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Accurately describing the light response curve of electron transport rate (J–I curve) and
allocation of electron flow for ribulose biphosphate (RuBP) carboxylation (JC–I curve) and
that for oxygenation (JO–I curve) is fundamental for modeling of light relations of electron
flow at the whole-plant and ecosystem scales. The non-rectangular hyperbolic model
(hereafter, NH model) has been widely used to characterize light response of net
photosynthesis rate (An; An–I curve) and J–I curve. However, NH model has been
reported to overestimate the maximum An (Anmax) and the maximum J (Jmax), largely
due to its asymptotic function. Meanwhile, few efforts have been delivered for describing
JC–I and JO–I curves. The long-standing challenge on describing An–I and J–I curves have
been resolved by a recently developed An–I and J–I models (hereafter, Ye model), which
adopt a nonasymptotic function. To test whether Ye model can resolve the challenge of
NH model in reproducing J–I, JC–I and JO–I curves over light-limited, light-saturated, and
photoinhibitory I levels, we compared the performances of Ye model and NH model
against measurements on two C3 crops (Triticum aestivum L. and Glycine max L.) grown
in field. The results showed that NH model significantly overestimated the Anmax and Jmax

for both species, which can be accurately obtained by Ye model. Furthermore, NH model
significantly overestimated the maximum electron flow for carboxylation (JC-max) but not
the maximum electron flow for oxygenation (JO-max) for both species, disclosing the
reason underlying the long-standing problem of NH model—overestimation of Jmax

and Anmax.
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INTRODUCTION

Light intensity (I) is one of the most important environmental
drivers affecting electron flow and its allocation for carboxylation
versus oxygenation of ribulose biphosphate (RuBP). At I levels
before reaching saturation intensity, the non-rectangular
hyperbolic model (hereafter, NH model) is a sub-model which
is widely used to characterize the light-response curve of electron
transport rate (J–I curve) and to estimate the maximum J (Jmax) in
C3 photosynthesis model (e.g., Farquhar et al., 1980; Farquhar and
Wong, 1984; von Caemmerer, 2000; Farquhar et al., 2001; Long
and Bernacchi, 2003; von Caemmerer et al., 2009; Bernacchi et al.,
2013; Bellasio et al., 2015; Busch and Sage, 2017; Walker et al.,
2017; Cai et al., 2018) and in C4 photosynthesis model (Berry and
Farquhar, 1978; von Caemmerer and Furbank, 1999; von
Caemmerer, 2013). At light saturation, Jmax is estimated by the
C3 photosynthesis model (Farquhar et al., 1980; von Caemmerer,
2013; Farquhar and Busch, 2017). Accurate estimation of Jmax is
important for understanding photosynthesis of C3 and C4 species.
Jmax is a key quantity to represent plant photosynthetic status
under different environmental conditions when the net
photosynthesis rate (An) is limited by the regeneration of RuBP,
associated with the partitioning of electron flow through
photosystem II (PSII) for RuBP carboxylation (JC) versus that
for RuBP oxygenation (JO) (Farquhar et al., 1980; Long and
Bernacchi, 2003).

By simulating light-response curves of photosynthesis (An–I
curve), NH model has been widely used to obtain key
photosynthetic characteristics (e.g., the maximum net photosynthetic
rate, Anmax; light compensation point when An = 0, Ic; dark
respiration rate, Rd) for various species under different
environmental conditions (e.g., Ögren & Evans, 1993; Thornley,
1998; Ye, 2007; Aspinwall et al., 2011; dos Santos et al., 2013;
Mayoral et al., 2015; Sun et al., 2015; Park et al., 2016; Quiroz et al.,
2017; Yao et al., 2017; Xu et al., 2019; Yang et al., 2020; Ye et al.,
2020). Significant difference between observedAnmax values and that
estimated byNHmodel for various species has been widely reported
(e.g., Chen et al., 2011; dos Santos et al., 2013; Lobo et al., 2014;
Ogawa, 2015; Sun et al., 2015; Quiroz et al., 2017; Poirier-Pocovi
et al., 2018; Ye et al., 2020). This long-standing challenge has been
resolved by an An–Imodel, which adopts a nonasymptotic function
and can accurately reproduce An–I curve over light-limited, light-
saturated and photoinhibitory I levels (Ye et al., 2013) (hereafter,
Ye model).

Recently, Buckley and Diaz-Espejo (2015) proposed that NH
model would overestimate Jmax due to its asymptotic function. A
robust model which can accurately reproduce the observed J–I
curve, and obtain Jmax, is urgently needed (Buckley and Diaz-
Espejo, 2015). Furthermore, the light response of J partitioning
for RuBP carboxylation and oxygenation (JC–I and JO–I curves),
and the key quantities to describe the curves (e.g., the maximum
JC, JC-max, and the maximum JO, JO-max, as well as their
corresponding saturation light intensities) are rarely studied.
Meanwhile, for the first time, we compared the performances
of the two models in reproducing JC–I and JO–I curves.

This study aimed to fill these important gaps using an
observation-modeling intercomparison approach. We firstly
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measured leaf gas exchange and chlorophyll fluorescence over
a wide range of I levels for two C3 species [winter wheat
(Triticum aestivum L.) and soybean (Glycine max L.)]. We
then incorporated Ye model to reproduce An–I, J–I, JC–I, and
JO–I curves and return key quantities defining the curves, and
evaluated its performance against NH model and observations.
MATERIALS AND METHODS

Plant Material and Measurements of Leaf
Gas Exchange and Chlorophyll
Fluorescence
The experiment was conducted in the Yucheng Comprehensive
Experiment Station of the Chinese Academy of Science. The
detailed descriptions about soil and meteorological conditions in
this experiment station were referred to Ye et al. (2019; 2020).
Winter wheat was planted on October 4th, 2011 and the
measurements were conducted on April 23th, 2012. Soybean
was sown in on May 6th, 2013, and the measurements were
performed on 27th July, 2013. Using the Li-6400-40 portable
photosynthesis system (Li-Cor, Lincoln, NE, USA), measurements
on leaf gas exchange and chlorophyll fluorescence were
simultaneously performed on mature fully-expanded sun-
exposed leaves in sunny days. J was calculated as J = FPSII × I ×
0.5 × 0.84, where FPSII is the effective quantum yield of PSII
(Genty et al., 1989; Krall and Edward, 1992).

For soybean, An–I curves and J–I curves were generated from
applying different light intensities in a descending order of 2000,
1800, 1600, 1400, 1200, 1000, 800, 600, 400, 200, 150, 100, 80, 50,
and 0 mmol m-2 s-1. For winter wheat, the light intensity gradient
started from 1800 mmol m-2 s-1 as the maximum, in alignment
with environmental light availability from October to April. At
each I step, CO2 assimilation was monitored until a steady state
was reached before logging a reading. Ambient CO2 concentration
in the cuvette (Ca) was kept constant at 380 mmol mol-1. Leaf
temperature in the cuvette was kept at about 30°C for winter
wheat and 36°C for soybean, respectively. The observation-
modeling intercomparison was conducted within each species.

An–I and J–I Analytical Models
NH model describes J–I curve as follows (Farquhar and Wong,
1984; von Caemmerer, 2000; von Caemmerer, 2013):

J =
aeI + Jmax −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(aeI + Jmax)

2 − 4aeqJmaxI
p

2q
(1)

where ae is the initial slope of J–I curve, q is the curve convexity,
I is the light intensity, and Jmax is the maximum electron
transport rate.

NH model describes An–I curve as follows (Ögren and Evans,
1993; Thornley, 1998; von Caemmerer, 2000):

An =
aI + Anmax −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(aI + Anmax)

2 − 4aqAnmaxI
p

2q
− Rd (2)

wherea is the initial slope ofAn–I curve,Anmax is the maximum net
photosynthetic rate, and Rd is the dark respiration rate when
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ye et al. Modeling Light-Response of Electron Flow
I = 0 mmol m-2 s-1. NH model cannot return the corresponding
saturation light intensities for Jmax or Anmax due to its
asymptotic function.

The model developed by Ye et al. (2013, 2019; hereafter, Ye
model) describes J–I curve as follows:

J = ae
1 − beI
1 + geI

I (3)

where ae is the initial slope of J–I curve, and be and ge are the
photoinhibition coefficient and light-saturation coefficient of J–I
curve, respectively.

The saturation irradiance corresponding to the Jmax (Ie-sat)
can be calculated as follows:

Ie� sat =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(be + ge)=be

p
− 1

ge
(4)

Using Ye model, Jmax can be calculated as follows:

Jmax = ae

ffiffiffiffiffiffiffiffiffiffiffiffiffi
be + ge

p
−

ffiffiffiffiffi
be

p
ge

 !2

(5)

Yemodel describesAn–I curve as follows (Ye, 2007; Ye et al., 2013):

An = a
1 − bI
1 + g I

I − Rd (6)

where a is the initial slope of An–I curve, b and g are the
photoinhibition coefficient and light-saturation coefficient of An–
I curve, respectively.

The saturation irradiance corresponding to Anmax (Isat) can be
calculated as follows:

Isat =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b + g )=b

p
− 1

g
(7)

Using Ye model, Anmax can be calculated as follows:

Anmax = a
ffiffiffiffiffiffiffiffiffiffiffi
b + g

p
−

ffiffiffi
b

p
g

 !
− Rd (8)

JC and JO Estimation and JC –I and JO –I
Analytical Models
Combining measurements of gas exchange and chlorophyll
fluorescence was a reliable and easy-to-use technique widely
used to determine JO and JC (e.g., Peterson, 1990; Comic and
Briantais, 1991). In C3 plants, carbon assimilation and
photorespiration are two closely linked processes catalyzed by
the key photosynthetic enzyme—RuBP carboxylase/oxygenase.
Photorespiration is considered as an alternative sink for light-
induced photosynthetic electron, and as a process helping
consume extra photosynthetic electrons under high irradiance or
other stressors limiting CO2 availability at Rubisco (Stuhlfauth
et al., 1990; Valentini et al., 1995; Long and Bernacchi, 2003).
When the other alternative electron sinks are ignored or kept
constant, the electron flow is mainly allocated for RuBP
carboxylation and RuBP oxygenation (e.g. Farquhar et al., 1980;
Frontiers in Plant Science | www.frontiersin.org 3
von Caemmerer, 2000; Farquhar et al., 2001; Long and Bernacchi,
2003; von Caemmerer et al., 2009; Bernacchi et al., 2013; von
Caemmerer, 2013), and JC and JO can be respectively calculated as
follows (Valentini et al., 1995):

JC =
1
3

J + 8 An + Rday

� �� �
(9)

JO =
2
3

J − 4 An + Rday

� �� �
(10)

where Rday is the day respiration rate, and following Fila et al.
(2006), Rday = 0.5 Rd. In this study, JC and JO values calculated
from Eqs. 9 and 10 were viewed as experimental observations—
to be compared with modelled values derived from NH model
and Ye model, respectively.

Using the same J–I modeling framework by Ye model, the
light response of JC (JC–I) can be described as follows:

JC = aC
1 − bCI
1 + gCI

I (11)

where aC is the initial slope of JC–I curve, and bC and gC are two
coefficient of JC–I curve. The maximum JC (JC-max) and the
saturation irradiance corresponding to the JC-max (IC-sat) can be
calculated as follows:

JC�max = aC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bC + gC

p
−

ffiffiffiffiffiffi
bC

p
gC

 !2

(12)

IC� sat =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bC + gC)=bC

p
− 1

gC
(13)

Using the same J–I modeling framework by Ye model, the
light response of JO (JO–I) can be described as follows:

JO = aO
1 − bOI
1 + gOI

I (14)

where aO is the initial slope of JO–I curve, and bO and gO are two
coefficient of JO–I curve. The maximum JO (JO-max) and the
saturation irradiance corresponding to the JO-max (IO-sat) can be
calculated as follows:

JO�max = aO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bO + gO

p
−

ffiffiffiffiffiffi
bO

p
gO

 !2

(15)

IO� sat = aO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bO + gO=bO

p
− 1

gO
(16)

Meanwhile, NH model can describe the JC–I and JO–I curves
as follows:

JC =
aCI + JC�max −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(aCI + JC�max)

2 − 4aCqJC�maxI
p

2q
(17)

where aC is the initial slope of JC–I curve, q is the curve
convexity, and JC-max is the maximum JC, and
September 2020 | Volume 11 | Article 581851
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JO =
aOI + JO�max −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(aOI + JO�max)

2 − 4aOqJO�maxI
p

2q
(18)

where aO is the initial slope of JO–I curve, q is the curve
convexity, and JO-max is the maximum JO. NH model—Eqs. 17
and 18—cannot return the corresponding saturation light
intensities for JC-max or JO-max due to its asymptotic function.

Statistical Analysis
Statistical tests were performed using the statistical package SPSS
18.5 statistical software (SPSS, Chicago, IL). One-Way ANOVA was
used to examine differences between parameter values estimated by
Frontiers in Plant Science | www.frontiersin.org 4
NHmodel, Yemodel and observed values of each parameter (Anmax,
Isat, Jmax, Ie-sat, JC-max, IC-sat, JO-max, IO-sat, etc.). Goodness of fit of the
mathematical model to experimental observations was assessed
using the coefficient of determination (R2 = 1 – SSE/SST, where
SSE is the error sum of squares, and SST is the total sum of squares).
RESULTS

Light Response of An and J
Soybean and winter wheat exhibited an immediate and rapid
initial increase of An (a) and J (ae) with the increasing I (Figure 1
A
B

D

E
F

G H

C

FIGURE 1 | Light response curves of net photosynthetic rate (A, B), electron transport rate (C, D), electron flow for RuBP carboxylation (E, F) and the electron flow for
RuBP oxygenation (G, H) for winter wheat (Triticum aestivum L.) and soybean (Glycine max L.), respectively, over the irradiance range from 0 to 2000 mmol m−2 s−1. Solid
curves were fitted using Ye model, and dash curves were fitted using NH model. Values are means ± standard errors (n = 3).
September 2020 | Volume 11 | Article 581851
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and Table 1). The increase of An and J continued until I reached
the cultivar-specific maximum values (Anmax and Jmax) at their
corresponding saturation light intensities (Isat and Ie-sat) (Figure 1
and Table 1). Both NHmodel (Eqs. 1 and 2) and Yemodel (Eqs. 3
and 6) showed high level of goodness of fit (R2) to experimental
observations of two species (Figure 1 and Table 1). However,
compared with observations, NH model significantly
overestimated Anmax and Jmax (P < 0.05) for both soybean and
winter wheat (Table 1). In contrast, Anmax and Jmax values
returned by Ye model were in very close agreement with the
observations for both species (Table 1).

Light Response of JC and JO
Both species exhibited an immediate and rapid initial increase of
JC (aC) with the increasing I (Figure 1 and Table 1). The increase
of JC continued until I reached the cultivar-specific maximum
Frontiers in Plant Science | www.frontiersin.org 5
values (JC-max) at the corresponding saturation light intensity (IC-sat)
(Figure 1 and Table 1). Both Ye model (Eq. 11) and NH model
(Eq. 17) showed high level of goodness offit (R2) to experimental
observations of both species (Figure 1 and Table 1). However,
compared with observations, NH model significantly
overestimated JC-max (P < 0.05) for both soybean and winter
wheat (Table 1). In contrast, JC-max values returned by Ye model
were in very close agreement with the observations for both
species (Table 1).

Compared to the light-response rapidness of JC, JO exhibited a
much slower initial increase (aO) with the increasing I (Figure 1
and Table 1). No species showed significant difference between
the observed value of JO-max and that estimated by Ye model (Eq.
14) or NH model (Eq. 18) (Table 1). Both models showed high
level of goodness of fit (R2) to experimental observations of both
species (Figure 1 and Table 1).
TABLE 1 | Fitted (Ye model and NH model) and measured values (Obs.) of parameters defining the light-response curve of photosynthesis (An–I curve), electron
transport rate (J–I curve), electron transport rate for RuBP carboxylation (JC–I curve), and electron transport rate for RuBP oxygenation (JO–I curve) for wheat and
soybean species, respectively.

Parameters T. aestivum G. max

Ye model NH model Obs. Ye model NH model Obs.

An–I curve
q (dimensionless) – 0.659 ± 0.046 – – 0.644 ± 0.073 –

a (mmol mmol -1) 0.077 ± 0.005a 0.069 ± 0.005a – 0.059 ± 0.002a 0.055 ± 0.002a –

b (m2 s mmol -1) (1.31 ± 0.07) × 10 -4
– – (1.40 ± 0.08) × 10 -4

– –

g (m2 s mmol -1) (1.02 ± 0.16) × 10 -3
– – (5.76 ± 0.43) × 10 -4

– –

Anmax (mmol m-2 s-1) 33.91 ± 1.14b 43.30 ± 1.28a 33.71 ± 1.12b 36.04 ± 2.11b 47.74 ± 2.08a 35.74 ± 2.29b

Isat (mmol m-2 s-1) 1870.58 ± 26.45a – 1799.59 ± 0.78a 2199.05 ± 78.46a – 1999.73 ± 0.79a

Ic (mmol m-2 s-1) 50.08 ± 6.61a 50.42 ± 6.71 a 50.20 ± 6.67a 66.72 ± 2.93a 67.38 ± 2.81a 66.82 ± 2.95a

Rd (mmol m-2 s-1) 3.60 ± 0.21a 3.29 ± 0.15a 3.73 ± 0.14a 3.76 ± 0.26a 3.58 ± 0.13a 4.03 ± 0.08a

Residuals 1.12 ± 0.15a 1.52 ± 0.34a – 2.26 ± 0.14a 2.94 ± 0.84a –

J–I curve
q (dimensionless) – 0.816 ± 0.009 – – 0.924 ± 0.005 –

ae (mmol mmol -1) 0.295 ± 0.012a 0.282 ± 0.012a – 0.299 ± 0.006a 0.282 ± 0.005a –

be (m2 s mmol -1) (2.42 ± 0.28) × 10 -3
– – (3.07 ± 0.08) × 10 -4

– –

ge (m2 s mmol -1) (1.26 ± 0.66) × 10 -4
– – (-1.50 ± 0.24) × 10 -4

– –

Jmax (mmol m−2 s−1) 257.23 ± 7.36b 304.91 ± 7.11a 261.56 ± 7.32b 332.79 ± 5.16b 373.87 ± 5.47a 332.86 ± 5.01b

Ie-sat (mmol m−2 s−1) 1873.37 ± 109.46a – 1734.16 ± 66.15a 1906.01 ± 19.97a – 1933.23 ± 66.27a

Residuals 197.76 ± 119.18a 224.69 ± 81.52a – 69.69 ± 6.00a 139.25 ± 19.30a –

JC–I curve
q (dimensionless) – 0.770 ± 0.040 – – 0.871 ± 0.011 –

aC (mmol mmol -1) 0.266 ± 0.012 a 0.248 ± 0.014a – 0.221 ± 0.003a 0.207 ± 0.002b –

bC (m2 s mmol -1) (2.07 ± 0.10) × 10 -4
– – (2.54 ± 0.03) × 10 -4

– –

gC (m2 s mmol -1) (3.75 ± 0.75) × 10 -4
– – (1.67 ± 1.37) × 10 -5

– –

JC-max (mmol m−2 s−1) 180.49 ± 5.16b 210.90 ± 4.85a 182.48 ± 5.10b 210.66 ± 4.79b 242.42 ± 3.43a 210.76 ± 5.15b

IC-sat (mmol m−2 s−1) 1813.42 ± 12.16a – 1734.16 ± 66.15a 1938.65 ± 0.66b – 1999.73 ± 0.79a

Residuals 72.25 ± 21.53a 62.74 ± 8.96a – 78.54 ± 18.52a 83.50 ± 5.26a –

JO–I curve
q (dimensionless) – 0.839 ± 0.159 – – 0.987 ± 0.008 –

aO (mmol mmol -1) 0.062 ± 0.007a 0.060 ± 0.007a – 0.087 ± 0.005a 0.084 ± 0.005a –

bO (m2 s mmol -1) (3.45 ± 1.47) × 10 -4
– – (4.12 ± 0.18) × 10 -4

– –

gO (m2 s mmol -1) (-1.98 ± 2.75) × 10 -4
– – (-3.71 ± 0.31) × 10 -4

– –

JO-max (mmol m−2 s−1) 85.67 ± 7.75a 91.67 ± 16.52a 79.08 ± 2.29a 124.34 ± 7.51a 127.13 ± 9.43a 121.61 ± 9.14a

IO-sat (mmol m−2 s−1) 2790.82 ± 1085.62a – 1734.16 ± 66.15a 1860.92 ± 34.19a – 1866.73 ± 132.78a

Residuals 145.10 ± 57.72a 136.82 ± 60.25a – 147.28 ± 14.61a 150.40 ± 13.62a –
Septe
mber 2020 | Volume
For An–I curve, the parameters are: the initial slope of the An–I curve (ap), the maximum An (Anmax) and the corresponding saturation irradiance (Isat), light compensation point (Ic) and dark
respiration rate (Rd). For J–I curve, the parameters are: the initial slope of J–I curve (ae), the maximum J (Jmax) and the corresponding saturation irradiance corresponding to Jmax (Ie-sat). For
JC–I curve, the parameters are: the initial slope of JC–I curve (aC), the maximum JC (JC-max) and the corresponding saturation irradiance corresponding to JC-max (IC-sat). For JO–I curve, the
parameters are: the initial slope of JO–I curve (aO), the maximum JO (JO-max) and the corresponding saturation irradiance corresponding to JO-max (IO-sat). The observation-modeling
intercomparison was only conducted within each species. Within each species the different the letters denote statistically significant differences between the values fitted by Ye model, NH
model and measured values (Obs.) for each parameter (P ≤ 0.05). Values are the mean ± standard errors (n = 3).
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DISCUSSION

Assessed with an observation-modeling intercomparison approach,
the results in this study highlight the robustness of Ye model in
accurately reproducing An–I, J–I, JC–I, and JO–I curves and
returning key quantities defining the curves, in particular: Anmax,
Jmax, JC-max, and JO-max. On the contrary, the NHmodel significantly
overestimates Anmax, Jmax, and JC-max (Table 1). For the first time,
our study discloses the previously widely reported overestimation of
Jmax (and Anmax) by the NHmodel is linked to its overestimation of
JC-max but not JO-max.

The overestimation of Anmax by NH model found in this study is
consistent with the previous reports (e.g., Calama et al., 2013; dos
Santos et al., 2013; Lobo et al., 2014; Ježilová et al., 2015; Mayoral
et al., 2015; Ogawa, 2015; Park et al., 2016; Quiroz et al., 2017; Poirier-
Pocovi et al., 2018; Ye et al., 2020). The accurate returning of Anmax

by Ye model found in this study is consistent with previous studies
using Ye model for various species under different environmental
conditions (e.g., Wargent et al., 2011; Zu et al., 2011; Xu et al., 2012a;
Xu et al., 2012b; Lobo et al., 2014; Xu et al., 2014; Song et al., 2015;
Chen et al., 2016; Ye et al., 2019; Yang et al., 2020; Ye et al., 2020). The
robustness of Ye model has also been validated for microalgae
observations, including four freshwater and three marine
microalgae species (Yang et al., 2020). The Ye model reproduced
the An–I response well for all microalgae species, and produced Isat
closer to the measured values than those by three widely usedmodels
for microalgae (Yang et al., 2020). Meanwhile, the overestimation of
Jmax by NH model found in this study supports Buckley and Diaz-
Espejo (2015) in highlighting the demerit of the asymptotic function
(i.e. NH model).

One key novelty of the present study is its evaluation of both
asymptotic and nonasymptotic functions in describing the light
response of electron flow allocation for carboxylation and
oxygenation respectively (i.e. JC–I and JO–I curves). To the best
of our knowledge, this is the first study which has experimentally
evidenced the robustness of a nonasymptotic function (Eqs. 3,
11, 14) in accurately (1) reproducing J–I, JC–I, and JO–I curves
and (2) returning Jmax, JC-max, and JO-max values, as well as their
corresponding the saturation light intensities. These novel
findings are of significance for our understanding of light
responses of plant carbon assimilation and photorespiration—
both are catalyzed by RuBP carboxylase/oxygenase.

The findings, and the approach of bridging experiment and
modeling, in the present study remain to be tested for (1) species
of different plant function types and/or climatic origin, which
could exhibit different response patterns (Ye et al., 2020) and (2)
plant response to interaction of multiple environmental factors
(e.g., temperature, rainfall pattern, soil type) involving fluctuating
light. The explicit and consistent modeling framework and
Frontiers in Plant Science | www.frontiersin.org 6
parameter definitions on light responses (i.e. An–I, J–I, JC–I, and
JO–I)—combined with the simplicity and robustness—allows for
future transparent scaling-up of leaf-level findings to whole-plant
and ecosystem scales.
CONCLUSIONS

Ye model can accurately estimate Anmax, Jmax, and JC-max which
the NH model would overestimate. Adopting an explicit and
transparent analytical framework and consistent definitions on
An–I, J–I, JC–I, and JO–I curves, this study highlights the advantage
of Ye model over NH model in terms of (1) its extremely well
reproduction of J–I, JC–I, and JO–I trends over a wide I range from
light-limited to light-inhibitory light intensities, (2) accurately
returning the wealth of key quantities defining J–I, JC–I, and JO–
I curves, particularly Jmax, JC-max, JO-max, and their corresponding
the saturation light intensities (besides Anmax and Isat of An–I
curve), and (3) being transparent in disclosing that the previously
widely reported but poorly explained problem of NH model—
overestimation of Jmax (and the maximum plant carboxylation
capacity)—is linked to its overestimation of JC-max but not JO-max.
Besides, NH model cannot obtain their saturation light intensities
corresponding to Jmax, Anmax, JC-max, and JO-max due to its
asymptotic function. This study is of significance for both
experimentalists and modelers working on better representation
of photosynthetic processes under dynamic irradiance conditions.
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Mayoral, C., Calama, R., Sánchez-González, M., and Pardos, M. (2015). Modelling
the influence of light, water and temperature on photosynthesis in young trees
of mixed Mediterranean forests. New For. 46, 485–506. doi: 10.1007/s11056-
015-9471-y
Frontiers in Plant Science | www.frontiersin.org 7
Ogawa, K. (2015). Mathematical consideration of the pipe model theory in woody
plant species. Trees 29, 695–704. doi: 10.1007/s00468-014-1147-2

Ögren, E., and Evans, J. R. (1993). Photosynthetic light-response curves. Planta
189, 182–190. doi: 10.1007/BF00195075

Park, K. S., Bekhzod, K., Kwon, J. K., and Son, J. E. (2016). Development of a
coupled photosynthetic model of sweet basil hydroponically grown in plant
factories. Hortic. Environ. Biotechnol. 57, 20–26. doi: 10.1007/s13580-016-
0019-7

Peterson, R. B. (1990). Effects of irradiance on the in vivo CO2:O2 specificity factor
in tobacco using simultaneous gas exchange and fluorescence techniques. Plant
Physiol. 94, 892–898. doi: 10.1104/pp.94.3.892

Poirier-Pocovi, M., Lothier, J., and Buck-Sorlin, G. (2018). Modelling temporal
variation of parameters used in two photosynthesis models: influence of fruit
load and girdling on leaf photosynthesis in fruit-bearing branches of apple.
Ann. Bot. 121, 821–832. doi: 10.1093/aob/mcx139

Quiroz, R., Loayza, H., Barreda, C., Gavilán, C., Posadas, A., and Ramıŕez, D. A.
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