept” has been advocated for transferring QTLs from CWR into elite backgrounds.
Recently, introgression breeding has been successful in developing improved cultivars in
chickpea (Cicer arietinum), pigeonpea (Cajanus cajan), peanut (Arachis hypogaea), lentil
(Lens culinaris), mungbean (Vigna radiata), urdbean (Vigna mungo), and common bean
(Phaseolus vulgaris). Successful examples indicated that the usable genetic variation
could be exploited by unleashing new gene recombination and hidden variability even
in late filial generations. In mungbean alone, distant hybridization has been deployed to
develop seven improved commercial cultivars, whereas in urdbean, three such cultivars
have been reported. Similarly, in chickpea, three superior cultivars have been developed
from crosses between C. arietinum and Cicer reticulatum. Pigeonpea has benefited
the most where different cytoplasmic male sterility genes have been transferred from
CWRs, whereas a number of disease-resistant germplasm have also been developed
in Phaseolus. As vertical gene transfer has resulted in most of the useful gene
introgressions of practical importance in food legumes, the horizontal gene transfer
through transgenic technology, somatic hybridization, and, more recently, intragenesis
also offer promise. The gains through introgression breeding are significant and underline
the need of bringing it in the purview of mainstream breeding while deploying tools and
techniques to increase the recombination rate in wide crosses and reduce the linkage
drag. The resurgence of interest in introgression breeding needs to be capitalized for
development of commercial food legume cultivars.
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INTRODUCTION

Deployment of plant breeding tools has been successful for
bolstering crop productivity, harmonizing crop phenology,
enhancing nutritional quality, and developing resistance to
multiple stresses. This became possible with identification
of new combinations of genes and construction of superior
populations possessing desirable novel characteristics, which
have been exploited for human welfare (Anderson, 1949; Arnold,
1992). Although there are numerous examples for purposeful
introgression of advantageous traits into crop varieties as a part of
regular plant breeding programs, the extent and impact of either
natural or farmer-aided introgression are yet to be ascertained
(Jarvis and Hodgkin, 1998, 1999). With almost 20,000 species,
legumes are the members of the Fabaceae/Leguminosae, the third
largest family of the higher plants, which are ubiquitously present
all over the temperate and tropical parts of the world (Polhill and
Raven , 1981). Food legumes are important to human and animal
life and occupy an important place in the global food supply
chain, as well as sustainable agricultural production systems.
With high protein content and 15 essential minerals, these are
indispensable constituents of the cereal-based vegetarian diets
and are grown traditionally with cereals, oilseeds, sugarcane,
etc. Food legumes have prominent biological features and an
inherent capability to fix atmospheric nitrogen owing to the
presence of symbiotic association with Rhizobium bacteria in
root nodules. Therefore, these crops become an indispensable
part of the sustainable agricultsure strategy throughout the world
(Chaturvedi et al., 2011).

A quest is on for the search of genes that can impart resistance
to biotic and abiotic stresses in different food legumes, as well
as to improve the physical and nutritional qualities of grains.
The ever-changing climatic conditions led to emergence of new
insect-pests and diseases and their biotypes and races, which
are becoming a major threat limiting crop production and
productivity (Chakraborty and Newton, 2011; Gautam et al.,
2013). Broadening the genetic base will provide the needed
armor to legume crops against these emerging challenges under
climate change. The crop wild relatives (CWRs) are known to
possess useful alien alleles and cryptic genetic variation, which
are introgressed and expressed in cultivated genepool only when
a systematic breeding scheme is put in place (Doyle, 1988;
Tanksley and McCouch, 1997; Gupta and Singh, 2009; Pratap
and Gupta, 2009). Recent advances in breeding and genomic
tools and techniques provide an opportunity to introgress useful
alleles left behind in the secondary and tertiary genepool into
the elite background useful for legumes breeders. This review
illustrates factors affecting wild gene introgression, population
development, and success resorting wild gene introgression in
cultivated food legumes.

The alien gene transfer in a crop species is paramount when
the breeding value of the parental genepool no longer responds
to selection, resulting in slow or no genetic gain. Conventionally,
it is easier to manipulate desirable genes present within a crop
species compared to the alien genes from distant relatives or
exotic germplasm. This is because the gene transfer within a
species is comparatively easy as there are no crossing barriers,

and also it is largely free from linkage drags of unwanted traits.
In food legumes, ∼3,700 improved varieties with narrow genetic
base form the present varietal portfolio (Kumar et al., 2020),
resulting in the genetic uniformity in farmers’ fields. These
varieties have been developed by the repeated use of a handful
of elite germplasm from the primary genepool and therefore
resulted in narrow genetic base and limited genetic buffers
(Kumar et al., 2004). Introgression of alien genes from CWR
offers a viable option to diversify and widen the genetic base of
legume varieties, which provide insulation against the vagaries,
as well as scope for continuous genetic gains over many breeding
cycles (Kumar et al., 2009).

The horizontal gene transfer from wild species and even
across different genera has played a significant role in the
evolution of eukaryotic genomes (Bock, 2009) as wild species
have evolved through different degrees of selection pressure
exerted by environmental forces and biotic agents over a long
period of time. As a result, these species have acquired many
useful genes/alleles imparting adaptation to environmental cues
such as extreme temperature, drought, waterlogging, salinity,
and mineral toxicity, as well as biotic factors such as diseases,
insect-pests, parasitic weeds, etc. Thus, hybridizing wild species
with elite germplasm following a proper breeding scheme offers
scope for the generation of multitude of pre-bred lines with novel
recombination, which can further be utilized in the mainstream
breeding for continuous accelerated genetic gains.

GENETIC BOTTLENECKS AND
GERMPLASM REDUNDANCY

During evolution and domestication, wild progenitors have
graduated to the cultivated forms passing through various
genetic modifications and acquiring a combination of traits
referred as “domestication syndrome.” Nevertheless, the
persistence of these species in nature for a long time, largely
remaining unattended, might have led to disappearance of
many genes/alleles responsible for input response and higher
grain yield in legume crops (Jain, 1975). Further, only limited
samples of the accessions representing the narrow genetic base
of the total diversity might have been brought to the center
of domestication leading to the “founder effect” (Ladizinsky,
1985). The history of food legumes matches with human
civilization while their evolution took place throughout many
different regions of the world (Pratap and Kumar, 2011).
However, keeping in view that many food legumes now have
their major production base away from the actual center of
diversity and also that during their domestication limited
sampling might have narrowed down their genetic base, these
crops might have started their domestication journey with
the “founder effect.” For example, limited genetic diversity is
reported in soybean outside its center of origin (Shoemaker,
1986; Pratap et al., 2012). Likewise, Phaseolus, chickpea,
lentil, and pigeonpea also witnessed this bottleneck during
their domestication.

While large germplasm repository of food legumes is
preserved in different genebanks across the globe, mining
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of genetic diversity for use in mainstream breeding
remains limited because of the paucity of information on
economic traits and the nature of diversity itself (Kumar
et al., 2007). This becomes much more alarming when we
consider the use of exotic and unadapted germplasm in
breeding programs. Further, the large size of germplasm
collection, breeders’ preference for elite × elite crosses due to
obvious advantages of their adaptability to local conditions,
presence of cryptic genetic variation, and the linkage drag
associated with transferring genes from wild relatives are
other factors associated with restricted use of germplasm
(Sharma et al., 2016).

Linkage drag is one of the major apprehensions while utilizing
exotic and wild species in genetic amelioration of food legumes.
In most of the cases, undesirable linkages hinder the transfer
of desirable traits into cultivated backgrounds, and breaking
such linkages needs dedicated efforts with a larger population
and an efficient selection pressure. To overcome the problem
of linkage drag, an additional generation of crossing among
progenies prior to the selection or recurrent selection program
over several generations is recommended. Nonetheless, it is
now possible to recover or transfer into the elite germplasm
the favorable alleles that were inadvertently left behind during
the process of domestication. This can be done more efficiently
by deploying molecular maps and integrative quantitative trait
locus (QTL) analysis (for details, see Chamarthi et al., 2011)
either through constructing introgression libraries that are made
up of several introgression lines (ILs) or utilizing advanced-
backcross QTL (AB-QTL) analysis. Introgression libraries can
be constructed by crossing cultivated parent with wild donor
followed by three to four times backcrossing of F1 with cultivated
parent (Kumar et al., 2011). In the past, attempts have been made
to develop such libraries in soybean using Glycine soja, a wild
species (Concibido et al., 2003), and from synthetic tetraploids
in peanut (Fonceka et al., 2012). The AB-QTL approach also
deploys repeated backcrossing involving elite parent and wild
accession with an aim to reduce the number and size of the
donor segment transferred through alien introgression. The
ultimate objective here is to minimize the effect of linkage drag
in such crosses, and advanced backcrossed populations thus
derived are further subjected to QTL analysis to identify desirable
genes/QTL. Common bean and soybean are the best examples
where this approach has been used successfully (Blair et al., 2003;
Chaky et al., 2003).

BREEDING POPULATIONS FOR GENE
INTROGRESSION

Crop wild relatives are valuable source of novel and cryptic
variation for broadening the genetic base of cultivated genepool
(Dwivedi et al., 2005; Pratap et al., 2014). CWRs also harbor
superior QTLs for improving agronomic and yield attributing
traits. However, currently available approaches for introgression
are not suitable for polygenic traits because of selection bias
against the alien alleles. Moreover, penetrance and expressivity
of alien genes and traits when introgressed in the cultivated

background are often incomplete and limited, resulting in
poor genetic gains. As a result, breeding for introgression of
QTLs from CWR to elite background is avoided, and emphasis
has been laid upon transfer of oligogenic traits governing
stress resistance mostly. Nevertheless, with the advancement
in genomic tools and techniques, it has become feasible to
identify and target selection for major QTLs from CWRs.
For QTL analysis, mostly balanced populations (F2, BC1) have
been utilized previously where alleles of both wild and elite
populations are available in the same frequency, although
these populations are easy to develop but are characterized
by several drawbacks. Balanced populations have the most
complete genetic construction and only allow for analyzing both
dominant and additive effects (Wang and Chee, 2010). These
populations are temporary and highly heterozygous; thus, it
is difficult to use them in replicated yield trials because in
every generation of either selfing or backcrossing, the genetic
constitution of these populations would change. Moreover,
undesirable QTLs from the unadapted wild background could
lead to the linkage drag. Further, during the transfer of QTLs,
epistatic component augments the complication because it is
difficult to detect through statistical inference, often sensitive to
environments, is difficult to manipulate, and is likely to be present
in balanced populations (Bernardo, 2010). To overcome these
difficulties, “specialized population concept” has been advocated
for transferring QTLs from CWR into elite backgrounds. For
details, please see Figure 1 The breeding population developed
through different methods of gene introgression has been
described in Table 1.

ADVANCED-BACKCROSS QTL

Advanced-backcross QTL strategy was proposed by Tanksley
and Nelson (1996) for concurrently mining and transferring
positive QTLs from CWR into elite genepool. It is a kind
of inbred backcrossing for transferring complex trait from
unadapted genepool to the elite background (Sullivan and
Bliss, 1983). In this methodology, QTL analysis is deferred
until advanced (BC2 or BC3 and so on) generations. This
is because in early generation the effects of beneficial QTLs
often remain unrecognized because of the presence of epistatic
interactions between favorable QTLs and other genes from the
donor parent, which might be resolved in later generations, thus
allowing possible silencing of the measured QTL effects (Pillen
et al., 2003). The common segregating populations (F2, BC1,
RIL, and DH) generally utilized for QTL analysis have some
major drawbacks when involving wild species in introgression
program. First, these populations represent a large segment
of genes from wild parent, and the QTLs with small effects
remain unseen. Second, with these populations, the discovery and
further introgression of QTLs through subsequent backcrossing
or intercrossing becomes a two-step process, thus becoming
a time-consuming affair with mere chance of utilizing QTL
information to develop superior cultivar (Tanksley and Nelson,
1996). In AB-QTL strategy, the discovery and further transfer
of positive QTLs from unadapted background to elite pool are
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FIGURE 1 | Scheme for gene introgression for improvement of food legumes. Left, Hybridization using GP-I as donor with good agronomic base as recipient.
Right, Pre-breeding for trait introgression using GP-II and/or GP-III.

a single-step process where QTL analysis is performed in later
generations to facilitate sound statistical power for detection of
QTLs with small effect.

The application of AB-QTL strategy has been tested in several
food legumes and recommended as a useful crop breeding
venture. An attempt was made to transfer QTLs conferring

yield attributing traits from two accessions of Cicer reticulatum,
“EC556270” and “ILWC21” into Cicer arietinum cv. GPF2
by attempting two cross combinations. The respective BC2F3
population was tested for yield attributing traits for confirmation
of introgression of productivity traits into elite chickpea cultivar
(Bhavyasree et al., 2018). Field pea weevil, Bruchus pisorum,
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TABLE 1 | Examples of AB-QTL analysis for wild QTL introgression in legumes.

Crop Cross Population No. of lines Marker
systems

Trait References

Pigeonpea ICPW 68 × ICPL 85010 BC4F12 138 – Phytophthora drechsleri resistance Mallikarjuna et al.,
2011ICPL 87119 × ICPW 12 BC2F7 149

Chickpea ICC 4958 × (ICC 17264 × IG 69978) BC2F4 1,500 – Agronomic traits Sharma et al., 2017

ICCV 95311 × (IG 72933 × ICC 20192) BC2F3 2,000

EC556270 × GPF2 BC2F3 52 SSR Agronomic traits Bhavyasree et al.,
2018ILWC21 × GPF2

Field pea P. sativum cv. Pennant × ATC113
(P. fulvum)

BC1F3 72 – Resistance against Pea weevil Aryamanesh et al.,
2012

Common bean ICA Cerinza (Andean) × G24404
(Colombian)

BC2F3 :5 157 SCAR, SSR Agronomic traits Blair et al., 2006

OR 91G (snap bean) × PI 255956
(runner bean)

BC2F4 115 AFLP, SSR Resistance against White mold Haggard, 2007

Cerinza × G10022 BC2F2 :5 138 SSR Agronomic traits, Fe and Zn Blair et al., 2012

Peanut ICGV 91114 × ISATGR 1212 BC2F9 416 DArT Agronomic traits, as well as biotic stresses Mallikarjuna et al.,
2012ICGV 87846 × ISATGR 265-5A BC2F9 579

ICGV 87846 × ISATGR 278-18 BC2F8 250

TMV 2 × ISATGR 121250 BC2F8 686

Florunner × TxAG-6 BC3F6 90 SSR, RFLP Oil quality Wilson et al., 2017

Florunner × TxAG-6 BC3F6 233 RFLP Resistance to root knot nematode Burow et al., 2014

Fleur11 × (A. ipaensis KG30076 × A.
duranensis V14167) 4x

BC2F1 87: BC3F1 and
55: BC2F2

SSR Drought resistance Fonceka et al.,
2012

is a severe menace in cultivated field pea (Pisum sativum).
An attempt was made to develop AB population (BC2F6) by
involving Pisum fulvum accession “ATC113” as a resistant donor
and susceptible P. sativum cv. Pennant as recipient (Aryamanesh
et al., 2012). Wild beans are very diverse and useful source
for enriching genetic variation of cultivated beans with low
diversity. AB population (BC2F3:5) was developed in common
bean involving a cross between large red-seeded commercial
Columbian variety, “ICA Cerinza” as recurrent parent and wild
accession “G24404” for detecting QTL toward improvement
of agronomic performance. This strategy uncovered 13 QTLs
for plant height, yield, and yield-attributing traits along with
detection of a QTL for seed size from the wild parent (Blair
et al., 2006). Another attempt has been made in common bean
to transfer resistance against white mold, caused by Sclerotinia
sclerotiorum. AB-QTL strategy has been undertaken to identify
and transfer QTL conferring resistance to white mold into
an interspecific cross of Phaseolus vulgaris cv. OR91G and
Phaseolus coccineus cv. PI255956. A population of 115 BC2F4
lines were developed and genotyped using amplified fragment
length polymorphism (AFLP) and simple sequence repeat
(SSR) markers and screened under greenhouse for phenotypic
scoring (Haggard, 2007). Wild common beans accumulate
high minerals but are not commercially acceptable because of
small seed size. AB population was developed for improving
the mineral status of the Andean variety “Cerinza,” a large
red seeded bush bean cultivar with wild genotype “G10022.”
The BC2F3:5 ILs derived from this cross combination were
subjected to multilocation yield trial for contemplating the role
of genotype × environment interaction toward the expression
of Fe and Zn content in AB population (Blair et al., 2012).

The result from the study confirmed that the AB-QTL method
was effective for identifying the QTL controlling Fe and Zn
content, as well as their transfer into elite background and
further evaluation.

Therefore, it is evident that the AB-QTL approach has been
successfully applied in numerous legume species for harnessing
the favorable alleles from wild into elite background, although in
many other crops, viz., mungbean, urdbean, Lathyrus, and lentil,
this approach is yet to be employed to explore its advantages. This
strategy has paved the way for identifying more QTLs, precise
measurement of the effect of individual loci, and their transfer
into the cultivated background. Additionally, the formation of
AB-NIL would facilitate further genetic dissection of QTLs and
subsequently the map-based cloning of the underlying genes,
thus opening a new vista for other legumes also.

INTROGRESSION LINES

Introgression lines are specialized populations derived through
advanced backcrossing, which are nearly isogenic to recurrent
parent and contain only a small fraction from donor parent
(Eshed and Zamir, 1994; Tian et al., 2006). These populations
are much more efficient for QTL identification and fine mapping
followed by studying QTL × environment interaction due to
their homozygous nature as compared to the conventional
populations (Wehrhahn and Allard, 1965; Eshed and Zamir,
1995; Yin et al., 2016). The major drawback of ILs is the
time taken for their development (Tanksley et al., 1989;
Hospital et al., 1992; Hospital and Charcosset, 1997) and high
cost for marker evaluation (Ali et al., 2010). However, with
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the availability of densely saturated marker systems in some
legumes such as chickpea, pigeonpea, soybean, peanut, etc., the
foreground as well as background selection become easier. In
addition, marker-based selection facilitates detection of non-
target introgression in early generation, as well as further
elimination from the recipient background for speeding up IL
recovery (Frisch and Melchinger, 2005).

The critical factors for reducing the problem of linkage drag in
backcross population through marker-assisted selection are the
tightness of the linkage between the introgressed genes and the
flanking markers and the size of the population, as well as the
total duration of the backcross scheme (Hospital, 2001) besides
the size of the segment to be transferred. Theoretical explanation
given by Hospital (2001) nicely pointed out that presence of
functional markers within the genes to be introgressed or tightly
linked flanking markers along with three to five generations
of backcrossing would be cost-effective to minimize the length
of the donor segment. In peanut, pyramiding of nematode
resistance and the trait governing high oleic:linoleic acid has
been introgressed successfully to develop improved Tifguard
variety “Tifguard High O/L” through tightly linked cleaved
amplified polymorphic sequences and SSR markers with less
linkage drag problem (Chu et al., 2011). Another high oleic
acid line was developed in peanut through marker-assisted
introgression of two FAD2 mutant alleles conferring high oleic
acid from donor parent “SunOleic95R” into the background of
“ICGV 06100” (Bera et al., 2019). In chickpea, two Fusarium
wilt (FW) resistance ILs, namely, “Annigeri 1” and improved “JG
74,” have been developed through marker-assisted backcrossing
using “WR 315” as the donor parent (Mannur et al., 2019).
Foreground selection was done with TA59, TA96, TR19, TA27,
and GA16 markers, whereas background selection was done
using SSR markers. Likewise, Pratap et al. (2017) developed
improved “Pusa 256” using “Vijay” as the donor parent using
TA 37 and TA 110 as the markers for foreground selection.
Two parallel marker-assisted introgression programs have been
implemented to improve both FW, as well as Ascochyta blight
(AB) resistance of “C 24” cultivar by introgressing resistant locus
of race 1 of FW coupled with two QTL clusters for AB resistance
(Varshney et al., 2014).

Besides conventional marker-assisted introgression
approaches deployed in food legumes, various IL-based
strategies have been recommended like backcross inbred lines
(BILs), chromosome segment substitution lines (CSSLs), stepped
aligned inbred recombinant strain (STAIRS), etc., for removing
background noise and measuring yield associated traits precisely.
BILs are characterized by small introgression of segment from
donor parent and useful for reducing background noise from
donor parent, as well as for mapping interspecific variation
(Eshed and Zamir, 1994). In soybean, BIL populations have
been developed for overcoming abiotic stresses by mining
and introgressing useful QTLs from the donor parent. Water
limiting situation is one of the main restraints for soybean
production (Sinclair et al., 2007). Earlier reports confirmed
that root length and absorption surface area along with root
architecture are prime determinants for yield performance under
variable moisture regime (Price et al., 2002; Manavalan et al.,

2009). As variability regarding root architecture is limited in
cultivated soybean, an attempt was made to explore the potential
of exotic wild species for broadening the genetic base. BIL
mapping population has been developed by crossing Glycine
max cv. Dunbar (PI 552538) as a recipient with a wild soybean
accession “PI326582A” of G. soja. BILs have been created to
minimize the magnitude of gene introgression from the wild
soybean parent “PI326582A” by allowing two generations of
backcrossing to produce 296 BC2F4.5 progenies (Manavalan
et al., 2015). Genetic linkage map was constructed by using SSR
and SNP markers, resulting in the identification of a major QTL
(Satt315-I locus) on chromosome 8 that governs root traits and
shoot length. It has been observed that, sometimes, the same
metabolic pathway governs different stresses in plants (Xiong and
Yang, 2003), and it is mostly associated with overlapping QTLs.
The reason for this genetic overlapping is due to pleiotropy
and linkage disequilibrium (Zhang et al., 2012). In soybean,
BIL mapping population was developed by crossing a Chinese
variety, “Hongfeng 11” with an American variety, “Harosoy”
for mapping QTLs related to drought and low-temperature
tolerance during germination. Finally, 12 QTLs were detected
that were correlated with drought and low-temperature tolerance
and confirmed the mechanism of partial genetic overlap between
drought and low-temperature tolerance in soybean (Zhang et al.,
2012). This study further validated the effectiveness of using BILs
for gene introgression, trait identification, QTL mapping, and
gene cloning in legume.

CHROMOSOME SEGMENT
SUBSTITUTION LINE

Chromosome segment substitution lines are very robust
population for QTL mapping or cloning and gene discovery,
as well as for gene pyramiding (Tanksley and Nelson, 1996),
and can be developed by deploying AB strategy subsequently
by selfing and selection of backcross population with molecular
markers. Selection of backcross population with markers leads to
identification of individuals carrying the introgressed gene(s) of
interest along each chromosome. CSSLs generally exclude non-
targeted portion from the donor, which can create background
noise due to epistatic interaction (Ali et al., 2010). In CSSLs,
each line carries a single defined chromosomal section from the
wild donor into the recipient background, unlike BILs, where
each line carries several homozygous introgressed segments from
donor parent. Unlike BIL, CSSL libraries have been developed
to recover the whole genome of donor parent (Ali et al., 2010).
These populations can be compared with the individual IL or
recurrent parent for finding out significant differences between
them. CSSLs are also useful populations for controlling allelic
variation and facilitate “breeding by design” (Peleman and van
der Voort, 2003; Wei et al., 2010).

This strategy has been used in many crops including wheat
(Liu et al., 2006), tomato (Monforte and Tanksley, 2000), rice
(Bian et al., 2010), maize (Wang et al., 2007), cotton (Wang
et al., 2008), and barley (Matus et al., 2003) for gene discovery
and map-based cloning and opens a new vista for exploring
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the potential of CSSL population in legumes for detection of
genes or QTL explicitly, as well as their pyramiding into elite
background. Cultivated soybean (G. max) is domesticated from
wild G. soja (Broich and Palmer, 1980), which harbors useful
genes governing large number of pods, richness in protein,
adaptability to various biotic and abiotic factors, etc. Previous
studies confirmed the versatility of G. soja as a useful donor for
enriching the genetic diversity of cultivated soybean (Concibido
et al., 2003; Li et al., 2008). The problem of linkage drag often
circumvents the useful introgression process. Keeping these in
mind, attempt has been made to construct CSSL population
consisting of 151 lines by involving G. max cv. NN1138-2
as female and G. soja cv. N24852 as male. Polymorphic SSR
markers between the parents were deployed for marker assisted
selection (MAS) for easy recovery of CSSL. In this study, four
QTLs related with plant height, as well as node numbers per
plant, have been identified (Wang et al., 2013). The same
CSSL population was used for mining and fine mapping of
QTLs underlying seed quality traits including size and shape,
as well as other agronomic traits (Wang et al., 2012, 2013;
He et al., 2014).

CHROMOSOME SUBSTITUTION STRAIN

Another approach is the construction of chromosome
substitution strain containing a large number of lines each
carrying a homozygous chromosome with single crossover in
such a way that the chromosome contains recurrent genotype
at one end and donor genotype at the other end and known
as single recombinant lines (SRLs). When the SRLs for each
chromosome are sequentially stacked, they reveal a step-
like progression, with each successive line having a little
more donor chromosome, and constitute STAIRS libraries
(Koumproglou et al., 2002). The concept was first applied
in Arabidopsis thaliana for fine mapping of QTL. Although
STAIRS has not yet been explored in legume crops, it is an
effective strategy for comparison of genetic differences in
the precise region of selected chromosome for QTL analysis,
gene mining, and expression studies (Koumproglou et al.,
2002). All these ILs can be maintained as an immortal
representation in the form of “exotic library” for efficient
detection and mapping of QTLs conferring agronomic traits
(Zamir, 2001). This library is a permanent resource, which
enables the researchers to explore over time and access the data
generated for further use. The homozygous lines maintained
in the library can be utilized as a parent for crossing with
different tester lines to identify the chromosomal segments
associated with heterosis. Development of an exotic library
will immensely facilitate to counter the problem of linkage
drag and precisely examine the phenotypic effect of QTL
interaction for better insight into the epistatic effect (Eshed
and Zamir, 1996). All these mapping populations along with
genomic tools will be valuable for demonstrating the scope of
introgression of desirable QTLs from CWR that was hitherto
difficult to accomplish. The methodologies described can
be extended to legume crops for harnessing the potential of

CWRs for broadening the genepool through genomics-assisted
genetic enhancement.

POTENTIAL WILD SPECIES FOR ALIEN
GENE TRANSFER OF TARGET TRAITS

Most food legumes and their wild relatives (CWRs) are diploid
and self-pollinated in nature. Considerable variability exists in
wild species for yield contributing traits including number of
pods per plant, number of seeds per pod, and seed size, as
well as nutritional traits and biotic and abiotic stress resistance.
The success of alien gene transfer through distant hybridization
generally depends on the ploidy level of the species, pollination
behavior of the plant, nature, and direction of the cross and
frequency of pollination, which are further influenced by the
deployment of appropriate hybridization schemes (Pratap et al.,
2015a). Efforts were made to identify potential wild accessions
for alien gene introgression in different food legumes by several
researchers (Table 2).

Chickpea is the most important cool season grain legume
and offers tremendous opportunities for its genetic improvement
through introgression breeding, especially concerning biotic and
abiotic stresses. Of the eight annual species, only one wild
species, C. reticulatum, is readily crossable with the cultivated
chickpea (Kumar et al., 2003). The success of hybridization with
the remaining annual wild Cicer species requires specialized
techniques such as the application of growth hormones and
embryo rescue techniques (Lulsdorf et al., 2005; Mallikarjuna
and Jadhav, 2008). Among the biotic stresses, FW and AB
cause maximum damage to the plant and lead to severe yield
reduction. FW causes up to 100% yield losses (Sharma et al.,
2004; Pratap et al., 2017). AB, caused by Ascochyta rabiei usually
appears at the reproductive phase, and in severe cases, the entire
plant dries up suddenly. Several accessions of Cicer bijugum,
Cicer echinospermum, Cicer judaicum, Cicer chorassanicum, Cicer
pinnatifidum, C. reticulatum, Cicer cuneatum, Cicer yamashitae,
and Cicer canariense have shown high resistance to AB (Haware
et al., 1992; Kaiser et al., 1994; Collard et al., 2001; Shah
et al., 2005). Simultaneously, many of them also possessed a
high degree of resistance to FW (Kaiser et al., 1994; Infantino
et al., 1996; Singh K. B. et al., 1998; Collard et al., 2001;
Shah et al., 2005; Pande et al., 2006). Some of the accessions
belonging to C. bijugum, C. echinospermum, C. judaicum, and
C. reticulatum were reported to be highly resistant to Botrytis
gray mold (Pande et al., 2006; Knights et al., 2008; Isenegger
et al., 2011; Coyne et al., 2020). Several chickpea CWRs have
shown high tolerance to abiotic stresses. For example, tolerance
to drought and heat stresses was reported in six Cicer species
(Toker et al., 2007a; Canci and Toker, 2009; Imtiaz et al.,
2011). Likewise, tolerance to cold was reported in C. bijugum,
C. echinospermum, C. pinnatifidum, and C. reticulatum (Singh
et al., 1990; Robertson et al., 1995; Singh K. B. et al., 1998; Toker,
2005; Saeed et al., 2010).

Among Vigna crops, the Asiatic Vigna have tremendous scope
for improvement with respect to yield and yield attributes, biotic
and abiotic resistance, and nutritional quality (For review, see
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TABLE 2 | Potential of wild species for alien gene transfer in food legumes.

Trait Species References

Chickpea

Ascochyta blight C. bijugum K.H. Rech. Stamigna et al., 2000; Shah et al., 2005

C. echinospermum P.H. Davis Collard et al., 2003; Saeed and Darvishzadeh, 2017

C. judaicum Boiss. Stamigna et al., 2000; Shah et al., 2005; Saeed and
Darvishzadeh, 2017

C. pinnatifidum Jaub. & Sp. Collard et al., 2001; Shah et al., 2005

C. reticulatum Ladiz. Shah et al., 2005; Saeed and Darvishzadeh, 2017

C. yamashitae Kitamura Shah et al., 2005

C. canariense S. Guerra & Lewis Kaiser et al., 1994

Fusarium wilt C. bijugum K.H. Rech., C. cuneatum Hochst. Ex Rich,
C. echinospermum P.H. Davis, C. judaicum Boiss., C. pinnatifidum
Jaub. & Sp.

Singh K. B. et al., 1998

C. chorassanicum (Bge) M. Pop. Kaiser et al., 1994

C. reticulatum Ladiz. Infantino et al., 1996

C. canariense S. Guerra & Lewis Kaiser et al., 1994

Botrytis gray mold C. bijugum K.H. Rech. Isenegger et al., 2011

C. echinospermum P.H. Davis Knights et al., 2008

C. judaicum Boiss., C. reticulatum Ladiz. Pande et al., 2006

Root lesion nematode
(Pratylenchus thornei)

C. reticulatum and C. echinospermum Reen et al., 2019

Drought C. echinospermum (ILWC 235), C. oxyodon (C. oxyodon L-4, L-9) Saeed and Darvishzadeh, 2017

Phytophthora root rot C. echinospermum Amalraj et al., 2019

Drought ICC7571 Kashiwagi et al., 2013

Terminal heat stress ICC1205 and ICC15614 Devasirvatham et al., 2013

Drought ICC14778 Krishnamurthy et al., 2013

Drought C. yamashitae Sharma and Upadhyaya, 2015; Sharma and Upadhyaya, 2019

Cold C. bijugum K.H. Rech. Toker, 2005

Drought Imtiaz et al., 2011

Cold C. echinospermum P.H. Davis Toker, 2005; Saeed et al., 2010

Drought and heat Canci and Toker, 2009

Cold C. reticulatum Ladiz Singh K. B. et al., 1998; Toker, 2005; Saeed et al., 2010

Drought and heat Canci and Toker, 2009; Imtiaz et al., 2011

Drought and heat C. anatolicum Alef., C. microphyllum Benth., C. montbretii Jaub. et
Sp., C. oxydon Boiss. et Hoh., C. songaricum Steph. ex DC.

Toker et al., 2007b

Lentil

Anthracnose Lens ervoides, L. lamottei, L. nigricans Tullu et al., 2006

Ascochyta blight L. ervoides, L. culinaris ssp. orientalis, L. odemensis, L. nigricans, L.
montbretti

Bayaa et al., 1994; Tullu et al., 2010

Fusarium wilt L. culinaris ssp. orientalis, L. ervoides Gupta and Sharma, 2006; Singh et al., 2020

Powdery mildew L. culinaris ssp. orientalis, L. nigricans Gupta and Sharma, 2006

Rust L. culinaris ssp. orientalis, L. ervoides, L. nigricans, L. odemensis Gupta and Sharma, 2006

Drought L. odemensis, L. ervoides,
L. nigricans

Hamdi and Erskine, 1996; Gupta and Sharma, 2006

Cold L. culinaris ssp. orientalis Hamdi et al., 1996

Orobanche Lens ervoides, L. odemensis, L. orientalis Fernández-Aparicio et al., 2009

Bruchids L. culinaris Medikus subsp. orientalis, L. nigricans, L. lamottei Laserna-Ruiz et al., 2012

Rust and powdery mildew L. orientalis Singh et al., 2020

Powdery mildew and Fusarium
wilt

L. ervoides Singh et al., 2020

Vigna species

Bruchid V. riukinensis, V. reflexo-pilosa Tomooka et al., 1992

V. radiata var. sublobata Miyagi et al., 2004

V. umbellata Somta et al., 2006

V. tenuicaulis Tomooka et al., 2000

V. nepalensis Somta et al., 2008

Powdery mildew V. stipulacea Tomooka et al., 2006

V. reflexo-pilosa var. glabra Egawa et al., 1996

Low trypsin inhibitor activity V. tenuicaulis Konarev et al., (2002)

Chymotrypsin absent V. grandiflora Konarev et al., (2002)

Heat V. aconitifolia Tomooka et al., 2001

V. riukinensis Egawa et al., 1999

(Continued)
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TABLE 2 | Continued

Trait Species References

Bean fly resistance V. reflexo-pilosa Egawa et al., 1996

Resistance to pod bug V. unguiculata ssp. dekindtiana TVNu 151 Koona et al., 2002

Resistance to yellow mosaic
virus

V. radiata var. sublobata Reddy and Singh, 1990; Pal et al., 2000

V. umbellata, V. trilobata, V. mungo Pandiyan et al., 2008

Photothermo insensitivity V. umbellata, V. glabrescens Pratap et al., 2014

Soybean cyst nematode
(Heterodera glycines)

V. angularis Kushida et al., 2012

Salt stress V. luteola, V. marina, V. vexillata
V. riukiuensis, V. trilobata, V. vexillata, V. marina subsp. oblonga,
V. luteola, and V. marina

Yoshida et al., 2020
Iseki et al., 2016

Salinity stress Domesticated V. unguiculata, V. vexillata, wild V. luteola, V. marina, V.
nakashimae, V. riukiuensis, V. vexillata var. macrosperma.

Van Zonneveld et al., 2020
Harouna et al., 2020

High temperature, salinity V. trilobata

Dry climate and salinity V. vexillata var. ovate

Dry and seasonally hot climate V. monantha, V. aconitifolia, V. aridicola, V. exilis

Resistance against Bruchid
beetles

V. radiata var. sublobata Schafleitner et al., 2016

Bruchids, Cercospora leaf spot,
powdery mildew and MYMV

TCR 20 Tripathy et al., 2016

Field pea

Drought tolerance P. fulvum Naim-Feil et al., 2017

TI1 and TI2 seed protease
inhibitors

P. sativum subsp. elatius Clemente et al., 2015

Pulse beetle (Callosobruchus
chinensis L.)

P. elatius – AWP 442 and
P. fulvum – AWP 600, AWP 601

Esen et al., 2019

Rust (Uromyces pisi.) P. fulvum Barilli et al., 2018

PSbMV virus (Potyvirus) P. fulvum Konečná et al., 2014

Powdery mildew P. fulvum Cobos et al., 2018

Pigeonpea

Heat, drought C. acutifolius, C. cinereus, C. lanceolatus, C. latisepalus Khoury et al., 2015

Cold C. confertiflorus, C. mollis, C. platycarpus, C. trinervius

High precipitation, waterlogging,
drought

C. sericeus, C. lineatus

Heat, temperature
variation/seasonality, cold

C. platycarpus, C. scarabaeoides

Insect resistance – Helicoverpa
armigera

C. scarabaeoides – IBS 3471 Ngugi-Dawit et al., 2020

Helicoverpa pod borer C. scarabaeoides, C. sericeus, C. lineatus, C. acutifolius, and
C. platycarpus

Saxena et al., 2018

Pod fly C. sericeus

Bruchids C. scarabaeoides, C. platycarpus, and C. acutifolius

Water logging C. acutifolius Hingane et al., 2015; Mallikarjuna et al., 2017

Antinutritional factors, high
antioxidant potential

C. scarabaeoides (ICP15683/W15) Sekhon et al., 2017

Common bean

Nutritional composition and
cooking characteristics

Phaseolus acutifolius Porch et al., 2017

Abiotic stresses P. acutifolius Gujaria-Verma et al., 2016

Drought-tolerant P. acutifolius Mwale et al., 2020

Abiotic stresses – drought and
subzero temperatures

P. acutifolius A. (Gray) Souter et al., 2017

Cow pea

Heat and salinity V. unguiculata group sesquipedalis Van Zonneveld et al., 2020

Aphid Wild cowpea relative – line TVNu 1158 Boukar et al., 2019

Peanut

Late leaf spot pathogen Arachis diogoi Kumar and Kirti, 2015

Drought tolerance A. duranensis Lílian et al., 2019
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Pratap et al., 2020). Accessions of Vigna mungo var. silvestris have
been identified as a durable source of mungbean yellow mosaic
virus (MYMV) resistance (Reddy and Singh, 1993). Likewise,
variation for yield contributing traits and MYMV resistance was
observed in V. mungo var. silvestris, Vigna radiata var. sublobata
(Singh, 1990), Vigna umbellata, Vigna trilobata, and V. mungo
(Nagaraj et al., 1981; Singh and Dikshit, 2002; Pratap et al.,
2018a). “PLN15,” a wild accession of V. radiata var. sublobata
possessed a high number of pods per plant and seeds per pod
and therefore identified as a potential donor for these traits
(Reddy and Singh, 1990). V. trilobata and Vigna stipulacea
was proposed as the candidates for neodomestication for
drought tolerance and disease and pest resistance, respectively,
by Tomooka et al. (2014), whereas resistance to diseases and
pests in both the species was also reported in several other
reports (Nagaraj et al., 1981; Chandel et al., 1984; Tomooka
et al., 2006; Pandiyan et al., 2008; Gore et al., 2019). Accession
“TC1966” of V. radiata var. sublobata was reported to possess
bruchid tolerance (Tomooka et al., 1992). Likewise, resistance to
legume pod borers and pod-sucking bugs was reported in Vigna
vexillata and Vigna oblongifolia (Fatokun, 1991). V. mungo var.
silvestris was reported as immune to bruchids (Fujii et al., 1989;
Dongre et al., 1996). Many accessions of ricebean (V. umbellata)
show complete resistance to bruchids and therefore have been
identified as useful donors for introgressing bruchid resistance
into other Vigna species. Further, as it is a cultivated species,
gene introgression from ricebean into mungbean and urdbean
is comparatively easier. Dense hairs on different parts of the
wild cowpea, V. vexillata, are reported to impart antixenosis
to pod-sucking bugs and pod borer (Oghiakhe et al., 1992;
Boukar et al., 2013). Likewise, strength and hardness of the
pod wall are also considered to impart pod borer resistance
(Oigiangbe et al., 2002). Other wild Vigna species with resistance
to Maruca vitrata and the pod-sucking bugs include Vigna
unguiculata ssp. dekindtiana, Vigna luteola, Vigna oblongifolia,
and Vigna reticulata. Pratap et al. (2014) reported V. umbellata
(accession IC251442) and Vigna glabrescens (accession IC251372)
as photo- and thermo-period insensitive as these were able to
flower and set pods at temperatures as high as 43.9◦C and
as low as 2.7◦C.

Wild Lens species have emerged as a great reservoir of
useful genes for traits of breeders’ interest including resistance
to strategically important diseases, insect-pests, and plant
parasitic weeds. A high degree of resistance was observed
for Stemphylium blight in Lens lamottei followed by Lens
ervoides (Podder et al., 2013). Similarly, some accessions of
Lens odemensis possessed high resistance against Sitona weevil
followed by L. ervoides (El-Bouhssini et al., 2008). Some of
the wild accessions with combined resistance to AB and FW
or anthracnose diseases have been identified for their use in
lentil breeding programs (Bayaa et al., 1995; Tullu et al., 2006).
Preliminary screening of Lens CWR has indicated drought
tolerance in Lens nigricans, L. odemensis, and L. ervoides (Gupta
and Sharma, 2006) and cold tolerance in Lens culinaris ssp.
orientalis (Hamdi et al., 1996). Simultaneously, promising donors
for yield traits, viz., 100-seed weight and pods per plant
were observed in L. lamottei and L. culinaris ssp. orientalis

(Gupta and Sharma, 2006). Earlier reports have indicated
L. ervoides as a good source of alleles for plant architectural
traits such as phenology, plant growth habit, and biomass
besides seed traits (Tullu et al., 2011, 2013; Kumar et al., 2014).
Based on the extensive evaluation of global wild Lens taxa
representing 27 countries, Kumar et al. (2014) observed wide
variation for yield attributing traits, as well as resistance to
multiple diseases in L. nigricans and L. ervoides. Nutritional
quality traits in wild Lens showed significant diversity not
only for micronutrients (Sen Gupta et al., 2016; Kumar et al.,
2018) but also for prebiotics, RFO, raffinose, and verbascose
(Tahir et al., 2011).

GENE INTROGRESSION IN FOOD
LEGUMES: SUCCESS

Wild gene introgression as a breeding strategy has been deployed
successfully in food legumes for development of improved
varieties, pre-bred lines, genetic stocks, mapping populations,
and bridge species. Legumes such as chickpea, pigeonpea,
lentil, mungbean, urdbean, and peanut have benefited from the
wild gene introgression with successful examples of discovery,
development, and deployment of useful traits in cultivated
genepool. In chickpea, after the first report of successful
interspecific crosses between C. arietinum and C. reticulatum
(Ladizinsky and Adler, 1976), attempts have been made for
crossing between C. arietinum and C. echinospermum (Singh
and Ocampo, 1993; Pundir and Mengesha, 1995). C. reticulatum
accession “ILWC119,” when involved in hybridization program,
led to the development of “ILC10765” and “ILC10766,” two cyst
nematode-resistant chickpea lines (Malhotra et al., 2002). Singh
et al. (2005) and Ramgopal et al. (2012) utilized the diversity
of C. reticulatum and C. echinospermum to transfer useful traits
including tolerance to cold and resistance to diseases such as
wilt, root rot, and Botrytis gray mold into cultivated chickpea.
There are reports of successful interspecific crosses between
C. arietinum and C. judaicum (Singh et al., 1999), C. arietinum
and C. cuneatum (Singh and Singh, 1989), C. arietinum and
C. pinnatifidum (Badami et al., 1997; Mallikarjuna and Jadhav,
2008), and C. arietinum and C. bijugum (Mallikarjuna et al.,
2007). Successful introgression of useful genes into cultivated
chickpea from these crosses has shown the transferability even
from the cross-incompatible wild Cicer species.

Successful interspecific hybridization of P. vulgaris has been
reported to a limited extent with the members of other
wild Phaseolus species. Interspecific hybrids with Phaseolus
costaricensis in the secondary genepool were reported by Singh
et al. (1997), and consequently, VRW 32 was reported as the
first white mold-resistant interspecific breeding line derived
from P. costaricensis. Congruity backcrossing (CBC) involves
recurrent backcrossing to each parent in alternate generations
as opposed to the traditional recurrent backcrossing to a single
recurrent parent and was first reported as a method to produce
fertile intermediate hybrids between Phaseolus acutifolius and
P. vulgaris (Haghighi and Ascher, 1988). This method allows
substantial recombination between distant species, and new
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phenotypes can arise as a result of CBC (Anderson et al., 1996).
Singh et al. (2009) reported the release of white mold-resistant
“VCW 54” and “VCW 55” bean germplasm lines that were
developed using CBC between the black bean cultivar “ICA
Pijao” and the scarlet runner bean accession “G35172.” CBC has
also been used to transfer traits from wild tepary species Phaseolus
parvifolius into common bean (Singh S. P. et al., 1998).

Wilkinson (1983) reported a root rot-resistant line “Cornell
2114-12” derived from a cross between common bean and scarlet
runner bean lines. Likewise, Miklas et al. (1999) developed the
common bacterial blight-resistant bean germplasm lines “ICB-
3,” “IBC-6,” “ICB-8,” and “ICB-10,” which were derived from an
interspecific cross with scarlet runner bean. Beaver et al. (2012)
released a bean germplasm line “PR0650-31,” which was derived
from the cross BAT 93/PI 417662//VAX 6 using wild-type bean
germplasm “PI 417662” collected from Jalisco, Mexico, and was
resistant to web blight and common bacterial blight. Acosta-
Gallegos et al. (2007) developed an inbred backcross population
from a cross between G 24423, a wild bean accession from
Colombia and “Negro Tacana,” a Mexican black bean cultivar.
One Bc2F4:7 line from this population was later observed to
produce >5,000 kg/ha seed in field trials.

Lentil CWRs have been evaluated extensively to discover
and deploy traits of interest into cultivated species. These
efforts have led to identification of extra early photoinsensitive
(ILWL118 maturing in <90 days) and high micronutrient
content (ILWL74 and ILWL80) germplasm. These CWRs have
been used extensively in mainstream breeding, resulting in
the development of short-duration biofortified pre-bred lines
(Kumar et al., 2018). Wide crosses in lentil have also been
mined for transgressive segregants for agronomically important
traits (Kumar et al., 2011, 2014; Singh et al., 2013). More
recently, hybridization of the cultivated lentil with L. ervoides
using embryo rescue (Tullu et al., 2013) has been reported
with successful transfer of resistance to Orobanche crenata and
anthracnose in cultivated species (Fiala et al., 2009; Tullu et al.,
2011). The International Center for Agricultural Research in the
Dry Areas has successfully deployed L. orientalis and L. ervoides
for introgression of resistance to key diseases, phenology,
biofortification, plant habit, and other important agronomic
traits toward the development of pre-bred lines. These pre-
bred lines demonstrated >40% yield advantage over the best
check (Bakaria) coupled with richness in micronutrients. These
pre-bred lines can also fit well in short-season windows of 80–
100 days (Kumar et al., 2020). These lines are currently under
multilocation testing under the CWR project.

In pigeonpea, despite large visible genetic variation (Yang
et al., 2006), the use of wild species in breeding programs has
been rather limited to the development of cytoplasmic genic male
sterility systems (Saxena et al., 2010). To date, seven cytoplasmic
male sterility (CMS) systems have been reported (Saxena et al.,
2010), and six of them have been developed from wild relatives
belonging to the secondary genepool. The seventh system was
developed utilizing Cajanus platycarpus, a member from the
tertiary genepool (Saxena et al., 2010; Mallikarjuna et al., 2011).
The A1 CMS system derived from Cajanus sericeus (Saxena
et al., 1996) was not stable at low temperature (<10◦C) as

the male-sterile plants revert to male fertility (Saxena et al.,
2005). However, the presence of pollen shedders in the female
line and non-availability of good maintainers did not make
it commercially viable for hybrid breeding. The A2 cytoplasm
derived from Cajanus scarabaeoides was reported as highly stable
(Tikka et al., 1997; Saxena and Kumar, 2003). Although this
system is promising with respect to yield, inconsistency was
observed in the fertility restoration over diverse environments,
which reduced its acceptance for hybrid production. In the
A3 system, the cytoplasm was derived from Cajanus volubilis
(Wanjari et al., 1999). The A4 CMS system was developed
from Cajanus cajanifolius, which is so far the best among
different CMS systems developed. This CMS system has a good
number of both maintainers and restorers. In A5 system, the
cytoplasm of cultivated species of Cajanus cajan was placed
along with nuclear genome of a CWR of pigeonpea, Cajanus
acutifolius (Mallikarjuna and Saxena, 2005) while using C. cajan
as the female parent. This system also exhibited perfect fertility
restoration by cultivated accessions. The A6 cytoplasm was
developed from Cajanus lineatus (A6) in 2002, from one naturally
out-crossed plant with erect growth and different morphological
traits. This CMS system was observed to be very stable (Saxena
et al., 2010) showing perfect fertility restoration by cultivated
accessions. The A7 cytoplasm derived from C. platycarpus (A7)
produced good heterosis (Saxena et al., 2010). Four CMS lines,
viz., “GT 288A,” “CMS 67A,” “ICRISAT CMS,” and “AKCMS
1A,” were developed from different wild sources viz., C. sericeus,
C. scarabaeoides, and C. volubilis (Chauhan et al., 2008).

In Vigna species, mungbean× urdbean hybridization has been
routinely practiced for mungbean and urdbean improvement
programs, and the derivatives from these hybridizations exhibit
many desirable features viz., resistance to vagaries, both biotic
and abiotic, synchronous podding, and non-shattering pods
(Pratap et al., 2019). Several traits, such as longer pods, increased
seeds number (>10 seeds/pod), and erect plant type, have
been transferred from mungbean to urdbean, whereas multiple
clusters per peduncle and sympodial pod-bearing habit have been
transferred from urdbean into mungbean (Gupta et al., 2004).
Similarly, mungbean × ricebean and mungbean × V. radiata
var. sublobata hybridization have also been practiced by many
breeders, and progenies were derived which were resistant to
MYMV (Verma and Brar, 1996). Singh et al. (2003) produced
successful hybrids between V. radiata and V. umbellata with
intermediate morphology and MYMV resistance. Several popular
and widely adaptable cultivars have been developed as a result
of wild gene introgression in both mungbean and urdbean
(Table 3). These cultivars show wide adaptation, synchronous
maturity, and improved plant architecture in addition to a
high degree of resistance to MYMV. Recently, “IPM 312-20”
and “Tripura Mung-1” have been developed as a result of
mungbean × urdbean hybridization. Likewise, the resultants of
mungbean × urdbean crosses were also used further to develop
some of the most popular varieties of mungbean. For example,
IPM 99-125 was used to develop the most popular pan India
variety “IPM 205-7” (Virat) of mungbean (Pratap et al., 2013)
which matures in 52–55 days and offers the farmers an excellent
choice for cultivation during summer season. Earlier, “IPM 02-3”
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TABLE 3 | Commercial cultivars of mungbean and blackgram developed through
wild gene introgression.

Crop/variety Pedigree Introgression

Mungbean

Pant Mung-4 T 44 × UPU 2 V. radiata × V. mungo

HUM-1 BHUM 1 × Pant U-30 V. radiata × V. mungo

Meha Pant Mung-2 × AMP 36 V. radiata × amphidiploid of
(V. radiata × V. mungo)

Pant Moong-6 Pant Mung-2 × AMP-36 V. radiata × amphidiploid of
(V. radiata × V. mungo)

IPM 312-20 IPM 3-1 × SPS 5 V. radiata × V. mungo

Tripura Mung 1
(TRCM 131)

IPM 99-125 × SPS 5 V. radiata × V. mungo

Blackgram

Mash 118 Mungbean × urdbean V. radiata × V. mungo

Vamban 7 Vamban-3 × V. mungo var.
silvestris

V. mungo × V. mungo var.
silvestris

VBN 6 VBN 1 × V. mungo var. silvestris V. mungo

TU-40 TU 94-2 × V. mungo var. silvestris V. mungo

VBG 04-008 Vamban 3 × V. mungo var. silvestris var. silvestris

was also a highly preferred variety of mungbean by farmers
(Singh et al., 2017).

In urdbean, at least five commercial varieties have been
developed and deployed using wild gene introgression.
The first such variety was Mash 118 developed from an
urdbean × mungbean cross in 2008. This was followed by the
development of four more cultivars, viz., Vamban 7, VBN 6, TU
40, and VBG04-008 in 2011. Among these, VBG04-008 showed
high tolerance to heat stress, making it most popular cultivar in
heat-prone environments of South India. Interspecific crosses
have also been attempted successfully between V. umbellata and
its wild relatives. However, the success of crosses with respect to
pod set differed with the combination of parents involved in the
interspecific crosses (Chen et al., 1983; Bharathi et al., 2006).

EPILOGUE

The narrow genetic base of the elite genepool of food legumes
and resultant vulnerability of the existing varieties to climate
vagaries and changing insect-pest and disease scenario warrants
introgression of novel genes or alleles through hybridization
and deployment of more diverse germplasm including exotic
lines and CWRs in crop improvement programs. Food legumes
being majorly grown by small and marginal farmers are more
prone to fluctuations in the soil, water, and climate factors as
compared to other crops due to limited resources at disposal
of these farmers to counter these challenges. The slow process
of natural evolution has been significantly replaced by human
interventions of domestication, hybridization, and selection. The
transformation of humans from food collector to food producer
has witnessed the natural attempts of domestication to a planned
and focused crop breeding, which has ultimately concluded
into the modern “super domestication.” While at one side, this
has ensured food and nutritional security to ever-increasing

population, on the other side, it has narrowed down the genetic
base of the cultivated genepool. Keeping this in view, there is a
need to reorient legumes improvement programs in such a way
that more diverse sources of yield contributing traits, resistance
to stresses, both biotic and abiotic, and seed quality are involved
in widening the genetic base of cultivated types. This requires trait
discovery and deployment from CWR, exotic germplasm, and
landraces in mainstream breeding programs. A huge repository
of germplasm and CWR (>7 million germplasm accessions)
of different crops is maintained together in more than 1,750
national and international genebanks. This includes >86,000
accessions of chickpea1, >57,000 of Phaseolus (Basavaraja et al.,
2020), >43,000 of mungbean (Nair et al., 2013; Gayacharan et al.,
2020), >13,500 of pigeonpea (Upadhyaya et al., 2011), >16,000
accessions of cowpea, and so on. Nonetheless, characterization
and evaluation data on economically important traits are limited
to a smaller set of cultivated genepool. The situation is still
worse when it comes to CWRs, which needs to be addressed on
priority. The genetic bottlenecks leading to narrowing down the
genetic base of food legumes need to be recognized and efforts to
be initiated through intensive pre-breeding programs. However,
owing to pre- and post-fertilization barriers applicable to distant
crosses, special tools and techniques need to be adopted. These
include application of growth hormones, using mentor pollen
technique, deployment of embryo rescue, and several other
methods bypassing these barriers (Pratap et al., 2010, 2018b).
Wild gene introgression has yielded dividends in some legume
crops such as mungbean, urdbean, pigeonpea, chickpea, lentil,
etc., either directly through development of commercial cultivars
or indirectly through the development of breeding materials
and male sterile lines helping in hybrid variety development.
Nonetheless, the advantages gained are still far from the potential
of gene introgression, and focused planning and implementation
in this direction are needed. Development of ILs, NILs, and
specialized experimental populations may help in unleashing
the genetic and genomic potential of wild gene introgression in
the improvement of cultivated food legumes. These populations
when subjected to precise and high throughput phenotyping will
provide fast and inexpensive genomic information (Pratap et al.,
2015b). Wild genetic resources are enormous, opportunities are
tremendous, and challenges are manifold. Thus, the need is to
venture into the wild gene introgression approach as a long-term
strategy with great patience and care.
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