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Soil salinity often hinders plant productivity in both natural and agricultural settings.

Arbuscular mycorrhizal fungal (AMF) symbionts can mediate plant stress responses by

enhancing salinity tolerance, but less attention has been devoted to measuring these

effects across plant-AMF studies. We performed a meta-analysis of published studies

to determine how AMF symbionts influence plant responses under non-stressed vs.

salt-stressed conditions. Compared to non-AMF plants, AMF plants had significantly

higher shoot and root biomass (p < 0.0001) both under non-stressed conditions and

in the presence of varying levels of NaCl salinity in soil, and the differences became

more prominent as the salinity stress increased. Categorical analyses revealed that the

accumulation of plant shoot and root biomass was influenced by various factors, such as

the host life cycle and lifestyle, the fungal group, and the duration of the AMF and salinity

treatments. More specifically, the effect of Funneliformis on plant shoot biomass was

more prominent as the salinity level increased. Additionally, under stress, AMF increased

shoot biomass more on plants that are dicots, plants that have nodulation capacity

and plants that use the C3 plant photosynthetic pathway. When plants experienced

short-term stress (<2 weeks), the effect of AMF was not apparent, but under longer-term

stress (>4 weeks), AMF had a distinct effect on the plant response. For the first time,

we observed significant phylogenetic signals in plants and mycorrhizal species in terms

of their shoot biomass response to moderate levels of salinity stress, i.e., closely related

plants had more similar responses, and closely related mycorrhizal species had similar

effects than distantly related species. In contrast, the root biomass accumulation trait was

related to fungal phylogeny only under non-stressed conditions and not under stressed

conditions. Additionally, the influence of AMF on plant biomass was found to be unrelated

to plant phylogeny. In line with the greater biomass accumulation in AMF plants, AMF

improved the water status, photosynthetic efficiency and uptake of Ca and K in plants

irrespective of salinity stress. The uptake of N and P was higher in AMF plants, and as the

salinity increased, the trend showed a decline but had a clear upturn as the salinity stress

increased to a high level. The activities of malondialdehyde (MDA), peroxidase (POD),

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.588550
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.588550&domain=pdf&date_stamp=2020-12-09
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dastogeer.ppath@bau.edu.bd
mailto:sokazaki@cc.tuat.ac.jp
https://doi.org/10.3389/fpls.2020.588550
https://www.frontiersin.org/articles/10.3389/fpls.2020.588550/full


Dastogeer et al. AMF and Plant Salinity Tolerance

and superoxide dismutase (SOD) as well as the proline content changed due to AMF

treatment under salinity stress. The accumulation of proline and catalase (CAT) was

observed only when plants experienced moderate salinity stress, but peroxidase (POD)

and superoxide dismutase (SOD) were significantly increased in AMF plants irrespective

of salinity stress. Taken together, arbuscular mycorrhizal fungi influenced plant growth

and physiology, and their effects were more notable when their host plants experienced

salinity stress and were influenced by plant and fungal traits.

Keywords: AMF, antioxidant, standardized mean difference, plant physiology, photosynthesis, plant biomass,

phylogenetic signal, effect size

INTRODUCTION

Salinity is a major environmental problem that limits agricultural
productivity worldwide, especially in arid and semiarid regions
(Munns and Gilliham, 2015). The deleterious effect of NaCl
on plants is caused by both the reduced water availability as
sodium accumulation reduces the soil water potential and the
toxic effects of sodium and chlorine ions on plants. Reduced
water and nutrient uptake lead to osmotic stress, ion toxicity, and
nutrient imbalances, resulting in significant reductions in plant
growth and crop production (Munns and Tester, 2008; Hanin
et al., 2016). Soil salinity problems are projected to worsen in
the coming years in many low-lying areas due to the changing
climate (Zörb et al., 2019). Plants adapt physiologically and
biochemically to mitigate the detrimental effects of salinity via
ion homeostasis and compartmentalization, osmoprotectant and
compatible solute biosynthesis, antioxidant enzyme activation,
antioxidant compound synthesis, polyamine synthesis, nitric
oxide (NO) generation, and hormone modulation (Gupta and
Huang, 2014; Hernández, 2019; Van Zelm et al., 2020). Plant
responses to stress have been studied extensively in the last few
decades, and the role of plant-microbe interactions on plant
stress responses has also been given attention in recent years.
In particular, plant species are commonly associated with fungal
symbionts such as mycorrhizal fungi and endophytes (within
plants), which may influence their responses to environmental
stimuli, including salinity stress.

Themajority of terrestrial plants formmutualistic associations
with arbuscular mycorrhizal fungi (AMF). Accumulating
evidence suggests that AMF colonization in roots can help
improve plant tolerance to salinity stress (Al-Karaki et al., 2001;
Porcel et al., 2012; Begum et al., 2019; Evelin et al., 2019). AMF
employ various mechanisms to mitigate plant salinity stress.
For instance, AMF can augment nutrient uptake, increase
water uptake, maintain osmotic balance, stimulate antioxidant
activities to protect against damage by reactive oxygen species
(ROS), increase the photosynthetic rate and regulate hormonal
levels to abate the harmful effects of salts on plant growth
and development (Evelin et al., 2009, 2019; Ruiz-Lozano et al.,
2012; Augé et al., 2014; Khalloufi et al., 2017). Under salinity
stress, AMF increase the uptake of plant nutrients such as P
(phosphorus), N (nitrogen), K (potassium), Zn (zinc), and Cu
(copper) and maintain ionic homeostasis (Marschner and Dell,
1994; Pang et al., 2007; Sheng et al., 2011). The accumulation of

proline is another mechanism associated with AMF-mediated
plant salinity tolerance. However, the role of AMF in proline
accumulation in plants is not consistent: several studies reported
a higher proline content, whereas others reported a lower proline
content in AMF-colonized plants under stress (Evelin et al.,
2012; Hashem et al., 2015; Frosi et al., 2016). An efficient reactive
oxygen species (ROS) scavenging system is paramount for
alleviating salinity stress in plants. AMF colonization boosts the
production of antioxidant molecules and enhances the activities
of enzymes to provide an improved oxidation scavenging system
(Serbinova and Packer, 1994; Evelin and Kapoor, 2014). Under
salinity stress, increased activities of catalase (CAT), peroxidase
(POD), superoxide dismutase (SOD), and ascorbate peroxidase
(APX) have been reported in AMF-colonized plants compared
to non-colonized plants in many studies (Li et al., 2012; Pandey
and Garg, 2017; Hashem et al., 2018). Salinity stress affects
stomatal conductance, disrupts photosynthetic machinery
and decreases the activity of photosynthetic pigments, all of
which impede photosynthesis in plants (Giri and Mukerji,
2004; Murkute et al., 2006; Sheng et al., 2008; Chaves et al.,
2009). AMF help plants maintain water status, increase stomatal
conductance and enhance photosynthetic pigments to combat
the effects of salts and increase photosynthesis for growth
and development (Hidri et al., 2016; Chen et al., 2017). In
the last several years, considerable progress has been made to
understand these mechanisms. Studies have examined various
mechanisms considering different plant-AMF combinations.
For a better understanding of the comprehensive biochemical
and physiological mechanisms across host AMF settings, we
need to systematically examine these studies to determine the
relative importance of each mechanism. The magnitude of
the effect of AMF on plant salinity tolerance differs greatly
among various studies (Evelin et al., 2009; Porcel et al., 2012;
Chandrasekaran et al., 2019). These differences can be attributed
to various factors, such as the level of salinity, types of hosts
and mycorrhizal partners, environmental conditions, and their
complex interactions. Understanding the contribution of these
factors to AMF-plant symbiosis is important to elucidate the
mechanism of AMF-mediated plant salinity tolerance. It is a
complex task to infer general findings from individual studies.
Therefore, to determine a central tendency, identify different
patterns of AMF influences on plants under stress and compare
them with those under control conditions, it is paramount to
integrate results from multiple studies to determine whether
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general factors can be identified. To this end, we conducted a
meta-analysis to measure the overall magnitude and direction of
the summary effect size of AMF symbiosis on important plant
characteristics associated with stress tolerance mechanisms.

A meta-analysis is a mathematical approach that combines
data from different studies using weighted statistical methods
to calculate a mean effect size for the treatment across a range
of studies (Rosenberg et al., 2000). Meta-analysis helps us to
understand the results of a study in the context of all other
comparable studies to evaluate whether the effect of a particular
treatment is coherent across studies, whether it is noticeably
different across studies, and which element might be responsible
for this disparity (Borenstein et al., 2009). Categorical variables or
“moderators” are often included in meta-analyses to determine
how various features modulate the treatment effect of interest.
Meta-analyses have been used broadly in various disciplines
and have become increasingly common in plant ecology and
evolutionary biology (Lau et al., 2013; Koricheva and Gurevitch,
2014; Gerstner et al., 2017; Gurevitch et al., 2018). Several
meta-analyses have been conducted to determine the impact of
arbuscular mycorrhizae (AM) on the plant response to salinity
stress. In a meta-analysis of 43 studies, Chandrasekaran et al.
(2014) reported that AMF enhanced plant biomass and uptake
of K and reduced uptake of Na and that the fungal species
and the host functional groupings were important moderators
of that effect. A recent meta-analysis by Pan et al. (2020)
showed that AMF help halophytes increase the accumulation
of inorganic ions (K and Ca) and decrease the accumulation
of osmolytes (proline and soluble sugar) to augment biomass
production under salinity stress. In contrast, in glycophytes,
AMF increase salinity tolerance by their combined influence
on increasing soluble sugar, nutrient acquisition, superoxide
dismutase, and chlorophyll synthesis and decreasing sodium
uptake. It was shown that AMF increased the performance of
photosystem II in plants under salinity stress by improving
the utilization of photons and electron transport and reducing
photoinhibition. Under salinity stress, C4 species had better
photosynthesis performance than C3 species when inoculated
with AMF, and the annual, monocotyledon, and woody species
showed better tolerance than plant types (Wang et al., 2019).
Augé et al. (2014) carried out a meta-analysis to focus on osmotic
and ionic adjustments in AMF plants under salinity. They
reported that AMF increased root and shoot K+ concentrations,
K+/Na+ ratios, and soluble carbohydrates but had no consistent
effect on glycine betaine, Cl− concentrations, leaf Ψπ, shoot
proline or polyamine concentrations. However, in most studies,
the results from the non-stressed condition have not been
examined to compare the effects. More importantly, a systematic
categorization of salinity levels was not used in these studies,
which might result in inaccurate inferences due to the missing
impact of the degree of salinity on the effect size. As salinity
increases, mycorrhizal colonization and mycorrhizal dependence
in plants decrease (Wang et al., 2018). We did not come across
any paper that considered the categorization of salinity level and
performed meta-analysis of AMF influence at various salinity
levels. Additionally, since plant and fungal identity are important
moderators (Chandrasekaran et al., 2014), we wanted to examine

whether there remained any phylogenetic relevance of fungi and
plants in their interactions under varying levels of salinity stress,
which has never been tested before.

The publication trend indicates an overall increase in
published research on AMF-mediated plant salinity tolerance
(Figure 1). Since 2007, there has been a sharp increase in the
publication number, indicating an increasing interest in research
in this area. However, there remains a paucity of information
on the relative importance and magnitude of various factors
and mechanisms of AMF-mediated plant salinity tolerance. In
the present study, we accumulated data from 97 relevant papers
as obtained by our literature search and measured the effects
of AMF on 23 plant response parameters encompassing plant
growth, photosynthesis, metabolites, and enzymatic activities
that are subject to change under salinity stress conditions. We
expected that an increased number of articles (97) in our studies
as opposed to 43 studies in Chandrasekaran et al. (2014) and
60 studies in Chandrasekaran et al. (2016) would increase the
statistical power and robustness in the analyses and accuracy of
inferences. The aims of the current study were to answer the
following questions:

1) What is the overall impact of AMF colonization on
the growth, biomass, nutrient uptake, water relation, and
photosynthesis of plants grown under normal conditions as
well as those exposed to salinity stress?

2) Do the magnitude and duration of salinity imposition alter
the impact of AMF on plants?

3) Is the outcome AMF-plant interaction influenced by various
host factors (host species, family, photosynthetic type,
lifecycle, lifestyle, nodulation) and symbiont factors (AMF
genus), and is the outcome depends on the level of stress?

4) Does AMF effect on plant stress tolerance show any signaling
on the phylogeny of AMF or plant at non-stress vs.
stressed conditions?

5) What is the relative importance of different antioxidant
enzymes (such as CAT, SOD, POD) and osmolytes (proline
and sugars) in AMF-mediated plant stress tolerance, and does
it vary with the magnitude of stress?

MATERIALS AND METHODS

Literature Search Study Selection
The general guidelines of Field and Gillett (2010) were followed
in gathering the data for the meta-analysis. We performed a
literature search in the Web of Science (Clarivate Analysis) and
Scopus databases through May 2019. Our search terms were
mycorrhiza∗ AND salt stress/or under salinity stress, arbuscular
mycorrhiza∗ AND salinity stress/or under salt stress, AMF
AND salinity stress/or under salt stress and mycorrhiza∗/or
arbuscular mycorrhiza∗ plant growth under salt stress. The
Boolean truncation (“∗”) was used to include variations of
the word “mycorrhiza” such as mycorrhizae, mycorrhizas, and
mycorrhizal. Out of all the search results obtained, 638 were
considered likely to contain relevant information based on their
title and/or abstract (Figure 2). To make the final selection of the
articles for data collection, we used the following set of criteria:
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FIGURE 1 | The total number of publications about mycorrhizal effects on plant salinity stress physiology available in the “SCOPUS” and “Web of Science” databases

from 1980 to 2019. The inlets in the main plots show the total number of publications found in the search, while the main plots show the number of articles by year.

i The experiment had to manipulate at least one AMF strain
irrespective of inoculation method or colonization rate,

ii The AMF inoculum was used singly, and we avoided mixed
inoculation in this analysis,

iii Both AMF-inoculated and non-inoculated plants were grown
under salinity stress and non-stress conditions,

iv Any physiological parameter, e.g., biomass, enzymes,
metabolites, etc., was measured, and

v The findings reported sample size, means, standard
deviations/errors, and other relevant statistical information
such that the outcome could be converted to a standardized
measure of effect size.

Of all the studies found, most were rejected based on these
criteria, and the list was refined to 97 articles (ST1). We allowed
variation among the studies in our meta-analysis in terms of the
levels of fertilizer applied, the growth conditions (greenhouse,
growth chamber, or field), the duration of time before stress was
applied, and the growth media. The papers spanned 39 years
(1980–2019) and were in English.

Data Extraction
From these selected articles, we extracted information on plant
biomass, AMF identity, photosynthetic parameters, enzyme
parameters, and other relevant data (ST2). The means, sample
sizes (replications), and standard deviations were recorded from
each study. If standard errors (SEs) were presented, we converted

them to standard deviations with the equation SD = SE ×√
(sample size). The 95% CIs (confidence intervals) reported

were converted to SDs where necessary (Vohník et al., 2005).
Often, the results were presented in a graph, and we used
WebPlotDigitizer V4.2 (https://automeris.io/WebPlotDigitizer/)
to digitize the values. Multiple treatments or host/AMF
combinations from the same paper were regarded as separate
studies and included as independent data units in the analysis.
Extracting multiple studies from one experiment might increase
the dependence on that study by assuming that the studies are
independent (Gurevitch and Hedges, 1999). To examine the
potential biases of publication due to non-independence from
multiple observations, we calculated the mean effect size of the
dataset considering only one random observation from each
study and compared this with the effect size calculated with the
whole dataset (He and Dijkstra, 2014). We compared effect sizes
(full dataset vs. reduced dataset) usingWelch’s t-test to determine
whether data reduction could significantly change the effect size.
We did not observe any significant discrepancy due to data
reduction, indicating that overrepresentation was less likely to
occur in this study (ST3).We consideredmultiple observations as
independent since this is thought to increase the statistical power
of meta-analysis (Lajeunesse and Forbes, 2003). This approach
has been used in various biological meta-analyses (Holmgren
et al., 2012; Veresoglou et al., 2012; Mayerhofer et al., 2013;
McGrath and Lobell, 2013; Eziz et al., 2017; Dastogeer, 2018).
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FIGURE 2 | Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Flow Chart describing the search protocol utilized to identify and select

published research for this analysis.

Meta-Analysis
Meta-analyses were conducted using the “meta” package of
Balduzzi et al. (2019) implemented in R version 4.14.0 (R Core
Team, 2020). We calculated the standardized mean difference
(SMD) using Hedge’s g statistic to measure the effect size for
the difference between means, which is implemented in the
“metacont” function by default. Hedge’s g expresses the difference
of the means in units of the pooled standard deviation and
is preferred in meta-analysis, as it has a lower Type I error
rate than other measures, such as the log-response ratio (LRR)
(Lajeunesse and Forbes, 2003; Van Kleunen et al., 2010; Xie
et al., 2014). The SMD is suggested in meta-analyses that involve
studies reporting continuous outcomes, which was the case in
our study (Faraone, 2008). An SMD of zero means that the two
treatments (AMF-treated or non-treated) have equivalent effects;
SMDs >0 indicate the degree to which the AMF-inoculated
samples outperformed the non-inoculated samples, and vice

versa. In general, SMD values of 0.3, 0.5, and 0.8 are interpreted
to indicate small, medium, and large effect sizes, respectively
(Cohen, 1988). A random-effects model was used to estimate the
overall effect. A random-effects model was chosen because of the
large number of diverse studies examined, and the studies were
not anticipated to estimate a common effect size due to variable
locations, conditions, experimental setups and methods used in
the individual studies (Borenstein et al., 2011). We assumed
that the differences among comparisons and among studies were
not only due to sampling error but also due to true random
variation, as is common for ecological data (Leimu et al., 2006).
The effect size (SMD) was considered significant when the 95%
CIs did not include zero. To estimate the random effects variance,
the Sidik-Jonkman estimator (Sidik and Jonkman, 2005) was
used with Hartung-Knapp adjustment (HKSJ) to make statistical
inferences. This approach constructs the confidence interval
based on the t-distribution and has been shown to improve
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coverage probability compared to the DerSimonian and Laird
(DL)method (Hartung and Knapp, 2001a,b; IntHout et al., 2014).
HKSJ produces inflated error rates when the combined studies
are of unequal size and show between-study heterogeneity, but
it outperforms the widely used DL method (Sidik and Jonkman,
2007; IntHout et al., 2014). To quantify the heterogeneity and
to test for statistical heterogeneity, Higgin’s I2 and Cochran’s Q
statistics were used, respectively. The I2 statistic is defined as
the ratio of true heterogeneity to total heterogeneity across the
observed effect sizes, while Q represents the weighted deviations
from the summary effect size that are due to heterogeneity rather
than to sampling error (Higgins and Thompson, 2002; Higgins
et al., 2003; Huedo-Medina et al., 2006). I2 values range from 0
to 100%, and by convention, values of <25, 25–75, and >75%
represent low, moderate, and high heterogeneity, respectively
(Higgins et al., 2003). When the homogeneity statistic Q was
found to be significant (P < 0.05 when tested against a chi-square
distribution), the data were considered to be heterogeneous and
further analyzed by single factor categorical analyses (Mayerhofer
et al., 2013).

Publication Biases and Correction
We tested the publication bias for each dataset with different
parameters. We visually inspected asymmetry in funnel plots,
used “trim-and-fill” analysis and performed Begg andMazumdar
rank correlation tests based on Kendall’s tau, the Egger regression
test and p-curve analysis (Begg andMazumdar, 1994; Egger et al.,
1997; Simonsohn et al., 2014) to examine publication biases in the
datasets. All these statistics suggested that there were substantial
publication biases in some datasets (ST 3). If these tests indicated
a bias, then we determined the effect sizes (SMD), CIs, and
heterogeneity statistics after applying the trim-and-fill method
to correct the biases. Thus, the trim-and-fill altered (decreased)
the SMD values on average by 34% (12–48%) compared with the
untrimmed SMD values (ST 3). After correcting for publication
bias with trim-and-fill, we created subgroups from the studies
based on the moderator subgroups and applied trim-and-fill to
the subgroups if biases were identified in any of the subgroups
by the tests mentioned above (Schmidt and Hunter, 2015). The
“trim-and-fill” method is the most widely used method for
assessing publication bias in meta-analyses (Duval and Tweedie,
2000a, b; Murad et al., 2018; Shi and Lin, 2019). This approach
has so far been very seldom used in plant ecology meta-
analyses. However, Nakagawa and Santos (2012) recommended
the modification of funnel plots with the “trim-and-fill” method
(Duval and Tweedie, 2000b), which allows one not only to test for
but also to adjust for publication bias.

Subgroup Analyses
Subgroup analyses were performed on the data to determine
the influence of factors such as plant or AMF identity, plant
lifecycle, and salinity duration on the shoot and root dry biomass
parameters because sufficient data were available. We ran a
mixed-effects model that included the subgroups as the fixed-
effects factor using the “dmetar” package in R (Harrer et al.,
2019). In this model, the overall effect size for each subgroup was

calculated using a random effects model where the variance of the
summary effect for k studies is estimated as

VM = s2

n + T2

k
(Borenstein and Higgins, 2013)

Then, we tested between subgroup differences using a fixed
effects model where the variance of the summary effect for k
studies is estimated as

VM = s2

n (Borenstein and Higgins, 2013).
where n is the cumulative sample size across all studies, s is the
standard deviation, T2 is the estimated variance of effects across
studies, and k is the number of studies.

This model is applicable when the subgroup levels under
consideration can be assumed to be exhaustive for the
characteristic and are not randomly chosen. Most of the
subgroups in our study were fixed, such as the plant lifecycle
(annual, perennial, or annual/perennial), photosynthesis (C3 or
C4) or plant clade (monocot or dicot); therefore, we assumed
a mixed effects model to be an appropriate choice. For a
factor to be included in the analysis as a subgroup variable, it
had to be reported in at least five studies across at least two
different articles.

Mycorrhizal genera: Nine genera were included in the
analyses, namely, Claroideoglomus, Diversispora, Funneliformis,
Gigaspora, Paraglomus, Rhizoglomus, Rhizophagus, Septoglomus,
and Sieverdingia. If enough data were not available for some
of these genera, they were combined into “other genera” for
inclusion in the subgroup analyses.

Plant family: There were 18 families included in the analysis.
When enough data were not available for some of these families,
they were combined as “other” for inclusion in the subgroup
analyses. Plant clade comprised two levels: eudicots andmonocots.
Plant life cycle: Plants were categorized by life cycle as annual,
perennial or annual/perennial. Plants that can live annually
or perennially were included in the group annual/perennial.
Plant lifestyles: This categorical variable classified plants into
herbaceous and woody plants. Plant life forms were grouped into
five groups: forbs, grasses, shrubs, trees, and other. Plants that can
have variable life forms, such as shrubs/trees and forbs/shrubs,
were included under “other.” We also conducted subgroup
analyses based on the nitrogen-fixing ability of plants (legumes
vs. non-legumes) as well as the photosynthetic pathway used by
the plants (C3 vs. C4).

Duration of salinity: We considered the duration of salinity
treatment to be short (<2 weeks), moderate (2–4 weeks),
or long (>4 weeks). Salinity level was defined as three
categories: Low salinity (<100mMNaCl or<10 dS/m),Moderate
salinity (100–200mM NaCl or 10–20 dS/m), and High salinity
(>200mM NaCl or >20 dS/m). The categories of imposed soil
salinity were established based on the reported salinity in the
published studies.

Analysis of Phylogenetic Signal
To evaluate whether the effect of AMF symbionts on plant
growth was based on the phylogeny of the fungi or plants,
we calculated effect sizes for each plant species and fungal
species and used each effect size as a trait value to identify
phylogenetic signals. For plant phylogenetic signal analysis,
we first created a phylogenetic tree by using the R package
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FIGURE 3 | Growth responses of AMF-inoculated plants compared with those of non-inoculated plants under non-stressed conditions and at various levels of salinity.

Error bars are effect size (SMD) means ±95% CIs. Where the CIs do not overlap the vertical dashed lines, the effect size for a parameter is significant, i.e., the growth

responses of AMF plants were significantly different from those of non-AMF plants. n, number of studies included in the meta-analysis; p, significance level of SMD.

“V. PhyloMaker,” which is freely available at https://github.
com/jinyizju/V. PhyloMaker (Jin and Qian, 2019). For fungal
phylogenetic signal analysis, we created alignment using the 18S
gene for mycorrhizal species and created maximum likelihood
phylogenetic trees using MEGA X version 10.1.5 (Stecher
et al., 2020). We based the phylogenies on the 18S region
because it is sufficiently variable to distinguish among species,
is the most commonly used molecular marker for studying
AMF communities, and has a good balance between conserved
and hypervariable regions (Öpik et al., 2013; Thiéry et al.,
2016). We calculated phylogenetic signals using the R package
“phylosingal” (Keck et al., 2016). We computed phylogenetic
signal indices such as Abouheif ’s C mean (Abouheif, 1999),
Moran’s I (Moran, 1950), Pagel’s Lambda (Pagel, 1999), K and
K.star (Blomberg et al., 2003) and their corresponding p-values
using the R packages “adephylo” (Jombart and Dray, 2010),
“ape” (Paradis and Schliep, 2019) and “phylobase” (Hackathon
et al., 2020). The C mean is designed to detect phylogenetic
autocorrelation in a quantitative trait (Abouheif, 1999). Moran’s
I is a measure of spatial autocorrelation (Moran, 1950) that
was adapted for use in phylogenetic analyses by Gittleman and
Kot (1990). They refer to it as an autocorrelation coefficient
that describes the relationship of cross-taxonomic trait variation
to phylogeny.

RESULTS

We examined the influence of AMF on 23 plant response
parameters at varying levels of salinity stress. The summary effect
sizes for non-stressed plants in the studies were also considered
for comparison. Plant hosts were represented by 51 species in 47

genera and 18 families across the 97 articles and a total of 2,555
experiments for 23 plant parameters. Zea mays (9%), Solanum
lycopersicum (9%), Cajanus cajan (8%), and Cicer arietinum (7%)
were the most commonly studied hosts (SF1A). Out of the 15
species of nine fungal genera recorded in all the studies, the
most studied fungal species were Funneliformis mosseae (36%),
Rhizophagus intraradices (23%), and Rhizophagus irregularis
(11%) (SF1B). We used the latest fungal names as described in
the Mycobank database (http://www.mycobank.org/).

Effects of AMF on Plant Growth
Parameters Under Salinity Stress
Effects of AMF on Plant Shoot Biomass
Generally, mycorrhizal colonization significantly increased plant
shoot biomass as the amount of saline increased (p < 0.0001,
Figure 3). The subgroup analysis revealed that although the effect
sizes under moderate (SMD = 0.523) and low salinity (SMD =
0.413) were relatively higher than those under normal conditions
(SMD = 0.358), they were not significantly different from
each other, as evident from the overlapping confidence interval
values (Figure 3). At higher levels of salinity (>200mM NaCl),
however, the influence of mycorrhizae was more prominent
(SMD = 0.952) in accumulating shoot biomass than under
normal conditions, as apparent from non-overlapping CI values
(Figure 3). A similar tendency was evident in the case of
plant root biomass, which was substantially increased by AMF
association regardless of the level of salinity imposed. It was
also observed that the effect size increased with increasing
salinity level (the SMDs at non-saline and low, moderate, and
high salinity conditions were 0.585, 0.705, 0.817, and 1.25,
respectively), but subgroup meta-analysis did not reveal any

Frontiers in Plant Science | www.frontiersin.org 7 December 2020 | Volume 11 | Article 588550

https://github.com/jinyizju/V
https://github.com/jinyizju/V
http://www.mycobank.org/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Dastogeer et al. AMF and Plant Salinity Tolerance

TABLE 1 | Heterogeneity statistics for the three biomass summary effect sizes under non-stressed and salinity stress conditions.

Biomass Salinity level tau2 tau I2 H Q d.f.

p-value

Shoot dry biomass Non-saline 0.5311

[0.0802; 0.4572]

0.7288

[0.2831; 0.6761]

30.3%

[14.8%; 43.1%]

1.20

[1.08; 1.33]

222.52

155

0.0003

Low salinity 1.1841

[0.5051; 1.2423]

1.0882

[0.7107; 1.1146]

54.7%

[46.0%; 62.0%]

0.49

[1.36; 1.62]

363.90

165 <

0.0001

Moderate salinity 0.6901

[0.1700; 0.6693]

0.8307

[0.4123; 0.8181]

39.5%

[25.8%; 50.6%]

1.29

[1.16; 1.42]

234.62

142 <

0.0001

High salinity 0.3338

[0.0000; 0.9545]

0.5777

[0.0000; 0.9770]

33.3%

[0.0%; 64.1%]

1.22

[1.00; 1.67]

20.99

14

0.1019

Root dry biomass Non-saline 0.6366

[0.2014; 0.7278]

0.7979

[0.4488; 0.8531]

54.9%

[43.2%; 64.1%]

1.49

[1.33; 1.67]

212.64

96 <

0.0001

Low salinity 1.6824

[0.6516; 1.8343]

1.2971

[0.8072; 1.3544]

56.3%

[46.7%; 64.1%]

1.51

[1.37; 1.67]

290.38

127 <

0.0001

Moderate salinity 0.6160

[0.1298; 0.6368]

0.7849

[0.3603; 0.7980]

42.5%

[27.8%; 54.2%]

1.32

[1.18; 1.48]

191.35

110 <

0.0001

High salinity 0.7452

[0.0000; 4.2383]

0.8632

[0.0000; 2.0587]

44.0%

[0.0%; 74.1%]

1.34

[1.00; 1.97]

14.28

8

0.0749

Plant height Non-saline 11.4567

[3.5176; 21.1810]

3.3848

[1.8755; 4.6023]

63.7%

[47.6%; 74.8%]

1.66

[1.38; 1.99]

90.85

33 <

0.0001

Low salinity 96.2122

[40.4184; 186.5957]

9.8088

[6.3575; 13.6600]

81.7%

[74.8%; 86.7%]

2.34

[1.99; 2.74]

164.00

30 <

0.0001

Moderate salinity 4.8334

[0.7138; 8.7916]

2.1985

[0.8449; 2.9651]

49.8%

[24.5%; 66.7%]

1.41

[1.15; 1.73]

61.80

31

0.0008

High salinity 28.7921

[1.9750; 140.6920]

5.3658

[1.4053; 11.8614]

62.9%

[23.8%; 82.0%]

1.64

[1.15; 2.36]

21.59

8

0.0057

Q, total heterogeneity; p, significance of Q heterogeneity; I2m, percentage of heterogeneity due to true variation in effect sizes.

differences among the effect sizes at various salinity levels
(p = 0.057, Figure 3). The higher confidence interval values of
the effect sizes at higher salinity levels indicated higher variability
of mycorrhizal colonization on plant shoot and root biomass
accumulation of AMF inoculation had a significant positive
impact on plant height under non-stress as well as salt stress
conditions. However, no apparent differences in plant height
were noticed among the salinity levels (Figure 3, Table 1).

Categorical Analysis of the Effects of AMF on Plant

Shoot Biomass
Categorical variables considered in the analysis indicated that
the effect of mycorrhizal colonization on plant shoot biomass is
influenced by several factors, such as host factors, fungus factors
and salinity stress. For example, the effect of Claroideoglomus
on plant shoot biomass was only marginally significant under
non-saline conditions (p = 0.04), but it did not influence plant

shoots when hosts experienced salinity stress. In contrast, other
AMF genera, including Funneliformis and Rhizophagus, showed
highly significant effects on biomass in either the absence or
presence of NaCl in soil (Figure 4A). Importantly, the effect of
Funneliformis fungi was much greater at the moderate salinity
level than at the normal salinity level (Figure 4A). In addition,
relatively narrower CI values for Funneliformis implied that
mycorrhizae that belong to this genus augmented plant shoot
biomass, which is less influenced by other factors, such as host
type or salinity level and duration, recorded in different studies.
The plant family was not found to impact the AMF response, and
the shoot biomass of all plants significantly increased under AMF
colonization, although the effect sizes (SMDs) for the Fabaceae
group were generally higher than those for the other plants
(Figure 4B). Plants of the Fabaceae family and those included
in the “other” group showed a significantly higher influence at
moderate salinity than in the absence of salt stress. Both dicot
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FIGURE 4 | Effects of mycorrhizae on plant shoot biomass under non-saline, low salinity, and moderate salinity conditions for various categorical variables such as (A)

Fungal genera, (B) Plant Family, (C) Plant clade, (D) Plant lifestyle, (E) Plant Photosynthetic pathway, (F) Plant Life forms, (G) Plant lifecycle, (H) Plant nodulation, and

(I) Salinity duration. Error bars are the effect size means ±95% CIs. Where the CIs do not overlap the vertical dashed lines, the effect size for a parameter is significant,

i.e., the growth responses of AMF plants were significantly different from those of non-AMF plants. n, number of studies included in the meta-analysis; p, significance

level of SMD.

and monocot plants were significantly influenced by mycorrhizal
colonization under normal and stressed conditions. Both dicots
and monocots increased plant shoot biomass irrespective of
salinity treatment. For dicots, the influence of AMF increased
significantly as salinity was imposed on plants, which is evident
from the non-overlapping CIs for the effect sizes under normal
conditions and under salinity stress. Moreover, the higher CI
values for monocot plants suggested a wide variability of results
in the studies (Figure 4C) compared to the narrower range of
CIs for dicots (Figure 4C). We did not observe any difference in
shoot biomass effects due to the plant lifestyles; both herbaceous
and woody plants accumulated significantly more (p < 0.0001)
shoot biomass in response to AMF inoculation than non-AM
plants, irrespective of the salinity status (Figure 4D). The plant
photosynthetic pathway was found to be very important, and C3
plants showed consistently increased shoot biomass as a result of
mycorrhizal association. Importantly, under salinity stress, AMF
had a significantly higher impact on the shoot biomass of C3
plants compared to their impact in the absence of stress. On
the other hand, AMF inoculation in C4 plants only showed a

positive response for shoot biomass under non-saline conditions
(p = 0.016), and in the presence of salinity stress, the effect was
neutral or absent (Figure 4E). Moreover, the narrower CI range
of the effect sizes for C3 plants than for C4 plants regardless
of stress level indicated that the outcome of AMF on shoot
biomass was less variable for C3 plants (Figure 4E). The plant
life form was not very important in determining the impact of
AMF on salinity tolerance. As is evident in the figure (Figure 4F),
AMF effects on the forbs, shrubs and tree plants tended to
increase as salinity increased, but the situation was reversed
for grass plants, although the differences were not significant
under normal conditions (Figure 4F). The plant life cycle was
not an important factor, but the magnitude of AMF effects on
plant shoot biomass was more striking for perennial than for
annual plants, even though all plants showed significant positive
effects regardless of the salinity treatment (Figure 4G). Plants
that form nodules with bacteria, i.e., legumes, outperformed the
non-legumes as a result of AMF treatment, as evident in their
higher effect size (Figure 4H). Interestingly, the AMF effects on
legume plants increased when plants were exposed to stress,
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FIGURE 5 | Effect of mycorrhizae on plant root dry biomass under non-saline, low salinity, and moderate salinity conditions for various categorical variables such as

(A) Fungal genera, (B) Plant Family, (C) Plant clade, (D) Plant lifestyle, (E) Plant Photosynthetic pathway, (F) Plant Life forms, (G) Plant lifecycle, (H) Plant nodulation,

and (I) Salinity duration. Error bars are effect size means ±95% CIs. Where the CIs do not overlap the vertical dashed lines, the effect size for a parameter is

significant, i.e., the growth responses of AMF plants were significantly different from those of non-AMF plants. n, number of studies included in the meta-analysis; p,

significance level of SMD.

as evident from non-overlapping CIs of effect sizes at salinity
stress with those under normal conditions (Figure 4H). When
plants were exposed to salinity stress only for a short period
(<2 weeks), the effect was only marginally significant under non-
saline conditions. Under salinity, the AMF effect was not visible
over a short period, but as the duration of salinity stress increased,
the effect continued to increase. When plants were subjected to a
long period (>4 weeks) of stress, the impact on AMF on plant
shoot biomass was highly significant compared to their effects
under normal conditions (Figure 4I).

Categorical Analysis of the Effects of AMF on Plant

Root Biomass
Most categorical variables considered for analysis indicated
that mycorrhizal colonization differentially influenced plant
root biomass. For example, the fungal genus Claroideoglomus
seemed to have no substantial effect on root biomass under any
conditions. In contrast, Funneliformis and the genera classified
into the “other” category also had positive effects on root mass
under normal as well as salinity stress conditions. Interestingly,
Rhizophagus increased root growth only in the presence of
salt stress (Figure 5A). The root biomass of poaceous plants

was influenced positively only under moderate salinity stress
conditions. Nevertheless, other plants, such as those belonging
to Solanaceae and Fabaceae, had consistently higher root mass
in the AMF-inoculated plants under both normal and stressed
conditions (Figure 5B). The plant clade seemed to be a crucial
determining factor for the AMF response. Dicots showed
significantly higher (p < 0.0001) root growth in the AMF-
inoculated plants irrespective of the salinity conditions, whereas
monocot roots responded positively to AMF only at higher
salinity levels (Figure 5C). Overall, the magnitude of effect sizes
was not much different between woody vs. herbaceous plants,
and the roots of both groups were influenced positively by
AMF treatment (Figure 5D). The C3 plants had, in general,
very high SMD values (∼1.00), suggesting a positive correlation
between AMF inoculation and root growth. In contrast, the
root biomass of C4 plants was not influenced by AMF as the
salinity increased to a moderate level (p< 0.0001), and the plants
received benefits from the fungi and increased their root mass
(Figure 5E). Grasses were less influenced by AMF treatment than
forbs and shrubs, which showed significantly higher root mass
in the colonized plants (Figure 5F). The life cycle of the plant
did not strongly influence the response to AMF, and both annual
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and perennial plants showed higher root mass in the presence
of AMF regardless of the salinity stress level. Plants that are
perennial but that are generally cultivated as annuals had higher
SMD values than other plants (Figure 5G). Nodulating plants
had overall higher effect sizes (∼1.00) for root biomass than
non-nodulating plants (∼0.600), but in both groups, root mass
significantly increased in AMF-treated plants compared to that
in non-treated plants under all salinity conditions (Figure 5H).
Notably, when the roots were harvested after a relatively longer
period of AMF treatment (>4 weeks), the effect of AMF on
increasing root biomass was highly significant regardless of the
salinity condition. When the duration was <4 weeks but >2
weeks, AMF plants still had higher root mass than non-AMF
plants, and salinity-stressed plants experienced a greater increase
in root mass than non-stressed plants. If the treatment was very
short (<2 weeks), the AMF effect on plant roots was neutral
under normal conditions, but it became significant as the salinity
increased (Figure 5I).

Phylogenetic Signal of AMF-Mediated Biomass

Modulation Under Stress
We observed a significant plant phylogenetic signal, i.e., closely
related plant species had more similar shoot biomass responses
to AMF treatment than distantly associated species under
moderate salinity stress but not under non-saline or low
salinity conditions (Figure 6A). However, the response of root
biomass to mycorrhizal association had no relationship with
conserved plant phylogeny under any conditions (Figure 6B).
Again, mycorrhizae that are more closely related phylogenetically
had similar influences on plant shoot biomass under moderate
salinity, but for the root mass trait, the phylogenetic signal could
be identified only under normal conditions (Figures 6C,D).

Effects of AMF on Plant Photosynthetic
Attributes and Water Status
Most of the photosynthetic parameters, such as the rate of
photosynthesis (Pn), stomatal conductance (Gs) and chlorophyll
a (Chla), and chlorophyll b (Chlb) content, were significantly
influenced by AMF colonization under both stressed and non-
stressed conditions (Figure 7). The subgroup analyses showed
that the positive effects of AMF on certain plant photosynthetic
parameters, especially Chla, Gs, and Pn, were higher when
plants were exposed to salinity stress than those in non-stressed
plants (Figure 7). For example, the quantum efficiency of PS II
(Fv/Fm) was significantly influenced by AMF inoculation under
moderate (p = 0.002) and high salinity (p = 0.049) conditions
but not under low salinity or non-saline stress conditions
(Figure 7A). The photosynthesis rate of AMF-treated plants
was consistently higher than that of non-AMF plants regardless
of salinity stress (Figure 7B). Stomatal conductance (Gs) was
higher in AMF plants under salinity stress (SMD = 0.488),
but it the difference at normal conditions (SMD = 0.382) were
not very high in AMF plants than in non-inoculated plants
(Figure 7C). Chlorophyll a increased more in AMF plants under
salinity (SMD = 0.581 at moderate salinity, 0.644 at low salinity)
than under normal (SMD = 0.277) conditions (between-group
difference, p = 0.012) (Figure 7D). Chlorophyll b, on the other

hand, increased with AMF but did not vary significantly due
to salinity stress (p = 0.956). The leaf relative water content
(RWC) in mycorrhiza-inoculated plants was consistently higher
than that in non-inoculated plants regardless of the salinity stress
level. Under low salinity conditions, the influence of AMF on
RWC was significantly higher than under non-saline conditions
(Figure 7F). All the parameters considered, however, tended to
be more variable under salinity stress than under non-stressed
conditions, as is evident from their larger confidence interval
values (Figure 7).

AMF Effects on Plant Nutrient Homeostasis
The concentrations of nutrients such as N, P, K, Ca, and Na in
the above-ground parts of plants were influenced significantly
by AMF colonization under both stressed and non-stressed
conditions (Figure 8), indicating the role of AMF in plant
nutrient uptake. Plant P uptake showed an increase by AMF
regardless of salinity although there was a decreasing trend as
the salinity stress increases up to moderate level (Figure 8A).
Interestingly, as the salinity stress increased from moderate
to high level significantly higher-level P concentrations was
measured in AMF plants compared to non-AMF plants (SMD
= 0.679 at moderate salinity, 1.50 at high salinity). Like P, we
observed a similar trend in N concentration in plant shoots
(Figure 8B). Plants inoculated with AMF had consistently higher
K levels in the shoot (p < 0.0001), and salinity had a slight
impact on AMF-induced K uptake (p = 0.544) (Figure 8C).
The concentration of Ca in the shoot was affected by AMF and
salinity. Under normal conditions, AMF inoculation seemed to
have an no effect (p = 0.143), but as the plants were exposed to a
low (<100mM NaCl) level of salinity, the Ca content in AMF-
inoculated plants increased (p = 0.001). However, increasing
the salinity beyond this level reduced this advantage although
still significant (p = 0.019) than that in non-inoculated plants
(Figure 8D). Plant Na uptake was decreased by mycorrhizal
fungal inoculation. The magnitude of the decrease was higher at
higher salinity levels (p= 0.003), e.g., Na uptake was significantly
lower in AMF plants than in non-AMF plants at a high level of
salinity compared to normal conditions (Figure 8).

AMF Effects on Plant Antioxidant and
Enzyme Activities
The generation of malondialdehyde (MDA) under stress
is related to the production of reactive oxygen species,
including hydrogen peroxide (H2O2), in plant tissue. Under
non-stressed conditions, there was no difference between
AMF- and non-inoculated plants in terms of H2O2 and
MDA (Figures 9A,C) concentrations. However, AMF-inoculated
plants had significantly lower MDA levels than non-inoculated
plants as the salinity stress increased. The effect of AMF
on H2O2 production in plants was only substantial under
moderate salinity (p = 0.019, Figure 9). Decreased electric
leakage (EL) was consistently measured in AMF-inoculated
plants compared with that in non-inoculated plants, but the
AMF effects became more apparent (p = 0.0003) as the
salinity increased from no salinity to a moderate level of
salinity. Proline accumulation was not affected by AMF, but
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FIGURE 6 | Phylogenetic signals of plant families (A,B) and fungi (C,D) for the effects of AMF on plant shoot (A,C) and root (B,D) biomass under non-saline and

salinity stress conditions. C mean, I, K, K-star, and lambda are as described in the section Materials and Methods. The red bar indicates that the signals are positive. *,

**indicates that the signals are significant at p < 0.05 and p <0.01, respectively.

moderate salinity caused a higher level of proline accumulation
in AMF-treated plants that was marginally higher (p =
0.034) than that in non-AMF-treated plants (Figure 9D). Both

carotenoid and soluble sugar contents increased in AMF-
treated plants compared with those in non-inoculated plants.
No influence of salinity on AMF activity was noted in terms
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FIGURE 7 | Effects of mycorrhizae on plant photosynthetic parameters under different levels of salinity stress. Error bars are the effect size means ±95% CIs. Where

the CIs do not overlap the vertical dashed lines, the effect size for a parameter is significant. n, number of studies included in the meta-analysis. Chla, Chlorophyll a;

Chlb, Chlorophyll b; Fv/Fm, maximal photochemical efficiency; Gs, Stomatal conductance; Pn, rate of photosynthesis; and RWC, Relative water content; n, number of

studies included in the meta-analysis; p, significance level of SMD.

of carotenoid accumulation, but as salinity level increased, the
effect size of AMF on the soluble sugar content increased
(Figures 9E,F). The activity of catalase (CAT) did not change
in plants due to AMF colonization under non-stressed or
low salinity conditions, but moderate salinity caused the
CAT activity to significantly increase in AMF plants (SMD
= 0.559, p = 0.026). On the other hand, the activity of
POD (peroxidase) and SOD (superoxide dismutase) increased
substantially in AM-inoculated plants compared to that in
non-inoculated plants. Salinity imposition did not seem to
impact AMF influence on POD but on SOD. At moderate
salinity significantly lower accumulation of SOD was observed
in AMF plants when compared to the level at normal condition
than in non-inoculated plants in the absence of salt stress
(Figures 9G,H).

DISCUSSION

Effects of AMF on Plant Biomass
This study indicated that mycorrhizal inoculation has a
significant impact on some plant physiological and biochemical
variables related to plant growth, photosynthesis, and defense
against oxidative damage under salinity stress.

Salinity induces both osmotic and ion stress in plants. Within
a short exposure time, salinity-driven osmotic stress causes
water scarcity in the root zone and directly impairs the water
status of plants. However, the plant recovers over several hours
and reaches a slow, steady rate of growth. The second phase
develops with time and is driven by the toxicity of excess
Na+ and Cl− ions that accumulate in the cytoplasm. Moreover,
under salinity stress, plants need additional energy to reduce
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FIGURE 8 | Effects of mycorrhizae on plant nutrient uptake under non-stress, low salinity stress, and moderate salinity stress. Error bars are effect size means ±95%

CIs. Where the CIs do not overlap the vertical dashed lines, the effect size for a parameter is significant. n, number of studies included in the meta-analysis. Ca,

Calcium; K, potassium; Na, sodium; N, Nitrogen and P, phosphorus. n, number of studies included in the meta-analysis; p, significance level of SMD.

the toxic effects of Na+ ions and also face nutrient deficiencies.
All these processes negatively affect plant growth (Munns and
Tester, 2008; Ilangumaran and Smith, 2017; Isayenkov and
Maathuis, 2019). Mycorrhizal colonization has been shown to
increase plant growth and photosynthetic efficiency under stress
conditions (Chandrasekaran et al., 2014; Shamshiri and Fattahi,
2016; Elhindi et al., 2017). In the present meta-analysis, we
confirmed that AMF inoculation increases the height, shoot
biomass, and root biomass of host plants and that, interestingly,
the effect of AMF on plant growth is more prominent under
salinity stress than under normal conditions. AMF association
in plants influences plant shoot biomass and root biomass more
than plant height. Again, AMF influences on plant growth
were context-dependent, with several factors playing important
roles. For example, Funneliformis increased both the shoot and
root biomass of plants under stress, whereas Claroideoglomus

increased only the shoot biomass, and Rhizophagus influenced
only the root biomass. In most cases, the effects of fungi
on plant growth parameters became more noticeable as the
salinity level increased. This result indicates that the plant
growth response to AMF colonization is context-dependent. The
beneficial effects of fungal symbiosis increase under extreme
environments (Redman et al., 2002; Bunn et al., 2009; Dastogeer,
2018). A meta-analysis with AM fungi and leaf endophytes and
plant growth parameters reported similar results; the effects
of the fungi increased as moisture stress increased (Worchel
et al., 2013). Studying the effects of categorical variables on
plant growth will help us to select some potential efficient
plant-AMF associations in which AMF inoculation will more
strongly modulate plant growth in the presence of salinity.
Interestingly, under salinity stress conditions, AMF inoculation
increased plant growth traits more efficiently in dicot plants than
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FIGURE 9 | Effects of mycorrhizae on plant enzymatic activity under non-stressed, low salinity, and moderate salinity stress. Error bars are means ±95% CIs. Where

the CIs do not overlap the vertical dashed lines, the effect size for a parameter is significant. n, number of studies included in the meta-analysis. CAT, catalase; Car,

Carotenoids; EL, electrical leakage; H2O2, hydrogen peroxide; MDA, malondialdehyde; POD, peroxidase and SOD, superoxide dismutase and SS, soluble sugars. n,

number of studies included in the meta-analysis, p, significance level of SMD.

in monocots. This result was supported by a previous finding
that AMF colonization was higher in dicots than in monocots
(Weishampel and Bedford, 2006). Similarly, the growth of C3
plants was influenced more than that of C4 plants by AMF
inoculation under salinity stress, which corroborates the findings
of another meta-analysis (Chandrasekaran et al., 2016). However,
out analyses did show not any positive influence of AMF on
shoot biomass of C4 plants which somewhat contradictory to
the findings of Chandrasekaran et al. (2016). Therefore, based on

the present meta-analysis, we can recommend the application of
AMF to C3-dicot plants to effectively alleviate salinity-induced
growth inhibition. Furthermore, in our meta-analysis, the effect
of AMF treatment in plants was more pronounced at longer
duration of salinity stress (>2 weeks).

Water Status and Photosynthesis
All photosynthetic parameters included in themeta-analysis were
found to be present at a significantly higher level in AMF-treated
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plants than in non-AMF plants, and this level increased with
salinity stress (Figure 7). AMF can help plants mitigate or reduce
the detrimental effects of salt stress on photosynthesis in various
ways. As our meta-analysis showed, AMF improved the water
status in plants and thus allowed them to maintain a larger
leaf area and higher stomatal conductance, which improved the
assimilation rate of CO2 (Wu et al., 2015; Chen et al., 2017).

The higher water status in AMF-treated plants has been
explained by several reports. For example, mycorrhizae can
influence root morphology, and with far-reaching extramatrical
mycelium, they can acquire macroelements beyond the depletion
zone (Schnepf et al., 2011). Moreover, treatment with AMF
increases the water use efficiency of plants by augmenting the
concentration of compatible solutes to modulate the osmotic
potential (Graham and Syvertsen, 1984). Several studies have
suggested enhanced RuBisCO enzyme activity in AMF-treated
plants, which reduces the intercellular CO2 concentration (Ci)
to provide better protection to the photosynthetic apparatus
(Sheng et al., 2008; Chen et al., 2017). Mycorrhizae help plants
reduce the degradation of D1 and D2 proteins under salt stress
and thus maintain the function of photosystem II, which is
important in adapting to stress conditions (Porcel et al., 2016;
Chen et al., 2017; Hu et al., 2017). The presence of more
polyamines and glycine betaine has also been reported in AMF
plants, which is linked to safeguarding CO2-fixing enzymes (Pang
et al., 2007; Talaat and Shawky, 2014). We did not include Mg2+

data in our study, but several studies have suggested that a
higher concentration of this cation is present in AMF-inoculated
plants, which may be associated with higher chlorophyll in AMF
plants (Evelin et al., 2012; Hashem et al., 2015). In addition, the
enhanced photosynthesis in AMF-treated plants could be related
to decreased non-photochemical quenching (NPQ) activity and
increased Fv/Fm (Baker, 2008; Hu et al., 2017).

Nutrients
Na+ and K+ ions, which have similar physicochemical
properties, compete at transport sites for entry into the symplast.
Higher Na+ levels in the rhizosphere reduce K+ uptake in
plants under saline conditions (Maathuis and Amtmann, 1999).
Higher Na+ levels affect the integrity and selectivity of the root
membrane (Grattan and Grieve, 1999). Plants must consistently
maintain a low Na+ to K+ ratio to tolerate salinity stress
(Evelin et al., 2012). AMF-treated plants showed higher K+

and lower Na+ than non-AMF-treated plants under salt stress
conditions (Figure 8). AMF-inoculated plants can affect Na+

translocation to the upper plant parts and maintain the internal
Na+ concentration. Mycorrhizae help plants remove Na+ from
xylem and prevent its accumulation in photosynthetic tissues
(Evelin et al., 2012; Maathuis, 2014). It was reported that salinity
induces the accumulation of glomalin, a heat shock protein 60
(HSP60) homolog, in the AMF (Hammer and Rillig, 2011), which
decreases the damage caused by Na+ in the cytosol (Maathuis
and Amtmann, 1999). Several studies have detailed the molecular
basis of the high K+: Na+ ratio in AMF-inoculated plants
(Asins et al., 2013; Porcel et al., 2016; Chen et al., 2017). For
example, in Oryza sativa, mycorrhizae compartmentalize Na+

into the vacuole by upregulating OsNHX3 (sodium/hydrogen
exchanger) and facilitate the removal of cytosolic Na+ to the

apoplast through the increased expression of OsSOS1 (salt overly
sensitive) and OsHKT2;1 (high-affinity potassium transporter)
(Porcel et al., 2016). The higher nutrient uptake in AMF-treated
plants is attributed to several factors, including the extramatrical
hyphae of mycorrhizae (Marschner and Dell, 1994). AMF
colonization influences organic acids and polyamines in plants,
which play positive roles in decreasing soil EC, maintaining plant
ion homeostasis and enhancing nutrient and water uptake under
stress (Pang et al., 2007; Sheng et al., 2011; Evelin et al., 2013;
Talaat and Shawky, 2013).

The higher P uptake in AMF-inoculated plants helps maintain
membrane integrity by reducing ionic leakage, restricting
toxic ions within vacuoles, and enforcing selective ion uptake
(Rinaldelli and Mancuso, 1996; Evelin et al., 2012), which
consequently reduce the adverse effects of salinity. The increased
P uptake in colonized plants has several causes: (a) fungal hyphae
secrete acid and alkaline phosphatases that release P and make it
available to plants, (b) when P is available, high-affinity phosphate
transporter genes (GvPT, GiPT, and GmosPT) are expressed,
which can release P even at very low concentrations, and (c)
mycorrhizal roots can obtain higher amounts of absorbed P than
non-mycorrhizal roots, resulting in a consistent supply of P into
the roots (Bolan et al., 1991; Marschner and Dell, 1994; Selvaraj
and Chellappan, 2006; Abdel-Fattah and Asrar, 2012). Moreover,
AMF colonization in roots helps improve nutrient uptake,
specifically N uptake, with extensive underground extraradical
mycelia ranging from the roots into the surrounding rhizosphere
(Battini et al., 2017).

Oxidation and Antioxidants
Salinity stress induces oxidative stress by creating anomalies in
the production and destruction of reactive oxygen species (ROS)
(Gill and Tuteja, 2010). Salinity stress-induced lipid peroxidation
results in uncontrolled membrane permeability and ion loss
from the cells (Estrada et al., 2013; Fileccia et al., 2017). Plant
malondialdehyde (MDA) levels are measured as a biomarker
for lipid peroxidation to evaluate oxidative stress in plants.
As salinity increases, MDA levels increase in plants, indicating
the level of stress that the plants are experiencing (Asada and
Takahashi, 1987; Gill and Tuteja, 2010; Sharma et al., 2012;
Ozgur et al., 2013; Bose et al., 2014; Kumar et al., 2017). Our
results suggest that AMF-colonized plants have significantly
lower MDA levels, indicating less oxidative stress in these plants
than in non-AMF plants. Plants use both enzymatic (SOD, POX,
CAT, APX, and GR enzymes) and non-enzymatic antioxidative
systems [ascorbate (AsA), glutathione (GSH), carotenoids, and
α-tocopherol] to detoxify ROS (Evelin et al., 2009; Gill and
Tuteja, 2010; Porcel et al., 2012). Our meta-analysis showed
that AMF increased the enzymatic activity of plants in the
presence of salts. Importantly, POD and SOD activity increased
in mycorrhizal plants at low salinity levels. Higher SOD activity
is correlated with higher plant tolerance to salinity (Benavídes
et al., 2000). SOD helps in the detoxification of excess O2− to
H2O2. H2O2 is then converted to H2O by other enzymes, such
as CAT, APX, and POX. Interestingly, some studies showed that
mycorrhizal plants have higher CAT activity, but we found that
the net effect was neutral when the salinity was low (Figure 6).
This suggests that the role of CAT is not as important as that
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of POD and SOD in AMF-mediated plant salinity tolerance at a
lower level of stress, but as the salinity increases, CAT becomes
activated, and a combination of these enzymes work toward
antioxidation. Again, as noted elsewhere, the activities of these
enzymes vary due to factors such as plant species, plant tissues,
AMF species, level of salinity, and duration of stress (Evelin et al.,
2019). While we did not estimate the magnitude of these factors,
the relatively higher CI values of the effect sizes indicate the roles
of these factors. One of the indicators of plant damage caused
by salinity stress is the relative amount of electrolyte leakage. A
higher level of relative electrolyte leakage implies more salinity
injury to plant membrane systems (Verslues et al., 2006; Sánchez-
Rodríguez et al., 2010; Alqarawi et al., 2014). We showed that
electrical conductivity was significantly lower in AMF plants,
which suggests lower damage to the cell membrane; electrical
conductivity is also correlated with lower MDA levels (Figure 9)
but is not correlated with the effect size for H2O2 production. The
lower EL and MDA, as well as the higher POD and SOD, reflect
better antioxidant responses that protect plants from oxidative
injury in AMF-treated plants than in non-AMF-treated plants.
POD is a group of enzymes that can detoxify H2O2, organic
hydroperoxide, and lipid peroxides and convert them to alcohol.
They have a haem cofactor at their active sites. Haem is also
related to iron homeostasis, which is involved in plant-microbe
interactions (Briat et al., 2007). In addition, the redox-active
cysteine residues in POD indicate the redox potential of cells or
organelles. The plastid modulates the redox potential in leaves
(Mühlenbock et al., 2008; Brautigam et al., 2009). Whether fungi
interfere with the iron homeostasis and redox potential of the
plant cell and increase plant stress tolerance via this mechanism
has yet to be discovered.

Proline levels increased significantly under moderate salinity
conditions in AMF-inoculated plants. Proline can play important
roles as an osmoregulatory compound (Yoshiba et al., 1997)
as well as an ROS scavenger (Dickman and Chen, 2005).
The accumulation of proline is correlated with both osmotic
stress tolerance and responses to stress conditions involving
dehydration (Aspinall and Paleg, 1981; Gzik, 1996; Verbruggen
and Hermans, 2008). However, it is still unresolved whether
its presence is an adaptive response that provides greater stress
tolerance or if its increase is a symptom of stress injury (Ashraf
and Foolad, 2007). Relatively high levels of proline in the
presence of AMF could, therefore, indicate less damage to a
moderately stressed plant in the presence of AMF.

Some Recommendations
This systematic review highlights the importance of AMF in
mitigating plant salinity stress and the importance of AMF-
mediated plant salinity tolerance. Our current analysis, as well
as the recent review paper by Evelin et al. (2019), suggests
several aspects that need more attention in order to develop
a complete and robust understanding of AM-conferred plant
salt stress tolerance. We discuss these aspects in the following
bullet points:

• The presence of publication biases was apparent in our
datasets. Publication bias is a serious issue in meta-analyses
that can have profound effects on the validity and

generalization of the conclusions (Lin and Chu, 2018).
Although publication bias has been discussed in medical and
social sciences for several years, in ecology and plant sciences,
this discussion has just started in the last few years (Alatalo
et al., 1997; Gontard-Danek and Møller, 1999; Palmer, 2000;
Møller and Jennions, 2001; Dieleman and Janssens, 2011;
Koricheva and Gurevitch, 2014). It has been reported that the
majority (61%) of meta-analyses in plant ecology did not show
or mention publication bias or mention the term “publication
bias” (Koricheva and Gurevitch, 2014). Therefore, it is
uncertain how robust the conclusions of these meta-analyses
are. Therefore, we, along with many other authors, urge
researchers to report publication biases in meta-analysis
reports. Additionally, factors that contribute to publication
biases such as submission bias, editor bias, reviewer bias, etc.,
as discussed elsewhere (Møller and Jennions, 2001) should be
avoided in the publication of scientific reports.

• Most research has focused on the effects of AMF on plant
physiology by inoculating individual inocula or mixtures
of only a few strains, and less attention has been paid to
discerning the effects of complex inoculum mixtures. In
nature, AMF colonize roots along withmyriad other microbes,
which are collectively called the “microbiome.” Many other
microbial organisms, such as fungal endophytes and bacteria,
can also confer stress tolerance in plants. The consideration
of microbe-microbe interactions could be an exciting area for
future research.

• The majority of these studies were conducted in controlled
growth chamber or greenhouse conditions, while very few
have been conducted in field conditions. We need more data
regarding the variability or stability of AMF-conferred salinity
tolerance before advocating for farm-level applications.

• From a mechanistic perspective, most papers measured the
osmolyte concentration in AMF and non-AMF plants, but the
underlying mechanisms of this response at the molecular level
need further investigation.

• Very few studies have described the effects of sulfur, and they
have made inconclusive findings (Evelin et al., 2019). We have
yet to explore whether hormones, such as brassinosteroids,
auxins, jasmonic acid, and salicylic acid, are involved in AMF-
induced plant salinity tolerance, as some of these hormones
have been found to improve plant tolerance to salinity
(Pedranzani et al., 2003; Siddiqi and Husen, 2019).

• Under salinity stress, the plant lipid metabolism is altered,
which is associated with alterations in membrane integrity,
composition, and function (Parihar et al., 2015). Lipid
peroxidation has been studied, but lipid metabolism in salt-
stressed AMF-inoculated plants has received less attention.

Salinity stress inhibits plant growth and the accumulation of
biomass by affecting photosynthesis, osmotic balance, enzymatic
activities, and nutrient uptake. Mycorrhizal fungi consistently
help plants to reduce the impact of salt stress by modulating
their physiological processes. AMF-induced plant salinity stress
tolerance has broad ecological and agricultural implications.
In some regions, increased salinity tolerance can result in
higher crop yields. Continued interest in AMF research to
uncover the underlying mechanisms of plant-AMF interactions
appears well-justified.
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CONCLUSION

Our current meta-analysis of 97 published peer reviews related
to the effect of AMF on plant responses under salinity stress
revealed that compared to non-inoculated plants, AMF plants
had significantly higher shoot and root biomass regardless
of salinity stress and that the effect was more prominent as
salinity stress increased. Consistent with the previous findings
of Chandrasekaran et al. (2014, 2016, 2019), Wang et al. (2019),
and Pan et al. (2020), we report that AMF-mediated plant
salinity tolerance was influenced by fungal genera, plant clades
and plant photosynthetic pathways. In addition, we observed
for the first time that significant phylogenetic signals exist
in AMF-mediated plant salinity tolerance, i.e., closely related
plant species had more similar responses to moderate salinity
stress when inoculated with closely related (phylogenetic) AMF
species. Under salinity stress, the growth of C3 plants was
more strongly influenced by AMF inoculation than that of
C4 plants, which corroborates the findings of another meta-
analysis (Chandrasekaran et al., 2016). However, our analyses
did not show any positive influence of AMF on the shoot
biomass of C4 plants, which is somewhat contradictory to
the findings of Chandrasekaran et al. (2016). Furthermore,
we showed that the effect of AMF treatment in plants was
more pronounced at longer durations of salinity stress (>2
weeks). Therefore, choosing the appropriate host plant and
AMF species is important for using plant–AMF symbionts
to improve salt-affected soil in practical applications. The
inoculation of AMF consistently increases shoot K and decreases
shoot Na, as demonstrated by several investigators (Augé et al.,
2014; Chandrasekaran et al., 2014; Pan et al., 2020) and the
outcomes of this meta-analysis. The involvement of CAT,
SOD, and POD has been reported in previous meta-analyses
(Chandrasekaran et al., 2014; Pan et al., 2020), but we also
found that AMF-mediated plant salinity tolerance at low salinity

was associated with higher SOD and POD activity, whereas at
moderate salinity, more CAT and proline accumulation were
also observed in addition to POD and SOD enzymes. AMF-
mediated plant salinity tolerance has broad ecological and
agricultural implications.
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