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Digital image processing is commonly used in plant health and growth analysis, aiming to
improve research efficiency and repeatability. One focus is analysing the morphology of
stomata, with the aim to better understand the regulation of gas exchange, its link to
photosynthesis and water use and how they are influenced by climatic conditions. Despite
the key role played by these cells, their microscopic analysis is largely manual, requiring
intricate sample collection, laborious microscope application and the manual operation of
a graphical user interface to identify and measure stomata. This research proposes a
simple, end-to-end solution which enables automatic analysis of stomata by introducing
key changes to imaging techniques, stomata detection as well as stomatal pore area
calculation. An optimal procedure was developed for sample collection and imaging by
investigating the suitability of using an automatic microscope slide scanner to image nail
polish imprints. The use of the slide scanner allows the rapid collection of high-quality
images from entire samples with minimal manual effort. A convolutional neural network
was used to automatically detect stomata in the input image, achieving average precision,
recall and F-score values of 0.79, 0.85, and 0.82 across four plant species. A novel binary
segmentation and stomatal cross section analysis method is developed to estimate the
pore boundary and calculate the associated area. The pore estimation algorithm correctly
identifies stomata pores 73.72% of the time. Ultimately, this research presents a fast and
simplified method of stomatal assay generation requiring minimal human intervention,
enhancing the speed of acquiring plant health information.

Keywords: stomata analysis pipeline, stomata sample collection, stomata pore measurement, high-throughput
analysis, microscope imagery
INTRODUCTION

The size and density of stomata have been studied as important plants traits since the early 19th

century (Banks, 1805). Stomata pores, located on the plant leaf epidermis, play a major role in
regulating the diffusion for both carbon dioxide and water (Dow et al., 2014) and their distribution
provides important information about plant developmental biology (Lau and Bergmann, 2012).
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Recent works suggest that stomatal closure under water stress
could result in vein embolism, which can cause the plant water
transport system to collapse (Brodribb et al., 2016). Hence,
stomata shape and behaviour are identified as direct indicators
of plant health and the surrounding environmental conditions
(Beerling and Chaloner 1993a; Beerling and Chaloner 1993b;
Sadras et al., 2012).

Analysis of stomata is also an important aspect of paleoecology;
for example, stomatal index (i.e. the ratio between the number of
stomata and epidermal cells) of fossil plant cuticles can provide
valuable insights into the atmospheric carbon dioxide levels in a
given era (Beerling and Chaloner 1993b; Beerling and Royer,
2002). In addition, the undulation index (waviness of stomata
cell wall), which is physiologically affected by light, correlates well
with growing degree-days (GDD), which provides information on
seasonal change (Smith et al., 2010; Wagner-Cremer et al., 2010;
Wagner-Cremer and Lotter, 2011) in a given period of time. Thus,
microscope analysis of stomata plays a major role in present day
agriculture as well as modelling climate change over long periods
of time.

Stomatal aperture is often measured using the microscope
imaging of leaf samples, epidermal peels, or imprints (Dow et al.,
2014; Eisele et al., 2016; Jayakody et al., 2017). These images are
analyzed using image processing software such as ImageJ
(Rasband, 1997), which enables manual measurements to be
made on a computer interface. The manual measurement of
stomata is sufficient when it is only necessary to measure a small
number; however, this would prove unsuitable when processing
an entire leaf surface. For the analysis of larger leaf areas,
automated image processing techniques are required.

One of the first papers to implement digital image
processing for automating stomatal measurements was
Omasa and Onoe’s (Omasa and Onoe, 1984) work with
stomatal aperture. Here, the authors applied a Hanning Filter,
discrete inverse Fourier transform and thresholding to measure
individual stomata. In the decades following this paper,
numerous advancements have been made in computer vision
and microscopy. These advancements have supported
improvements in the automation of stomatal analysis.
Whether it be through detecting the unique fluorescence
emission of stomatal guard cells under UV excitation
(Karabourniotis et al., 2001), through rhodamine 6G staining
(Eisele et al., 2016), or through template matching (Laga et al.,
2014), it has ultimately been the automatic measurement, not
detection, of stomatal pores in large samples that has proven
most difficult. More recent research (Jayakody et al., 2017; Toda
et al., 2018; Fetter et al., 2019; Sakoda et al., 2019) utilizes
machine learning and image processing to detect stomata (and
sometimes classify the state of the stomata) in microscope
images. The accuracy levels achieved in these studies shows
promise and enables plant scientists to conduct high-
throughput analysis for stomata detection. However, once
stomata are detected, correctly measuring the stomatal pores
requires additional image processing steps (and sometimes
human intervention), which can increase the overall
processing time. Thus, it is important to build algorithms
Frontiers in Plant Science | www.frontiersin.org 2
which go beyond stomata detection, and reliably measure
pore opening under varying image quality.

Although machine learning can enable high-throughput
microscope image analysis, the efficiency of the overall
pipeline still depends on sample collection and imaging
techniques. Hence, for current image processing techniques to
have any practical value in the field, microscope samples must
be collected and imaged quickly, accurately and in sufficient
detail to measure stomatal pore areas. Most current sample
collection processes produce images with suitable quality for
digital image processing. However, many of these techniques
require complex chemicals or intricate leaf manipulations,
which are often time consuming and impractical for use in
the field by untrained operators (Weyers and Travis, 1981;
Celine et al., 2012; Eisele et al., 2016; Monda et al., 2016; Yuan
et al., 2020).

There are two common methods that are used to collect
samples quickly and simply. The first is the silicon impression
method, described by Weyers and Johansen (1985), which uses
dental resin to create a negative impression of the leaf surface,
and nail varnish to transfer this imprint onto a microscope slide.
The second method replaces the dental resin with nail polish, so
that a direct impression is made. Upon drying, adhesive tape is
used to transfer the imprint to a microscope slide (Rogiers et al.,
2011). These methods result in samples of reasonable quality
which are suitable for automated stomata detection.

One of the major bottlenecks in this process is the time taken
to image the collected samples. As such, techniques used to
obtain microscope images from samples must be re-examined to
develop a streamlined yet accurate process. Currently, many
researchers use simple light-field or other manual stage
microscopes to obtain their results (Jayakody et al., 2017;
Fetter et al., 2019), which is sufficient to examine small
numbers of stomata. However, if a larger portion of the leaf is
to be covered, the manual stage movements can take several
hours, even with a motorized stage. Additionally, the large
proportion of veins create protrusions in the epidermal surface,
which requires refocusing the microscope upon every movement
of the stage. Consequently, most current research on stomate
detection and analysis relies on input images containing up to 40
stomata at most (Li et al., 2019), making it difficult to measure
density or observe patterns across a leaf. With these limitations
apparent, it is important to investigate fast imaging methods
which require minimal manual effort.

We present an accelerated end-to-end process to identify and
measure stomata, whilst significantly reducing the manual labour
requirements. Two simple approaches for sample collection were
assessed, with the aim of producing high quality samples for
imaging. Then a microscope slide scanner was utilized to rapidly
image the samples, eliminating the need for manual staging and
focusing of the sample. A Convolutional Neural Network was
implemented to detect stomata from the feature rich images
generated by the slide scanner and a novel stomatal pore
measurement algorithm is proposed to identify the pore
area regardless of the colour intensity of the pore. This is a
streamlined solution for efficiently analysing stomatal
September 2020 | Volume 11 | Article 580389
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morphology, distribution, and patterning across large
leaf surfaces.
MATERIALS AND METHODS

Simplified Sample Collection
One of the primary aims of this paper is to determine the most
effective sampling technique which is both simple and reliable.
The common nail polish imprint method (Miller and Ashby,
1968) meets both these requirements due to its simplicity. The
steps involved in the common nail polish imprint method are
as follows:

1. A thin layer of nail polish (Revlon Ultra, Revlon Consumer
Products Corporation, New York, NY, USA was used in this
research) is applied to the abaxial surface of the leaf. The
surface covered by the nail polish is set to approximately 30
mm in length and 9 mm in width and is selected such that
major veins are avoided.

2. The nail polish is then left to dry for approximately fiveminutes.
3. One piece of clear adhesive tape is pressed onto the dry nail

polish.
4. The tape is removed from the leaf surface and the adhesive

side secured to a plastic sleeve for transport to a laboratory
environment.

A common issue with the traditional leaf imprint method is
the introduction of air bubbles when securing the imprint to the
microscope slide using tape. The tape also tends to deform to the
shape of the uneven leaf surface, which may create focusing
issues during the imaging process. A modified approach is
proposed for mounting the imprint on the microscope slide to
combat this as follows:
Frontiers in Plant Science | www.frontiersin.org 3
1. In the laboratory, the tape is removed from the plastic sleeve,
transferred to a thin glass coverslip and the adhesive side is
pressed down to ensure a flat surface.

2. The top (non-adhesive) surface of the tape, including the
attached coverslip, is mounted on a microscope slide using
transparent sticky tape on the corners of the coverslip as
shown in Figure 1B. Optionally, a product similar to
Vectashield mounting medium (Vector Laboratories, Inc.
Burlingame, CA, USA) can be used to mount the coverslip
onto the microscope slide. If a mounting medium is used,
several glass weights should be placed on the coverslip to
distribute the mounting medium evenly.

A diagram of the modified method in comparison to the
original technique is shown in Figure 1. The coverslip aims to
reduce any unevenness of the leaf imprint, allowing shallow
depth-of-field sensors to keep larger areas of the sample in focus.
With this approach, any artefacts generated on the adhesive side
of the tape are no longer obstructing the view of the microscope.

Samples from four plant species, Vitis vinifera L. x V. rupestris
Scheele ‘Ganzin Glory’, Prunus armeniaca ‘Moorpark’, Citrus
sinensis L. Osbeck ‘Valencia’, and Vinca major L. ‘Periwinkle’,
were collected from Belair, Adelaide. The samples were prepared
using both traditional and modified mounting approaches for
comparison purposes. A detailed comparison between the
proposed sampling method and the common nail polish imprint
method is presented in Simplified Sample Collection.

Microscope Slide Scanner for Imaging
Samples
A manual-stage optical microscope is not capable of capturing a
complete 30 mm × 9 mm leaf sample with a single image.
Instead, the sample must be moved, and the microscope
refocused prior to capturing each image. Once multiple images
A

B

FIGURE 1 | (A) The original imprint method. The sticky tape is between the camera and the sample. (B) The modified imprint method. The sticky tape and bubbles
are no longer between the microscope and the sample. Instead, an appropriate coverslip is covering the sample.
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are captured covering the sample, they need to be stitched
together to create a single image of the leaf.

These issues are solved by using a microscope slide scanner.
Used in the field of cell pathology, slide scanners can rapidly
produce high-quality images of the complete sample slide at once.
This is achieved by an automated process where the slide is
carefully moved under a line-scan camera. The lines are then
automatically stitched together to produce a single high-resolution
image of the complete sample. Imaging the complete slide at once
allows researchers to gain a better understanding on macro level
characteristics such as stomata patchiness. In addition to speeding
up the image capture process, another major advantage of the slide
scanner is its ability to store multiple microscope slides in the
device. This feature allows users to load many samples and image
them in a single run without adjusting settings for each new
sample. In this work, an Aperio® XT (40x) brightfield slide
scanner (Wetzlar, Germany) is used. The device uses linescan
technology to generate images at a resolution of 0.25 um/pixel and
holds up to 120 slides at one time. The performance of the slide
scanner is compared with a manual stage optical microscope in
Imaging With Microscope Slide Scanner.

Stomata Detection With a Convolutional
Neural Network
Stomatal pore area measurements require the identification of
stomata in a microscope image (Dow et al., 2014); with a small
number of stomata, this can be achieved using manual image
analysis tools. More recently, higher order image processing and
machine learning has been used to automate this process (Laga
et al., 2014; Liu et al., 2016; Jayakody et al., 2017; Toda et al.,
2018; Fetter et al., 2019; Sakoda et al., 2019). In this work, a CNN
(Lecun et al., 1998) based on the MATLAB® implementation of
the AlexNet (Krizhevsky et al., 2012) network was used to
identify stomata (MathWorks, 2018). AlexNet is pre-trained on
more than one million images and can facilitate transfer learning,
which takes the pretrained network and utilizes its feature
extraction capabilities as a starting point to learn new detection
tasks. This requires fewer training images, which reduces the
time required to automate the overall process for a new image
target. The process of stomate detection using AlexNet is
described below. The training data for transfer learning
comprised of images collected through both traditional and
modified sample collection methods.

1. Using the images extracted for training, a training set was
prepared with images assigned to three categories: stomata,
vein, and background (as shown in Figure 2).

2. Feature vectors are extracted from the training data to train a
classifier using AlexNet. Particularly, AlexNet is eight layers
deep (MathWorks, 2018) and, when used for feature
extraction, the neural network is terminated at one of the
fully connected middle layers. This layer outputs the feature
vector representing the activations for the input images.

3. Using MATLAB’s Classification Learner application
(Machine Learning toolbox), a quadratic Support Vector
Machine classifier is trained with the feature vector.
Frontiers in Plant Science | www.frontiersin.org 4
4. The classifier is then applied to the image through a
classification window of predefined size, translated across
the image by sliding the window. This produces a mask of the
image indicating the location of each stomate.

5. To calculate precision, recall, and accuracy, the stomata are
manually labelled using a custom GUI. By discretising the
manually and automatically labelled images and comparing
each grid value (1 if stomate, 0 if background), the number of
false positives (FP), true positives (TP), false negatives (FN)
and true negatives (TN) were determined.

In order to reduce the processing time involved with applying a
sliding window across the entire image, the program first splits the
slide scanner image into smaller tiles which are processed
individually, and then reassembles the labelled results into a
complete image.
A

B

C

FIGURE 2 | Example (A) stomata (positive), and (B) veins and (C)
background (negative) used to train the AlexNet neural network. These were
extracted from images (in regions separate to that being classified) collected
using the modified imprint method and imaged with the slide slidescanner.
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Stomata Pore Area Calculation
With the methods proposed in Microscope Slide Scanner for
Imaging Samples, the slide scanner is able to produce feature-
rich images where stomata can be clearly identified. However,
the sharpness of the image can slightly vary along the image
due to the uneven nature of the leaf surface, causing variation
in focus. This variation directly affects the quality of each
individual stomate image based on their location on the leaf.
This results in stomata images with different image qualities
(Figure 3).

In some of the stomata images captured by the slide scanner,
the pore area appears darker than the surrounding guard cells
whereas in other stomata images the pore area appears lighter
than the guard cells (Figure 4). These variations depend largely
on focus; due to significant variation in height across the sample,
Frontiers in Plant Science | www.frontiersin.org 5
and the lens’ single plane of focus, regions can appear either in or
out of focus. The lighter stomata, for example, are in focus, with
the focal plane located in the middle of the pore. When the focal
plane is situated slightly above the middle, the reflection of light
bouncing off the guard cells results in darker stomata pores. This
requires the pore estimation algorithm to be robust against
variations in colour space. Existing algorithms require stomata
colour space to be consistent and are often tuned to a specific
plant species (Karabourniotis et al., 2001; Laga et al., 2014;
Jayakody et al., 2017), thus making them unsuitable to analyze
images from the slide scanner.

To achieve this goal, a novel approach based on stomata cross
section analysis and binary segmentation is proposed. Prior to
developing the pore estimation algorithm, the following
assumptions were made regarding the stomatal pores.
A B C

FIGURE 3 | Quality variation of the stomata captured at different parts of the microscope image. (A) sharp image. (B) blurry image (C) partially captured image.
A

B

FIGURE 4 | Pore area captured under different lighting conditions. (A) Pore area is dark compared to the surroundings. (B) Pore area has a lighter colour compared
to the surroundings.
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1. The centre of the stomatal pore is located reasonably close to
the centre of the bounding box containing the stomate. This
bounding box is generated by the CNN proposed in Stomata
Detection With a Convolutional Neural Network. This
assumption allows the algorithm to reject stomata-like
shapes located at the edges of a bounding box.

2. A stomata area is always larger than a predefined value. In
this case, a stomate is assumed to be larger than 50 pixels2 in
area. This allows the algorithm to reject detections resulting
from dust particles and air-bubbles.

The pore estimation algorithm consists of the following steps.

1. Contrast Limited Adaptive Histogram Equalisation
(CLAHE) is applied to the original input image.

2. The contrast and sharpness of the CLAHE image is
improved.

3. The CLAHE image is converted to a grayscale image.
4. The Grayscale image is converted to a binary image via Otsu’s

thresholding.
5. The binary image contains multiple regions. Regions with areas

no larger than a predefined size are removed from the image.
6. The largest region closest to the centre of the image is

selected, and all other regions are removed from the image.
This region is selected as the mask which represents the
stomate.

7. The mask is then applied to the grayscale image in Step 3.
Rotate the image using the major axis orientation of the
Frontiers in Plant Science | www.frontiersin.org 6
mask. Now the area containing the stomata is aligned
horizontally in the image.

8. Now consider the vertical cross-section which goes through the
centroid coordinate of the mask as shown in Figure 5A. The
intensity values of the pixels which lie along this cross-section
line can be plotted as shown in Figure 5B. The following steps
are adopted to find the pore area of the stomate.
a. Identify all the valleys and peaks on the cross-section
plot.

b. Identify the valley or peak closest to the centroid pixel.
This valley or peak is the centre of the stomatal pore
(See Figure 5B).

c. If the coordinate corresponding to the stomatal pore
centre is a peak, the pore area is lighter than the
surrounding region, and if the index corresponding
to the stomatal pore centre is a valley, the pore area is
darker than the surrounding region.

d. Once this pore centre is identified, select all pixels of
which the intensity values are similar to that of the pore
centre, and also connected to the pore centre pixel
(dotted box on Figure 5B).

e. This connected set of pixels represent the pore region
of the stomate (See Figure 5C).
The step-by-step approach of the algorithm is shown in
Figure 6. The performance of the proposed pore estimation
algorithm is discussed in detail in Pore Area Estimation.
A B

C

FIGURE 5 | Stomate cross section analysis. (A) Horizontal alignment of the stomate. (B) Identification of true center of the pore using peak/valley detection. (C) Final
result.
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RESULTS

Simplified Sample Collection
This section focuses on evaluating the performance of
the modified nail polish imprint method compared to the
traditional method, including their suitability for use with the
proposed slide scanner technique. In these comparisons, special
attention is given to the time taken in preparing the samples as
well as the quality of the resulting images.

Securing the imprint on a plastic sleeve and transporting it to
a laboratory environment before mounting onto a slide did not
have any discernible negative impact on the sample quality. This
approach also reduced contamination and the sample collection
time in the field. Additionally, when waiting for the nail polish on
one sample to dry, it was efficient to apply the polish to
additional leaves in a parallel fashion. Using these methods, it
was possible to collect a sample every 2 min.

In the laboratory, the traditional approach of securing the
sample directly to a microscope slide took 2.5 min on average.
Using the modified nail polish imprint method, the average slide
preparation time was measured at 3.5 min. Figures 7 and 8
indicate that both the traditional and modified sample collection
methods produce high quality samples when imaged using the
Frontiers in Plant Science | www.frontiersin.org 7
slide scanner technique. For each of the four species, stomatal
pores are clearly discernible from background epidermal cells.

Interestingly, no significant difference in quality between the
modified and traditional techniques could be observed from our
results. This suggests that the quality of the result is dominatedmore
by the sample collection process on-site rather than the mounting
technique in the laboratory. Based on the initial assumptions behind
the modified mounting method the effect of the modified approach
may only become significant if the samples are collected under
difficult conditions and contain bubbles or other debris.

Imaging With Microscope Slide Scanner
To measure the performance improvement introduced through the
proposed imaging technique, 40 samples were imaged using the
Aperio® XT (40×) brightfield slide scanner (Wetzlar, Germany).
The imaging time and quality was then compared with the
Olympus Olympus® BX53 manual stage microscope. A summary
of the processing times of the slide scanner in comparison to the
manual stage microscope is presented in Table 1.

The slide scanner required 15 min of set-up and 10 min to
capture a selected region of the sample. The setup process
consists of loading the slides in the device and selecting the
focus points. Multiple focus points were selected to ensure the
FIGURE 6 | Flowchart describing the step-by-step approach of the pore area calculation algorithm.
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stomata remained in focus despite the variation in sample height.
The slide scanner allows the coverage of the sample to be scaled
up with a minimal increase in processing time. An entire sample
of size 30 mm × 9 mm, for example, can be imaged in 30–40 min.
Since multiple slides can be loaded on the device (120 glass slides
for this model), the device was able to image all 40 samples with a
single set-up.

Comparatively, it took two hours to image a 4 mm × 1 mm
leaf imprint image using the Olympus® BX53 manual optical
microscope. To cover an area the size of 30mm × 9mm, over 70
images are required. If the images need to be stitched together to
analyze macro level patterns, images should be captured with
some overlap, driving up the number of total images required as
a result. Due to the uneven surface of the imprint, each image
needed to be focused separately. As the manual-stage microscope
is only able to capture a small portion of the leaf surface at a time,
special attention was given to ensure overlapping between
adjacent images so that the images can be stitched together to
form the final leaf surface. The slide scanner approach is clearly
Frontiers in Plant Science | www.frontiersin.org 8
the faster approach, with over 100× time improvement over
manual processes.

The slide scanner produced feature rich images, suitable for
stomata detection and pore measurement. The edges of stomatal
guard cells and the presence of background epidermal cells are well
defined in the slide scanner images (Figures 9, 10). Whilst blurred
sections at various locations across the sample were observed due to
the varying distance to the lens from the sample, the image
contained plenty of regions with little to no blur containing more
than 1,000 stomata, allowing users to observe patterns spanning
across large areas of the sample. The optical microscope and the
slide scanner produce images of similar quality; but the slide scanner
dramatically improves the speed and area that can be imaged.

Stomata Detection Using Convolutional
Neural Networks
The neural network created using AlexNet transfer learning was run
on slide scanner images of samples collected using the traditional
and modified method, for each of the four species; this amounted to
A B

DC

FIGURE 7 | Slide scanner images generated by capturing a section of the samples collected using the modified nail polish imprint method. (A) Vitis vinifera L. x V.
rupestris Scheele ‘Ganzin Glory’. (B) Prunus armeniaca ‘Moorpark’. (C) Citrus sinensis L. Osbeck ‘Valencia’. (D) Vinca major L. ‘Periwinkle’.
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eight separate images, including 4,986 stomata in total. Each image
included stomata that were both in and out of focus.

The results of running the classifier on each image can be seen
in Table 2. The overall F-score was 0.817, with the highest of
Frontiers in Plant Science | www.frontiersin.org 9
0.897 recorded for the Citrus sinensis L. Osbeck sample collected
using the modified technique; this maximum value was achieved
for an image containing 1,168 stomata. The average precision
and recall were 0.778 and 0.865, respectively. These results look
promising, and provide evidence of the classifier’s ability to
adequately identify stomata in a background dense with similar
features (Table 2).

A number of false positives were incorrectly identified as
stomata in the images. Some of these features appeared similar to
a stomatal pore that is lighter than its surroundings. These may
indicate a stomate that has not been reproduced correctly by the
imprint or is completely closed, or possibly an elliptical
epidermal cell. Similarly, some false positives closely resemble
a stomatal pore that is darker than its surroundings. Again, this
appears to be a feature of the background reproduced by the
sampling technique and slide scanner. Finally, random elliptical
features in the background were captured by the high-detail slide
scanner. Such false positives can potentially be eliminated with
further training samples. In general, it is the precision that
constrains the F-score achieved by the classifier, primarily due
to the presence of false positives arising from the high level of
A B

DC

FIGURE 8 | Slide scanner images generated by capturing a section of the samples collected using the traditional nail polish imprint method. (A) Vitis vinifera L. x V.
rupestris Scheele ‘Ganzin Glory’. (B) Prunus armeniaca ‘Moorpark’. (C) Citrus sinensis L. Osbeck ‘Valencia’. (D) Vinca major L. ‘Periwinkle’.
TABLE 1 | Comparison of sample collection, preparation and imaging
techniques trialled.

Original nail
polish imprint
method with
slide scanner

Modified nail
polish imprint
method with
slide scanner

Original nail
polish imprint
method with

manual
microscope

Sample collection time 2 min 2 min 2 min
Sample preparation time 2.5 min 3.5 min 2.5 min
Time taken to image section
of sample

10 min 10 min 120 min

Time taken to image entire
sample

0.5–0.66 h 0.5–0.66 h 120–140 h
(estimate)
For sample collection and preparation, the original and modified nail polish methods
display similar results for sampling effort, time required and resultant image quality. For
imaging, the slide scanner technique offers significant savings in manual effort and imaging
time when compared to traditional manual stage microscopes.
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detail in the slide scanner images. However, these false positives
proved to be generally harmless as they were eliminated in the
pore identification software, as having no discernible pore
to measure.

The false negatives in the results can be attributed to the wide
variety of stomata captured by the high level of detail in the slide
scanner images. False negatives can be reduced, and the recall
can be increased by collecting more training samples and
ensuring a standardized method of sample collection. The
CNN approach to stomate detection is suitable for the slide
scanner images and future investigations are recommended to
further optimize this method.

Pore Area Estimation
The pore estimation algorithm was developed using OpenCV 3.4
in Python 3.6. The algorithm was applied to 1,706 individual
stomata generated by the CNN classifier over the traditional and
modified samples collected from the four plant species. The
results generated were analyzed manually for erroneous pore
estimations (Table 3).

The pore estimation algorithm rejected 182 images where it
was unable to make a confident prediction about the pore area
(examples in Figure 11). The majority of the rejected images
contained either false positives from the classifier or stomata
Frontiers in Plant Science | www.frontiersin.org 10
where a pore was not visible. Out of the 1,557 images for which
stomata pore areas were present, 409 were found to be estimating
the pore incorrectly. A result is considered incorrect when the
estimation has no overlap with the true pore region, or the pore
boundaries of the estimation and the ground truth has a
considerable mismatch. This results in an average pore
estimation accuracy of 73.72% with a maximum pore
estimation accuracy of 90.1%, achieved for Prunus armeniaca
samples collected using the modified imprint method. The
algorithm works well against stomata from different species,
collected using both traditional and modified nail polish
methods (Figure 12). In a research scenario, the erroneous
results generated by the pore estimation algorithm can be
easily identified and discarded via manual observation.
DISCUSSION

This research presents a practical pipeline to automatically assess
stomatal number and aperture sizewithminimal human intervention.
Key contributions were made in sample imaging and stomatal pore
area calculation techniques, whilst existing sample collection and
stomata detection methods were adopted and modified to optimize
A

B

D

C

FIGURE 9 | Individual stomata captured from modified samples using the slide scanner. Guard cell boundaries and background epidermal cells are clearly visible.
(A) Vitis vinifera L. x V. rupestris Scheele ‘Ganzin Glory’. (B) Prunus armeniaca ‘Moorpark’. (C) Citrus sinensis L. Osbeck ‘Valencia’. (D) Vinca major L. ‘Periwinkle’.
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A
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D

C

FIGURE 10 | Individual stomata captured from traditional samples using the slide scanner. Guard cell boundaries and background epidermal cells are clearly visible.
(A) Vitis vinifera L. x V. rupestris Scheele ‘Ganzin Glory’. (B) Prunus armeniaca ‘Moorpark’. (C) Citrus sinensis L. Osbeck ‘Valencia’. (D) Vinca major L. ‘Periwinkle’.
TABLE 2 | Results of AlexNet Neural Network classifier applied to 6 images.

Species Collection technique Number of stomata Precision Recall F-score

Vitis vinifera L. x V. rupestris Scheele Traditional 248 0.6692 0.9254 0.77672
Modified 207 0.7825 0.9055 0.83952

Prunus armeniaca Traditional 791 0.7291 0.7388 0.73392
Modified 917 0.7265 0.7517 0.73889

Citrus sinensis L. Osbeck Traditional 932 0.7290 0.9076 0.80855
Modified 1168 0.9089 0.8850 0.89679

Vinca major L. Traditional 406 0.8673 0.9095 0.88790
Modified 317 0.8138 0.8943 0.85215
Frontiers in Plant Science | www.frontiersin.org
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TABLE 3 | Results of pore area estimation.

Species Collection technique Total Images No detections Available Incorrect Correct Percentage correct

Vitis vinifera L. x V. rupestris Scheele Traditional 200 21 179 66 113 63.13%
Modified 200 4 196 43 153 78.06%

Prunus armeniaca Traditional 177 28 149 32 117 78.52%
Modified 200 29 171 17 154 90.06%

Citrus sinensis L. Osbeck Traditional 200 20 180 40 140 77.77%
Modified 200 38 162 62 100 61.72%

Vinca major L. Traditional 200 4 196 52 144 73.47%
Modified 329 5 324 97 227 70.06%
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results. The final, end-to-end solution that begins with a plant leaf
input, creates a high-quality digital representation, and automatically
detects and measures stomata pores.

Currently, with traditional manual stage microscopes,
imaging an average sized leaf sample (30 mm by 9 mm) would
take multiple days. To alleviate this problem, we took inspiration
from the field of cell pathology, where slide scanners are used to
produce high-quality images of cell samples rapidly and
Frontiers in Plant Science | www.frontiersin.org 12
automatically. This method dramatically reduced the imaging
time, covering an entire 30 mm × 9 mm sample in 30–40 min. In
addition, using the slide scanner offers great potential to image a
large portion of a leaf with minimal human interaction. Unlike
most current research, which analyses input images containing
up to 40 stomata sampled at random locations on a leaf sample,
this technique has shown accuracy on large, continuous sections
of a leaf containing over 1,000 stomata. This can offer insights
A

B

FIGURE 12 | Examples of pores estimated by the algorithm (A) Correct estimations. (B) Incorrect estimations.
FIGURE 11 | Examples of pores rejected by the pore estimation algorithm.
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into the structure of leaves and the morphological properties
they entail.

Upon digitization of the leaf samples, a CNN was used to
detect stomata in the image, which effectively distinguished
stomata from a highly detailed background containing visually
similar guard cells. The average precision, recall, and F-score of
0.79, 0.85, and 0.82, respectively, indicate an approach that can
be relied upon to accurately assess stomata.

Upon stomata detection, an approach which uses binary image
segmentation and stomata cross section analysis was developed to
accurately measure stomata pore areas. For the first time, an
algorithm is developed, where the pore area can be detected
despite the colour of the pore with respect to the surrounding
guard cells. The proposed algorithm performed well, with an
average pore estimation accuracy of 73.72% across 8 different
collections. Althoughmachine learning techniques are widely used
for stomata detection, not many research projects tackle the
problem of automatic pore measurement. In that context, the
pore measurement methodology adds value to the process of fully
automating stomata analysis.

The ability to rapidly and consistently assess the number and
aperture of stomata over a relatively large portion of a leaf has a
number of potential applications in plant science. Plants
respond to the changing atmospheric carbon dioxide
concentration by altering the ratio between the number of
epidermal and stomatal cells (Beerling and Royer, 2002) and
can offer a range of responses to increasing temperature; either
increasing or decreasing stomatal size and density depending
on conditions and species (Wu et al., 2018). Stomatal patchiness
(Beyschlag and Eckstein, 2001), or the irregular distribution of
Frontiers in Plant Science | www.frontiersin.org 13
stomata across a leaf, has received much attention in recent
decades, but is yet to be completely understood. Once again, the
slide scanner’s ability to rapidly image complete samples offers
a valuable method for investigating this phenomenon on a large
scale and would offer great benefits for investigators in this field.
By investigating the area of open stomata relative to the leaf
area, it may be possible to estimate stomatal conductance
(Lawson et al., 1998). The pipeline is currently optimized to
assess nail polish imprints, but as imaging systems improve; a
system based on a field microscope may be developed to assess
plant water stress and inform irrigation schedules.
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