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Accurate phenotype prediction of quantitative traits is paramount to enhanced plant
research and breeding. Here, we report the accurate prediction of cotton fiber length, a
typical quantitative trait, using 474 cotton (Gossypium ssp.) fiber length (GFL) genes and
nine prediction models. When the SNPs/InDels contained in 226 of the GFL genes or
the expressions of all 474 GFL genes was used for fiber length prediction, a prediction
accuracy of r = 0.83 was obtained, approaching the maximally possible prediction
accuracy of a quantitative trait. This has improved by 116%, the prediction accuracies
of the fiber length thus far achieved for genomic selection using genome-wide random
DNA markers. Moreover, analysis of the GFL genes identified 125 of the GFL genes that
are key to accurate prediction of fiber length, with which a prediction accuracy similar to
that of all 474 GFL genes was obtained. The fiber lengths of the plants predicted with
expressions of the 125 key GFL genes were significantly correlated with those predicted
with the SNPs/InDels of the above 226 SNP/InDel-containing GFL genes (r = 0.892,
P = 0.000). The prediction accuracies of fiber length using both genic datasets were
highly consistent across environments or generations. Finally, we found that a training
population consisting of 100–120 plants was sufficient to train a model for accurate
prediction of a quantitative trait using the genes controlling the trait. Therefore, the genes
controlling a quantitative trait are capable of accurately predicting its phenotype, thereby
dramatically improving the ability, accuracy, and efficiency of phenotype prediction and
promoting gene-based breeding in cotton and other species.

Keywords: quantitative trait, phenotype prediction, fiber length, fiber length gene, genic SNP, gene expression,
Gossypium

INTRODUCTION

Many traits of agricultural and medical importance, such as crop yield, livestock productivity and
human diseases, are known as quantitative traits that are each controlled by numerous genes.
Therefore, it has been one of the principle aims and interests of current molecular and genomic
research to accurately predict the phenotypes of quantitative traits for progeny selection using omic
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data, thereby enhancing the ability, accuracy, and efficiency
of breeding in crop plants (Crossa et al., 2010, 2013; De Los
Campos et al., 2010b; Heffner et al., 2011a,b; González-Camacho
et al., 2012; Gouy et al., 2013; Desta and Ortiz, 2014; Xu et al.,
2014, 2016; Beyene et al., 2015; Dan et al., 2016) and livestock
(Meuwissen et al., 2001; Daetwyler et al., 2012; Morota et al.,
2014), and medicine in humans (Khan et al., 2001; Lee et al., 2008;
De Los Campos et al., 2010a; Speed and Balding, 2014; Weissbrod
et al., 2016). This has been known as genomic selection (GS)
in crop plant and livestock breeding (Meuwissen et al., 2001;
Desta and Ortiz, 2014) and as genomic medicine in humans
(De Los Campos et al., 2010a). A so-called training population,
usually a subpopulation of individuals randomly selected from a
targeted breeding population, is both phenotyped and genotyped,
and used to train and validate a statistical prediction model.
The utility and efficiency of the trained model for phenotype
prediction of the objective trait are often estimated by prediction
accuracy presented by Pearson’s correlation coefficient between
observed and predicted phenotypes. The remaining individuals
of the targeted population are genotyped only and their genetic
values or phenotypes of the objective trait are then estimated
using the trained and validated prediction model. The predicted
phenotypes of the trait for the individuals of the targeted
population are finally used to make decision for progeny selection
in crop plant and livestock breeding, and for medicine practice in
humans (De Los Campos et al., 2010a).

Because of their polygenic controls and sensitivity to varying
environments, accurate prediction of quantitative traits is very
challenging. Initially, genome-wide DNA markers were used to
predict the phenotypes of quantitative traits (Meuwissen et al.,
2001; Lee et al., 2008; Crossa et al., 2010, 2013; De Los Campos
et al., 2010b; Heffner et al., 2011a,b; Daetwyler et al., 2012;
González-Camacho et al., 2012; Gouy et al., 2013; Morota et al.,
2014; Speed and Balding, 2014; Xu et al., 2014; Beyene et al., 2015;
Weissbrod et al., 2016). Then, genome-wide gene expressions
(Takagi et al., 2014; Xu et al., 2016) and genome-wide metabolites
(Dan et al., 2016; Xu et al., 2016) have been used to improve the
prediction accuracy of the trait phenotype. Attempts have been
also made to improve the prediction accuracy of quantitative
traits by increasing training population size, from hundreds to
thousands of lines, and/or increasing the omic dataset size, from
hundreds to millions of features (Lee et al., 2008; González-
Camacho et al., 2012; Speed and Balding, 2014; Xu et al., 2016).
Furthermore, approximately 20 statistical multiple regression
models, including parametric and non-parametric, have been
tested for the phenotype prediction of quantitative traits using
the omic features (Desta and Ortiz, 2014; Speed and Balding,
2014; Weissbrod et al., 2016). These efforts have improved the
prediction accuracy of quantitative traits, but the prediction
accuracy still remains relatively low for the quantitative traits thus
far investigated. The lower prediction accuracy and increased
cost for phenotype prediction, due to the increased numbers of
DNA markers and/or training population size, have substantially
influenced applications of GS in practical breeding in crop plants
and livestock. Most importantly, plant or livestock breeding
usually consists of three parts: parent selection, cross design, and
progeny selection. GS is effective for progeny selection, but it is

ineffective for parent selection and cross design, while both are
crucial to success of plant or livestock breeding.

Therefore, Zhang et al. (2020a), for the first time worldwide,
proposed a novel molecular breeding technology, designated
gene-based breeding (GBB), and demonstrated its utility and
efficiency for enhanced breeding for maize grain yield. GBB is
designed to develop new varieties by design by making full use of
the genes controlling the objective trait(s), especially the number
of their favorable alleles (NFAs), their SNPs/InDels as DNA
markers and/or their expression abundances as omic features,
through the entire breeding process, including parent selection,
cross design, and progeny selection. Zhang et al. (2020a) showed
that the prediction accuracy of maize grain yield using either of
these three datasets of the grain yield genes for GBB was over 60%
more accurate and several-fold more cost-efficient than those
with genome-wide random SNPs. When the phenotypes of grain
yield predicted with two or all of three datasets of the genes were
jointly used for progeny selection, the top 10% plants selected
using the predicted grain yields were completely consistent with
those selected based on the grain yields of the plants determined
by replicated field trials. Therefore, their results showed that
GBB is promising to substantially continue crop improvement.
Nevertheless, additional research is needed to test the utility and
efficiency of GBB for different traits in different species and to
optimize it for enhanced breeding of different crops and livestock.

In the present study, we explored the ability, utility, and
efficiency of the genes significantly contributing to quantitative
traits for prediction of their phenotypes using fiber length
as the objective trait in cotton. Cotton, including Gossypium
hirsutum L. (Upland cotton) and Gossypium barbadense L. (Sea
Island cotton), is the world’s leading textile fiber crop and an
important oilseed crop. Fiber length is a typical quantitative
trait and also one of the economically most important fiber
quality traits for the textile industry and cotton fiber produce.
We previously cloned 474 GFL (Gossypium fiber length) genes
significantly contributing to fiber length (upper half mean length,
UHML) and estimated their effects on fiber length (Liu, 2014).
In this study, we investigated the phenotype prediction ability
and efficiency of cotton fiber length for gene-based breeding
using these GFL genes. We also discussed the applicability of
the concepts and methods obtained in the present study to
development of GBB for enhanced breeding in other crops and
livestock of agricultural importance.

MATERIALS AND METHODS

Plant Materials and Fiber Length
Phenotyping
One hundred ninety-eight recombinant inbred lines (RILs) at
F7, F8, and F9 generations derived by the single-seed descent
method from a cross of TAM 94L-25 (G. hirsutum) x NMSI 1331
(G. barbadense) were used for this study. These RILs and their
parents were grown at the Texas A&M AgriLife Research Farm
near College Station, TX, United States, in 2009 (F7), 2010 (F8),
and 2011 (F9) to phenotype their fiber lengths. The 2010 and
2011 field trials were performed in a randomized complete block
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FIGURE 1 | Field trial of the RIL population for fiber length phenotyping. (A) Matured fiber bolls used for fiber length phenotyping. (B) Fiber lengths. (C) Variation of
fiber length in UHML, measured by high-volume instrumentation, in the RIL population showing that fiber length is a typical quantitative trait. The fiber length data
were collected from the 2011 field trial and the mean fiber lengths of three replicates.

design, with three replicates, while the 2009 trial only included
a single five-plant plot per line, with no replication, because it
was used for seed production for the 2010 and 2011 trials. The
field practices followed those used for standard cotton breeding
trials in our cotton breeding program. When the fiber bolls
completely ripened (Figure 1A), they were hand-harvested from
entire plots and ginned. A sample of the fibers from each line was
used to measure its fiber length (Figure 1B), presented as upper
half mean length (UHML), using High-Volume Instrumentation
(HVI) at Fiber and Biopolymer Research Institute, Texas Tech
University, Lubbock, TX, United States.

The mean fiber length of each line was calculated from
those of the three replicates for each of the 2010 and 2011
trials (Figure 1C). The fiber length of the 2009 trial was from
single five-plant entry. The broad sense heritability (H2) of fiber
length was estimated separately for the 2010 and 2011 trials by
subtracting the mean fiber length variance of the two parents
among their entries (n = 33 for each parent) [σ2

e = (σ2
p1 + σ2

p2)/2]
from the fiber length variance of the 198 RILs (σ2

p) and then
dividing by the fiber length variance of the 198 RILs (σ2

p).

Genes
GFL Genes
The 474 GFL genes were previously cloned by our laboratory
and coded from 001 through 474 (Liu, 2014) were used
for this study (Supplementary Table S1A; NCBI GenBank
accession numbers: MW082098-MW082571). These 474 GFL
genes included 17 of the 18 published fiber length genes
(Supplementary Tables S2, S3; Zhang et al., 2020b). Liu (2014)
showed that each of these GFL genes had an effect on fiber length
varying from 2.6% to 7.9%, with 88.6% of them significantly
decreasing and 11.4% significantly increasing fiber length, when
activated or up-regulated (Supplementary Table S1A). Network
analysis showed that for 19 of these 474 GFL genes, variation

of their edge numbers in the GFL network was significantly
associated with fiber length (Supplementary Table S1B) (Liu,
2014; for more related information, see Zhang et al., 2020b).

Published Fiber Length Genes
A literature search was conducted as of December 2014 and
found that a total of 18 fiber length genes were cloned
from cotton using different gene cloning methods, including
gene expression repression (RNAi or antisense) and gene
overexpression (Supplementary Table S2; Zhang et al., 2020b).
These 18 published fiber length genes were used as the positive
control to test the ability of the GFL genes to predict the
phenotype of fiber length in this study.

Randomly Selected Cotton Unknown Non-474 GFL
Genes
A cotton database consisting of 79,708 transcripts of developing
fibers sampled on the 10th day of post-anthesis (10-dpa fibers)
(Zhang et al., 2019) were used for sampling the randomly selected
cotton unknown non-474 GFL genes used as the negative control
in this study.

Gene Transcript Expression Profiling and
Gene Transcript Expression Dataset
Construction
The sequences of the TAM 94L-25 transcripts expressed in 10-dpa
fibers (Zhang et al., 2019), including those of the 474 GFL genes,
were used as the reference to determine the expression profiles of
the targeted transcripts of the GFL genes in the 10-dpa developing
fibers of each line. Because a plant gene may be alternatively
spliced into multiple transcripts, with each transcript likely
being translated into different proteins having different biological
functions (Syed et al., 2012; Zhang et al., 2019), the expression
abundances of only the transcripts of the GFL genes that are
responsible for fiber length (Zhang et al., 2020b) were quantified
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as predictors for phenotype prediction of fiber length in this
study. The targeted transcript expression abundance of each GFL
gene in a line was quantified with the RNA-seq 100-nucleotide
clean reads using the RSEM software (Li and Dewey, 2011)
bundled with the Trinity software (Grabherr et al., 2011; Haas
et al., 2013) and presented as Transcripts Per Million mapped
reads (TPM) (Supplementary Table S4).

GFL SNP/InDel Genotyping and
SNP/InDel Dataset Construction
We previously sequenced all the genes expressed in 10-dpa
developing fibers of the cotton population from the 2011 trial
(Liu, 2014; Zhang et al., 2019). In this study, we first identified
the single nucleotide polymorphisms (SNPs) and/or nucleotide
insertions/deletions (InDels) of all the expressed genes using the
RNA-seq 100 nucleotide clean reads and SAMtools (Li et al., 2009;
Li, 2011). The cotton acc. TM-1 genome (Zhang et al., 2015) was
used as the reference. Only the SNPs or InDels identified at the
same position in the two parents, TAM 94L-25 and NMSI 1331,
and two or more lines were used for further analysis. Since the
transcript assemblies of the expressed genes had an average length
of 778 bp (Liu, 2014), the probability that the two parents and
two RILs had an SNP or InDel at the same position by chance,
such as sequencing, base calling, and/or transcript assembly
errors, would be close to zero [P = (1/778)4 = 2.7E-12]. This
filtration excluded almost all SNPs or InDels, if not all, resulted
from sequencing, base calling, and/or transcript assembly errors
from this study.

Then, we extracted the SNPs and/or InDels (hereafter,
SNPs/InDels) contained in the GFL genes. To identify the
SNPs/InDels of the GFL genes that significantly influenced fiber
length, we conducted association analysis between the GFL genic
SNPs/InDels and fiber length using the single marker analysis
method for QTL mapping (Liu, 1997). Given that cotton has a
genome size of 2,450 Mb/1C, the probability of the GFL genic
SNPs/InDels linked to a gene controlling fiber length within an
interval of 10 Mb, if they were the SNPs/InDels contained in
the GFL genes, would be extremely low [(10/2,450)2 = 1.67E-
05]. Therefore, the association of a GFL genic SNP/InDel with
fiber length indicated that the SNP/InDel of the GFL gene highly
likely had a significant effect on fiber length. Therefore, only the
SNPs/InDels contained in the GFL genes significantly influenced
fiber length (P ≤ 0.05) were selected and used as DNA markers
for this study. These genes were defined in this article as the
SNP/InDel-containing GFL genes. Furthermore, the GFL genic
SNPs were verified by allele-specific PCR using the genomic
DNAs of four cotton genotypes, including the two parents of the
cotton population, as templates (Gaudet et al., 2007).

For the construction of the GFL genic genotype dataset,
their SNPs or InDels were scored as bi-allelic DNA markers, as
those genome-wide SNPs used for prediction of phenotype for
genomic selection. The homozygote for one allele was scored
as “0,” the homozygote for the other allele scored as “2,” and
their heterozygote scored as “1.” Because cotton is a frequently
outcrossing species and the RIL population used in this study
was developed in the field condition, with no bagged selfing

pollination, heterozygotes for some plants were expected, even
though the RILs at F7–F9 generation were used for this study.

Fiber Length Prediction
Prediction of fiber length using the GFL genes was carried out
with two genic datasets compiled above separately: (i) the SNPs
or InDels contained in the SNP/InDel-containing GFL genes as
DNA markers and (ii) the targeted transcript expressions of the
GFL genes in 10-dpa developing fibers. Nine prediction models,
including five parametric and four non-parametric models (Desta
and Ortiz, 2014; Zhang et al., 2020b), that have been widely
used for GS were used to predict fiber length using the GFL
genes. The five parametric models were genomic best linear
unbiased prediction (GBLUP) (VanRaden, 2008), least absolute
shrinkage and selection operator (LASSO) (Tibshirani, 1996),
partial least square (PLS) (Geladi and Kowalski, 1986), BayesA
(González-Recio and Forni, 2011), and BayesB (González-Recio
and Forni, 2011). The four non-parametric models were support
vector machine using the radial basis function kernel (SVMRBF)
(Maenhout et al., 2007), support vector machine using the
polynomial kernel function (SVMPOLY) (Maenhout et al., 2007),
random forest (RF) (Svetnik et al., 2003), and reproducing kernel
Hilbert space regression (RKHS) (De Los Campos et al., 2010a).
We tested these nine prediction models because some of them
may not be well suited for these two datasets, while others may be
well fitted for the prediction of fiber length using the datasets.

GBLUP was implemented in an R program (Xu et al., 2014);
LASSO was implemented in the GlmNet/R program (Friedman
et al., 2010); BayesA, BayesB, and RKHS were implemented in
the BGLR package (Pérez and De Los Campos, 2014); SVMRBF
and SVMPOLY were implemented in the kernlab R program
(Karatzoglou et al., 2004); PLS was implemented using the pls R
package (Mevik and Wehrens, 2007); and RF was implemented
in an R program (Liaw and Wiener, 2018). Among the nine
prediction models, several require tuning parameters, which
were selected based on the 10-fold cross validation used for
the prediction (see below). Parameter values that maximize
the predictability (squared correlation between predicted and
observed trait values) were chosen as the optimal values. The
shrinkage parameter of LASSO was chosen in this way. For
the PLS prediction, the number of components extracted was
considered as a tuning parameter and was obtained via 10-fold
cross validation also. For BayesA, BayesB, and RKHS, the number
of iterations, burnIn and thin were set to 10000, 1000 and 10,
respectively. For RKHS, a multi-kernel approach was used, as
proposed by De Los Campos et al. (2010b), and the bandwidth
parameter was set to {0.5, 2, 10}.

A 10-fold cross-validation scheme widely used for GS was used
for the prediction of fiber length using the GFL genes. The 10-
fold cross validation scheme was described in our previous study
(Zhang et al., 2020a), with each subset consisting of 19 or 20 RILs
and 100 replications.

Statistical Analysis
The statistical analyses, including the two-way ANOVA, Tukey’s
HSD (honest significant difference), and parametric correlation
tests, were performed using an R program and Microsoft
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Excel 2013. For the ANOVA and correlation tests, P-value was
presented at a two-tailed significance, and for the Tukey’s HSD
test, a confidence interval (CI) of 95% was applied.

RESULTS

Variation of Cotton Fiber Length, and
Transcript Expression Variation and
SNPs/InDels of the GFL Genes
Phenotype analysis confirmed that the fiber length trait
(Figures 1A,B) under this study exhibited a normal distribution
(Figure 1C), the variation of a typical quantitative trait, for the
field trials through all three years (2009, 2010, and 2011) and
all three generations (F7, F8, and F9) among the 198 RILs of the
population studied. The fiber lengths of the population from the
2009, 2010, and 2011 trials varied from 23.0 to 34.6, 23.1 mm to
35.8 mm, and from 23.1 mm to 34.8 mm, respectively. Figure 1C
shows the variation of fiber length determined through the 2011
field trial. The Pearson’s correlation coefficients (r) of the fiber
length phenotypes between the three replicates of the 2010 and
2011 trials were 0.80–0.85 (N = 164, P = 0.000) and 0.76 (N = 198,
P = 0.000), respectively. The Pearson’s correlation coefficients (r)
of the fiber length phenotypes between the 2009, 2010, and 2011
trials were 0.67–0.91 (N = 164 or 198, P = 0.000), even though the
weather of the trial location in 2011 was unusual hot and drought,
which was quite different from those normal weathers in 2010
and 2009. The broad sense heritability of the fiber length was
H2 = 0.90 and 0.83 for 2010 and 2011, respectively, which were
similar to those previously reported (Ulloa, 2006; Khan et al.,
2010). We were unable to calculate the H2 for 2009 because there
was no replication for the parents for the 2009 trial to estimate
the environmental variance (σ2

e ).
SNP/InDel analysis revealed that 400 of the 474 GFL genes

contained one or more SNPs/InDels and 74 had no SNPs/InDels
for the population. The 400 GFL genes had a total of 10,766
SNPs/InDels, with an average of 26.9 SNPs/InDels per gene.
Gene mutation effect analysis showed that 740 (6.9%) of the
SNPs/InDels contained in 226 of the 400 GFL genes, with an
average of 3.2 SNPs/InDels per gene, significantly increased or
decreased fiber length (P ≤ 0.05) of the RILs (Supplementary
Tables S1C, S6) by 2.1% to 22.6%. The multiple SNPs/InDels
per GFL gene suggested that there are multiple alleles for a GFL
gene, if each of its SNPs/InDels was considered to be biallelic.
The number of SNPs that significantly influenced fiber length
was expected, because a vast majority of the SNPs contained in
protein-coding genes are known to be synonymous, not leading
to protein sequence change and likely having no biological effects
(Graur and Li, 2000). Furthermore, we randomly selected 20
SNPs from the 740 GFL SNPs/InDels, with one SNP from a GFL
gene, and analyzed them by allele-specific PCR using the genomic
DNAs of four cotton genotypes as templates, including the two
parents of the population used in this study. The result confirmed
the existence of all 20 SNPs in the four genotypes, with the sizes of
the PCR products as expected (Supplementary Figure S1), thus
confirming the GFL genic SNPs identified. Therefore, these 226

GFL genes were hereafter defined as SNP/InDel-containing GFL
genes and further used as DNA markers for phenotype prediction
of fiber length.

The 474 GFL genes all expressed in 10-dpa developing fibers
of the population, but their expressions varied by thousands fold,
from 0.75 TPM to 23,601 TPM (Supplementary Table S4). The
expression of each GFL gene also varied dramatically among the
RILs of the population, with a coefficient of variance (CV%) of
18.5%–202.5%. The expressions of all 474 GFL genes exhibited
quantitative variations, with approximately 60% showing normal
distributions and approximately 40% having distributions biased
to lower expressions. Correlation analysis showed that the
expressions of all 474 GFL genes in 10-dpa developing fibers
were significantly correlated with the variation of the fiber
length in the population (P ≤ 0.05), which was consistent with
the expression correlation of previously published fiber length
genes (Supplementary Tables S2, S3) with the variation of fiber
length (Zhang et al., 2020b). Therefore, both SNP/InDel and
expression analyses further confirmed that the 474 GFL genes
controlling fiber length.

Predicting the Phenotype of Fiber Length
Using the GFL Genes
We tested the utility and efficiency of the GFL genes for
phenotype prediction of fiber length for enhanced cotton fiber
length breeding through GBB, especially progeny selection in this
study, using expression abundances and SNP/InDel genotypes of
the GFL genes. We first trained and validated the nine prediction
models using the fiber length data collected from the 2011 trial,
because the RILs of the population from the 2011 trial were also
genotyped using the expressions and SNPs/InDels of the GFL
genes. Then, we tested the utility and efficiency of the trained
prediction model selected above for phenotype prediction of fiber
length for the 2009 (F7) and 2010 (F8) trials using the genotypic
data from the 2011 trial.

Predicting the Phenotype of Fiber Length Using the
Expressions of the GFL Genes
We first tested the ability of the GFL genes for predicting the
phenotype of fiber length, in which the published fiber length
genes previously cloned by different researchers using different
gene cloning methods (Supplementary Tables S2, S3) were used
as the positive control. Since only 18 published genes controlling
cotton fiber length were previously cloned as of December 2014,
the ability of the GFL genes to predict the phenotype of fiber
length was first evaluated using only 18 GFL genes randomly
selected from these 474 GFL genes. These 18 published fiber
length genes were used as the positive control, and 18 randomly
selected unknown cotton genes were used as the negative
control. Nine prediction models widely used for prediction of
quantitative traits for GS and the expressions of the 18 GFL genes
(Supplementary Table S4), 18 previously published fiber length
genes (Supplementary Table S2) and 18 randomly selected
unknown genes were used to predict fiber length, respectively.
Results showed that only the randomly selected GFL genes and
the published fiber length genes could predict the phenotype
of fiber length, with a prediction accuracy of r = 0.246–0.350
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FIGURE 2 | Ability of the GFL genes to predict the phenotype of fiber length using nine prediction models. (A) Ability of the GFL genes to predict the phenotype of
fiber length using 18 GFL genes randomly selected from the 474 GFL genes. r, prediction accuracy presented by Pearson’s correlation coefficient between predicted
and observed fiber lengths; SD, standard deviation for 100 replications. (B) Statistics of prediction accuracies between these three sets of genes described in (A) for
fiber length using the Tukey’s HSD. I, 18 randomly-selected GFL genes. II, 18 published cotton fiber length genes (Supplementary Tables S2, S3); III, 18 randomly
selected unknown cotton non-474 GFL genes. Different letters, significant at a confidence interval (CI) ≥ 95%; error bar, standard deviation for 100 replications.
GBLUP, genomic best linear unbiased prediction; LASSO, least absolute shrinkage and selection operator; PLS, partial least square; SVMRBF, support vector
machine using the radial basis function kernel; SVMPOLY, support vector machine using the polynomial kernel function; RF, random forest; RKHS, reproducing
kernel Hilbert space regression (RKHS).

(P = 0.000). The randomly selected unknown cotton genes could
not predict the fiber length (r = 0.028–0.142, P > 0.05 for all
nine prediction models, except for LASSO that had P = 0.044)
(Figure 2A). Tukey’s HSD test showed that the GFL genes
had a similar prediction ability of fiber length to the published
fiber length genes for five of the nine prediction models tested
(confidence interval, CI < 95%), a higher prediction ability of

fiber length than the published fiber length genes for three of the
models, BayesA, BayesB, and SVMPOLY (CI ≥ 95%), and a lower
prediction ability of fiber length than the published fiber length
genes for only one of the nine models, RF (CI ≥ 95%). Both the
GFL genes and the published fiber length genes had significantly
higher prediction abilities than the randomly selected unknown
genes for all nine prediction models (Figure 2B). These results
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indicated that the GFL genes had similar or better abilities to
predict the fiber length than the published fiber length genes,
thus verifying the contributions of the GFL genes to fiber length
and their utility and efficiency to predict the phenotype of the
objective trait.

Then, we further confirmed the ability of the GFL genes to
predict the fiber length using a series of numbers of the randomly
selected GFL genes sampled by bootstrap sampling, from 6 to all
474 (Figure 3 and Supplementary Table S5). The experiment had
ten bootstrap selections for each number of genes. As expected,
all sets of the randomly selected GFL genes tested, no matter
how many GFL genes there were in the selection, from 6 to
474, and which of the prediction models was used, were able to
predict the fiber length (P = 0.010 for 6 GFL genes and P = 0.000
for all selections of genes with a number of GFL genes greater
than 6). Again, none of the randomly selected unknown gene
selections, regardless of how many there were in the selection,
from 6 to 474, and which of the nine prediction models was
used, could predict the fiber length (P = 0.091–0.505) (Figure 3A
and Supplementary Table S5). Furthermore, as the number of
the GFL genes used for the prediction increased, the prediction
accuracy of fiber length increased (Figures 3A,B). When 200
or more of the GFL genes were used, the prediction accuracy
plateaued (Figure 3C). Comparative analysis showed that the
prediction models, PLS, BayesA, and RKHS, best predicted the
phenotype of fiber length among the nine prediction models
tested, with a prediction accuracy of r = 0.830, 0.817, and 0.814,
respectively, when all 474 GFL genes were used (Figure 3B and
Supplementary Table S5). In contrast, the prediction accuracies
of the randomly-selected unknown gene sets remained non-
significant, low, and consistent, for all of the randomly-selected
cotton unknown gene selections, from 6 to 474 (Figure 3A
and Supplementary Table S5). These results further confirmed
the ability, utility, and efficiency of the GFL genes for accurate
prediction of fiber length.

Prediction of Fiber Length Using the SNPs/InDels of
the GFL Genes as DNA Markers
Moreover, we further tested the ability, utility, and efficiency
of the GFL genes in predicting the phenotype of fiber length
using the 226 SNP/InDel-containing GFL genes (Supplementary
Table S1C). The SNPs or InDels contained in the 226 SNP/InDel-
containing GFL genes were only used as DNA markers
(Supplementary Tables S6, S7), as those DNA markers used for
GS, with no effect of the GFL genes on fiber length considered,
for the prediction. We first compared the prediction accuracy
of fiber length using all 740 SNPs/InDels contained in the 226
GFL genes (Supplementary Table S6) and a selection of the
740 genic SNPs/InDels, with only one SNP/InDel that had the
largest effect on fiber length per GFL gene (Supplementary
Table S7). As expected, the 740 GFL SNPs/InDels better predicted
the phenotype of fiber length, with a prediction accuracy varying
from r = 0.650 (P = 0.000) for the RF model to r = 0.832
(P = 0.000) for the SVMRBF model, than the selection of
the 226 GFL SNPs/InDels, with a prediction accuracy varying
from r = 0.671 (P = 0.000) for the SVMPOLY model to
r = 0.779 (P = 0.000) for the BaysA, BayesB, GBLUP, or RKHS

FIGURE 3 | Continued
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FIGURE 3 | Prediction of fiber length with different numbers of randomly
selected GFL genes and nine prediction models using expression profiles.
(A) Mean prediction accuracy of fiber length with the GFL genes using the
nine prediction models. A series of numbers of the 474 GFL genes ranging
from 6 to 474 were tested using the same numbers of randomly selected
unknown cotton non-474 GFL genes as the negative control
(Supplementary Table S5). For prediction models, see Figure 2.
(B) Prediction accuracy of fiber length with the GFL genes using different
prediction models. (C) Statistics of the mean prediction accuracies between
different numbers of the GFL genes predicted by the nine prediction models
using the Tukey’s HSD. Different letters, significant at CI ≥ 95%; same letter,
not significant at CI ≥ 95%.

model, in seven of the nine prediction models. The 740 GFL
SNPs/InDels had a similar to or lower prediction accuracy than
the selection of the 226 GFL SNPs/InDels for the LASSO and RF
models (Figure 4A).

However, if the selection of 226 SNPs/InDels was used for the
prediction, although the prediction accuracy would be slightly
lower, the cost of genotyping for the prediction would be reduced
by 2.3-fold. Therefore, we further tested the prediction accuracies
of different numbers of the SNPs/InDels selected from the 226
GFL SNPs/InDels for the phenotype of fiber length. Overall,
the RKHS model showed the best prediction results of fiber
length among the nine models (Figure 4B), and as more of the
226 GFL SNPs/InDels were used, a more accurate prediction
of fiber length was obtained (Figure 4C). The fiber lengths of
the cotton lines were predicted at an accuracy of r = 0.783
(P = 0.000), when all the 266 GFL SNPs/InDels were used with the
RKHS model.

In comparison, the prediction accuracies of fiber length using
all 740 SNPs/InDels contained in 226 GFL genes were essentially
the same high as the prediction accuracies of fiber length using
the expressions of all 474 GFL genes, thus demonstrating the
ability, utility and efficiency of the GFL genes in phenotype
prediction of fiber length for progeny selection.

Identification of the Key GFL Genes to
Phenotype Prediction of Fiber Length for
Progeny Selection
The above experiments indicated that the GFL genes were
able to accurately predict the fiber length with either GFL
expression abundances in 10-dpa developing fibers or GFL genic
SNPs/InDels as DNA markers. The question was whether the
GFL genes equally contributed to the phenotype prediction
of fiber length. If not, whether a subset of the GFL genes,
defined herein the key GFL genes, selected from the 474 GFL
genes could predict the phenotype of fiber length as accurate
as all 474 GFL genes for progeny selection. Therefore, we
tested the ability and efficiency of the GFL genes according
to their roles in the GFL network (Liu, 2014; Supplementary
Table S1B), the effects of their SNP/InDel mutations on fiber
length (Supplementary Table S1C), or their effects on fiber
length (Liu, 2014; Supplementary Table S1A). The GFL genes
randomly selected from the 474 GFL genes were used as the
control. The expression abundances of the selected GFL genes
were used for the prediction. Results showed that both the roles of

FIGURE 4 | Prediction of fiber length with the GFL SNPs/InDels as DNA
markers using nine prediction models. (A) Prediction accuracy of fiber length
using the genotypes of all 740 GFL SNPs/InDels (Supplementary Table S6)
versus a selection of 226 GFL SNPs/InDels that had the largest effects on
fiber length, with only one SNP/InDel per gene (Supplementary Table S7).
Different letters, significant at CI ≥ 95%; same letter, not significant at
CI ≥ 95%; error bar, standard deviation for 100 replications. (B) Prediction
accuracy of fiber length with the selection of the 226 GFL SNPs/InDels
(Supplementary Table S7) using different prediction models. (C) Prediction
of fiber length with different numbers of the 226 GFL SNPs/InDels
(Supplementary Table S7) using the RKHS model. Different letters,
significant at CI ≥ 95%; error bar, standard deviation.

the GFL genes in the GFL network (Supplementary Figure S2A)
and their effects on fiber length (Supplementary Figure S2C)
increased the ability of the genes to predict fiber length, but
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FIGURE 5 | Prediction of fiber length using the 226 GFL genes selected according to their effects on fiber length (Subset X, Supplementary Figure S2C).
(A) Prediction of fiber length using different numbers of the 226 selected GFL genes and the SVMRBF model. Different letters, significant at CI ≥ 95%; same letter,
not significant at CI ≥ 95%; error bar, standard deviation for 100 replications. (B) Prediction of fiber length with the 125 GFL genes selected from the 226 GFL genes
(Supplementary Table S8) using the SVMRBF model.

the effects of SNP/InDel mutations of the GFL genes on fiber
length (Supplementary Figure S2B) decreased the ability of the
genes to predict fiber length (CI ≥ 95%). Since the effects of
the GFL genes on fiber length had a larger increase than their
roles in the GFL network for phenotype prediction of fiber
length, the subset of the 226 GFL genes consisting of all 54
positively effective GFL genes, 59 smallest negatively effective
GFL genes, and 113 largest negatively effective GFL genes (Subset
X, Supplementary Figure S2C) was selected for further analysis
(Supplementary Table S1A).

Furthermore, we predicted the phenotype of fiber length
using different numbers of GFL genes randomly selected from
the subset of 226 GFL genes above (Subset X, Supplementary
Figure S2C). When 125 or more of the GFL gene subset were
used, the prediction accuracy of fiber length plateaued for eight
of the nine prediction models and the SVMRBF model best
predicted the phenotype of fiber length using these numbers
of the selected GFL genes (Figure 5A and Supplementary
Figure S3). Therefore, a subset of 125 GFL genes were identified
from the 226 selected GFL genes for phenotype prediction of
fiber length using expression profiles in 10-dpa developing fibers
(Supplementary Table S8). These 125 GFL genes were herein
defined the key GFL genes to phenotype prediction of fiber length
for progeny selection. When the 125 key GFL genes were used,
the prediction accuracy of fiber length approached r = 0.774
(P = 0.000) (Figure 5B), suggesting that they were well suited
for accurate prediction of fiber length and therefore, could be
used for progeny selection in a breeding program. Comparative
analysis showed that the prediction results of these 125 key GFL
genes were significantly correlated with those predicted with all
474 GFL genes (r = 0.888, P = 0.000; Supplementary Figure S4).
The fiber lengths predicted with the expression of the 125 key
GFL genes were also significantly correlated with those predicted
using the 226 SNPs/InDels contained in the 226 GFL genes
(r = 0.892, P = 0.000).

Prediction of Fiber Length Using the GFL
Genes Across Years or Generations
To further explore the ability, utility, and efficiency of the GFL
genes for fiber length prediction, we examined the prediction
accuracy of fiber length for the RILs across years or environments
(generations) using the two datasets of the selected GFL genes
genotyped from the 2011 (F9) trial only and the fiber lengths
phenotyped in 2009 (F7), 2010 (F8), and 2011 (F9), respectively.
The result showed that the GFL genes genotyped in the 2011
(F9) trial could also predict the fiber length of the RILs grown
in 2010 (F8) at a prediction accuracy similar to that achieved
from the 2011 trial that was used for genotyping the genes using
either of the two genic datasets, 125 key GFL expressions or
226 GFL SNPs/InDels as DNA markers. However, the prediction
accuracy of fiber length for the RILs grown in 2009 (F7) was
slightly lower than those achieved for the RILs in 2010 and 2011
(Table 1). Since the 2009 trial had no replication (those of 2010
and 2011 had three replications) and the prediction accuracy
was determined by Pearson’s correlation coefficient between
the predicted and observed phenotypes, the reduced prediction
accuracy for 2009 could be more likely attributed to the fiber
length phenotyping accuracy rather than the gene x environment
interactions. These results confirmed that the prediction accuracy
of fiber length for different environments or years and suggested
that the prediction accuracy of fiber length using the GFL genes
was largely consistent across environments or years at the late
generations of progeny for plant breeding.

The Proper Training Population Size for
Accurate Prediction of Fiber Length
Using the GFL Genes
Furthermore, we determined what was the appropriate training
population size to train a prediction model for fiber length
prediction using the GFL genes by using their expression
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TABLE 1 | Prediction accuracies of fiber length for different generations or years using the two datasets of the selected GFL genes for GBB collected in 2011,
individually: (A) The RKHS model was used for the prediction and (B) The SVMRBF model was used for the prediction.

Year Generation (A) 226 GFL SNPs/InDels as markers (B) Expression of 125 selected GFL genes

r P-value r P-value

2011 F9 0.7830 0.00E + 00 0.7872 0.00E + 00

2010 F8 0.8334 0.00E + 00 0.7761 0.00E + 00

2009 F7 0.6719 0.00E + 00 0.6515 0.00E + 00

The observed fiber lengths measured in 2010 or 2011 were the means of three replicates, while the observed fiber length measured in 2009 was from only one five-plant
plot with no replicate, largely explaining the lower prediction accuracy of fiber length in 2009.

abundances (Figure 6A) and their SNPs/InDels as DNA markers
(Figure 6B), individually. This is because the training population
size is regarded to prediction accuracy and also to the cost
for prediction model training. The populations consisting of a
series of numbers of lines, from 40 to 198, were used to predict
the fiber length using the selected optimal prediction models.
Although the variation of the prediction accuracy increased as
the training population size decreased, the prediction accuracy
of the GFL genes for fiber length plateaued, when 100 lines were
used, with the expressions of the 125 key GFL genes (Figure 6A).
For prediction of fiber length using the 226 SNPs/InDels of
the 226 SNP/InDel-containing GFL genes as DNA markers, the
prediction accuracy of fiber length plateaued, when 120 lines
were used (Figure 6B). Therefore, a training population size of
100–120 lines seemed proper to train a prediction model for
accurate prediction of fiber length for progeny selection using
either genotypes or expressions of the GFL genes.

DISCUSSION

One of the most important aims of molecular and genomic
research is to develop molecular technologies that can enhance
breeding in crop plants and livestock, and enhance medicine
in humans. This study has demonstrated that the phenotype
of a quantitative trait can be accurately predicted using the
genes controlling the trait. The prediction accuracy of the cotton
fiber length, which is used as the objective trait in this study,
has approached its plateaued accuracy, with an accuracy of
r = 0.83 (P = 0.000) using either the SNPs/InDels of 226 of the
474 GFL genes or the expressions of the 474 GFL genes. This
prediction accuracy is as accurate as the prediction accuracy of
maize grain yield (r = 0.85, P = 0.000), which is one of the
most complex quantitative traits, using the maize grain yield
(ZmINGY) genes (Zhang et al., 2020a). Moreover, the cotton
fiber lengths predicted using these two genic datasets of the GFL
genes are significantly correlated (r = 0.892, P = 0.000), further
verifying the prediction accuracy of fiber length. The prediction
accuracy of fiber length achieved using its contributing genes are
4%–315%, with an average of 95%, higher than those of r = 0.20–
0.80 achieved for different quantitative traits using genome-wide
DNA markers, genome-wide gene expressions, or genome-wide
metabolites consisting of thousands to tens of thousands of omic
features (Meuwissen et al., 2001; Lee et al., 2008; Crossa et al.,
2010, 2013; De Los Campos et al., 2010b; Heffner et al., 2011a,b;

Daetwyler et al., 2012; González-Camacho et al., 2012; Gouy et al.,
2013; Morota et al., 2014; Speed and Balding, 2014; Xu et al.,
2014, 2016; Beyene et al., 2015; Dan et al., 2016; Weissbrod et al.,
2016; Islam et al., 2020). If the same species (cotton), same trait
(fiber length, UHML), same prediction models (BayesB, GBLUP
and RKHS), and same cross-validation scheme are considered
for the comparison, the prediction accuracy of the cotton fiber
length using the 740 SNPs/InDels of the 226 GFL genes as DNA
markers were r = 0.80, 0.80, and 0.82 (P = 0.000) for GBLUP,
BayesB, and RKHS, respectively, in this study (Figure 4A).
These prediction accuracies are 116% higher than those of the
fiber length predicted using 6,292 genome-wide SNPs (Islam
et al., 2020). Furthermore, the prediction accuracy of cotton
fiber length using the GFL genes is highly consistent across
years (environments), even though the weathers between the
years were quite different, with 2011 having unusual weather.
This result is consistent with that of Zhang et al. (2020a) who
showed that the genes controlling maize grain yields consistently
predicted the maize grain yield across diverse climates and across
different eco-agricultural systems. Finally, 100–120 plants are
sufficient to properly train a model for accurate prediction of fiber
length using the GFL genes, thus significantly reducing the cost
for training and validating a model for phenotype prediction of
a quantitative trait (Islam et al., 2020). These results, therefore,
indicate that the genes controlling a quantitative trait are capable
of and desirable for accurate prediction of the phenotype of a
quantitative trait for progeny selection.

Zhang et al. (2020a) first proposed gene-based breeding
(GBB), based on the ability, utility, and efficiency of the maize
grain yield genes for accurate prediction of maize grain yield.
GBB is an innovative plant breeding method that makes full
use of the genes controlling the objective trait(s) through the
entire process of plant breeding, including parent selection, cross
design, and progeny selection. Three genic datasets of the genes
are used for GBB individually or jointly: (i) the number of
their favorable alleles (NFAs), (ii) their SNPs/InDels as DNA
markers, and (iii) their expression abundances and networks.
The results of this study that used two of the genic datasets for
GBB provide a strong support for development and application
of GBB for enhanced and accelerated plant breeding. Because
the datasets of genes controlling the objective trait(s) are used
for the entire breeding process, GBB allows not only accurately
selecting for the progeny that are the most high-yielding, high-
quality and highly resistant to biotic and abiotic stresses, but
also accurately selecting the most desirable breeding materials or
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FIGURE 6 | Prediction of fiber length with the selected GFL genes for GBB using different training population sizes. (A) Prediction of fiber length using the transcript
expression abundances of the 125 selected GFL genes and the SVMRBF model (Figures 5A,B). (B) Prediction of fiber length using the 226 selected GFL
SNPs/InDels as DNA markers and the RKHS model (Figure 4C). The prediction was carried out for 100 replications. Each number of lines was sampled for 10 times
by bootstrap sampling, with each number sample being tested with 10 replications. Different letters, significant at CI ≥ 95%; same letter, not significant at CI ≥ 95%;
error bar, standard deviation.

parents to approach the breeding objectives and wisely designing
crosses that maximally combine the favorable alleles and heterotic
genotypes of the genes controlling the objective trait(s) from the
breeding materials into progeny. Therefore, GBB sheds great light
on substantial and continued crop improvement, thus promising
to help feed the world.

The findings of this study are achieved using cotton fiber
length as the objective trait; nevertheless, the concepts and
methods developed in this study are applicable to accurate
prediction of other quantitative traits in crop plants, livestock,
and humans, to development of GBB for enhanced crop and
livestock improvement, and to development of gene-based
medicine for enhanced human disease prevention, diagnosis and
medicine. This conclusion is supported not only by the results

of this study, but also by Zhang et al. (2020a) who accurately
predicted the phenotype of grain yield in maize within and across
diverse environments (locations). However, concerns may exist
for practical use of the trait contributing genes in phenotype
prediction of quantitative traits. The first concern may be
genome-wide high-throughput cloning of the genes controlling
an objective quantitative trait. We previously invented an
innovative technology and developed an associated pipeline for
genome-wide high-throughput cloning of the genes controlling
quantitative traits and used it to have successfully cloned the
1,501 ZmINGY genes used by Zhang et al. (2020a) and the 474
GFL genes used for this study. Both the accurate prediction of
cotton fiber length using the GFL genes (this study) and the
accurate prediction of maize grain yield using the ZmINGY genes
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(Zhang et al., 2020a) consistently indicated that our novel gene
cloning technology enables to genome-wide, high-throughput,
and reliably clone the genes controlling quantitative traits.
Because its gene cloning throughput, efficiency, and reliability
are independent of the genome size, complexity, ploidy level,
and availability of genomic knowledge and resources of a species,
our gene cloning technology is applicable to genome-wide high-
throughput cloning of genes controlling a quantitative trait in any
species, including plants, animals, humans, and microbes. This
technology and associated pipeline will be published and made
available to the public soon.

The second concern may be variation of gene expression
across environments. First, gene expression is the determinant of
phenotype of a trait that results from interaction of numerous
factors, including gene effects (additive and dominant), gene
mutation, gene x gene interaction (epistasis), gene x genetic
background or non-gene element interaction, epigenetic factors,
and G x E interaction; therefore, it is a desirable type of
omics for omics-based prediction of phenotypes. This study
and Zhang et al. (2020a, b) revealed that the variation of
a quantitative trait, such as cotton fiber length, maize grain
yield, and ginseng ginsenoside content (Zhang et al., 2020b), is
contributed by not only gene mutation, such as SNPs/InDels, but
also by variation of gene expression. Therefore, the expression
abundances of genes controlling the objective quantitative trait
accurately predicted the phenotype of the fiber length in this
study and the phenotype of the maize grain yield by Zhang et al.
(2020a). Moreover, Zhang et al. (2019) conducted an extensive
study on the variation of gene expression across environments
and showed that that gene transcript expressions were highly
consistent and highly reproducible across plants growing within
a field trial replicate, between field trial replicates, and sampled
from different years/locations (r = 0.90–0.98, P = 0.000). In
addition, we recently showed that the phenotypic performance of
offspring could be also accurately predicted using the expression
abundances of genes related to the objective trait (grain yield)
in parents in maize across very diverse climates, across eco-
agricultural systems, and across populations (MZ, Y-HL, Y Wang,
CF Scheuring, X Qi, J Pekar, SC Murray, W Xu, S-HS, H-BZ,
submitted). These results together consistently indicate that the
expression abundances of the genes contributing to the objective
trait could predict the phenotype of the trait across environments,
including different years, different climates, and different eco-
agricultural systems, and across populations.
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