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Transitivity in plants is a mechanism that produces secondary small interfering RNAs
(siRNAs) from a transcript targeted by primary small RNAs (sRNAs). It expands the
silencing signal to additional sequences of the transcript. The process requires RNA-
dependent RNA polymerases (RDRs), which convert single-stranded RNA targets into a
double-stranded (ds) RNA, the precursor of siRNAs and is critical for effective and
amplified responses to virus infection. It is also important for the production of
endogenous secondary siRNAs, such as phased siRNAs (phasiRNAs), which regulate
several genes involved in development and adaptation. Transitivity on endogenous
transcripts is very specific, utilizing special primary sRNAs, such as miRNAs with
unique features, and particular ARGONAUTEs. In contrast, transitivity on transgene and
virus (exogenous) transcripts is more generic. This dichotomy of responses implies the
existence of a mechanism that differentiates self from non-self targets. In this work, we
examine the possible mechanistic process behind the dichotomy and the intriguing
counter-intuitive directionality of transitive sequence-spread in plants.

Keywords: transitivity, small RNAs, post-transcriptional gene silencing, gene silencing, phasiRNAs, tasiRNAs,
siRNAs, RDR6
INTRODUCTION

The proper regulation of gene expression is essential for the development and the adaptation of
plants to their environment. Gene silencing mediated by small RNAs (sRNAs) plays a major role in
this process, leading to the downregulation of gene activity at the transcriptional (transcriptional
gene silencing [TGS]) or post-transcriptional level (post-transcriptional gene silencing [PTGS])
(Bologna and Voinnet, 2014; Li et al., 2017). In addition, sRNAs form one of the main lines of
defense against virus infection and also contributes to controlling the spread of opportunistic
sequences, such as transposons (Li et al., 2017). There are two modes of sRNA biogenesis, as
microRNAs (miRNAs) and as small interfering RNAs (siRNAs). The sRNAs are processed from
precursor double-stranded RNAs (dsRNAs) into 20 to 24 nt molecules by DICER-LIKE enzymes
(DCLs). These sRNAs are then loaded into an ARGONAUTE (AGO) to form the RNA-induced
silencing complex (RISC), the effector complex of the RNA silencing pathway, resulting in DNA
methylation, transcript cleavage, or translation inhibition of its targets in a sequence specific fashion
(Bologna and Voinnet, 2014).

An interesting aspect of sRNA-mediated silencing is that it can be amplified. In some species,
transcript targeting by sRNAs can lead to the production of a second wave of sRNAs, known as
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secondary siRNAs (Sijen et al., 2001; Vaistij et al., 2002; Nicolás
et al., 2003). In plants, the generation of these molecules involves
RNA-dependent RNA polymerase 6 (RDR6), which uses the
target single-stranded RNA (ssRNA) as a template for the
synthesis of a dsRNA molecule that is converted to sRNAs
mainly by the hierarchical action of DCL4 and DCL2 (Vaistij
et al., 2002; Deleris et al., 2006; Fusaro et al., 2006; Moissiard
et al., 2007; Mlotshwa et al., 2008). As a result, not only the
abundance of sRNAs is increased, but also the spreading of
the silencing signal into areas adjacent to the initial targeted
region. This process, most often referred to as transitivity, is of
critical importance to many plant processes. Phased siRNAs
(phasiRNAs), which include trans-acting siRNAs (tasiRNAs),
are a subclass of siRNAs that rely on transitivity for their
biogenesis (Deng et al., 2018; de Felippes, 2019). PhasiRNAs
play a central role in development and in the response to abiotic
and biotic stresses in plants (Deng et al., 2018). Transitivity is
also important for the non-cell autonomous function of sRNAs.
Besides regulating gene expression in the location where they are
produced, siRNAs can also move and drive silencing in
neighboring cells (Brosnan and Voinnet, 2011; Liu and Chen,
2018). The distance they can travel from cell-to-cell and via the
vasculature can be dramatically increased by means of
transitivity (Himber et al., 2003; de Felippes et al., 2011; Liang
et al., 2012). Transitivity is required not only for the generation
of the mobile signal, but also for its perception at the recipient
tissue (Klahre et al., 2002; Garcıá-Pérez et al., 2004; Brosnan
et al., 2007). Transitivity is also involved with the response to
virus infection, amplifying the primary pool of viral siRNAs and
spreading the antiviral silencing signal systemically to give plant-
wide immunization (Willmann et al., 2011).

Despite its biological importance, several aspects of transitivity
in plants are still poorly understood. In contrast to organisms
supporting transitivity outside of the plant kingdom, the spread
of the silencing signal is bi-directional in plants, with secondary
sRNAs originating up- and downstream of the target region
(Vaistij et al., 2002). Yet, the expansion of the silencing signal in
plants shows a clear tendency toward the 3′ region of the
transcript (Braunstein et al., 2002; Petersen and Albrechtsen,
2005; Bleys et al., 2006b; Haque et al., 2007; Moissiard et al., 2007;
Aregger et al., 2012; Dadami et al., 2014; Wroblewski et al., 2014;
Han et al., 2015; de Felippes et al., 2020). Another interesting
aspect of transitivity in plants is the apparent susceptibility of
transgenes in becoming template of RDR6. While endogene
mRNAs targeted by sRNAs originating from synthetic hairpin
RNAs (Waterhouse et al., 1998; Wesley et al., 2001) are usually
degraded without the production of secondary sRNAs, mRNAs
from transgenes often become templates for co-suppression
through dsRNA synthesis and secondary siRNA production
(Béclin et al., 2002; Vaistij et al., 2002; Himber et al., 2003;
Kościańska et al., 2005; Miki et al., 2005; Petersen and
Albrechtsen, 2005; Bleys et al., 2006b; Aregger et al., 2012).
Thus, plants appear able to differentiate self from non-self genes,
using transitivity to destroy invading sequences. Here, we discuss
scenarios frequently touted to explain the proneness of
transgenes to transitivity and the recent findings that put
Frontiers in Plant Science | www.frontiersin.org 2
terminators and the formation of the 3′ end of mRNAs in the
center of this defense mechanism. We also offer a model to
explain why transitivity in plants seems to spread preferentially
toward the 3′ region of the target transcript.
FACTORS TRIGGERING TRANSITIVITY

miRNA-Triggered Transitivity
In plants, transitivity can be triggered when transcripts are
targeted by miRNAs or siRNAs, including those originating
from hairpin RNAs and VIGS. The production of secondary
siRNA initiated by miRNAs is a process relatively well
understood, and is best exemplified by the biogenesis of
tasiRNAs. Most miRNAs are generated as 21 nt molecules,
and after loading onto AGOs, direct cleavage followed by
degradation of their target mRNA (Bologna and Voinnet,
2014). However, some transcripts such as tasiRNA precursors
(TAS), serve as templates for RDR6-dependent synthesis of
dsRNAs, which are subsequently processed by DCLs (Peragine
et al., 2004; Vazquez et al., 2004; Allen et al., 2005; Williams
et al., 2005; Yoshikawa et al., 2005). Interestingly, most miRNAs
triggering transitivity are 22 nt molecules. This extra nucleotide
over the common miRNA size of 21 nt appears to be key to
determining, whether or not, the target RNA becomes a
template for RDR6-dependent secondary siRNA generation
(Chen et al., 2010; Cuperus et al., 2010); and unexpectedly,
even a 21 nt miRNA from an asymmetric miRNA/miRNA*
duplex (such as a 21 nt miRNA duplexed with a 22 nt
complementary miRNA*) can also trigger transitivity
(Manavella et al., 2012). The major effector protein for
miRNA-guided function (irrespective of the sRNA size) is
AGO1 and it is believed that 22 nt long/asymmetric miRNAs
can re-program it to foster RDR6 recruitment and secondary
siRNA generation (de Felippes, 2019) (Figure 1A). A notable
exception to this rule is miR390, which initiates tasiRNA
biogenesis from TAS3 (Allen et al., 2005). The 21 nt miRNA,
from a 21/21 nt symmetric duplex, would not be expected to
initiate transitivity on its target transcript. The TAS3mRNA has
two miR390 sites, leading to the proposal that the special “two-
hit” event can also initiate tasiRNA generation (Axtell et al.,
2006). However, it has recently been shown that tasiRNA
biogenesis from TAS3 can also be triggered by a single
targeting event mediated by miR390 (de Felippes et al., 2017),
indicating that a double-hit is not the mechanism behind
miR390’s ability to start transitivity. tasiRNA generation from
TAS3 is also remarkable for being the only TAS locus that
requires AGO7, not AGO1 (Adenot et al., 2006; Fahlgren et al.,
2006; Hunter et al., 2006; Montgomery et al., 2008).
Interestingly, miR390 mainly interacts with AGO7, and when
this miRNA is loaded into another AGO, such as AGO1 or
AGO2, transitivity is abolished (Montgomery et al., 2008).
Thus, unlike AGO1 that needs to be programmed by 22 nt/
asymmetric miRNAs to trigger transitivity, AGO7 seems to be
in a constant state of activation allowing for RDR6 recruitment
on the target transcript despite the smaller size of miR390
August 2020 | Volume 11 | Article 579376
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(Figure 1A). Further details on miRNA-triggered transitivity
and phasi/tasiRNA biogenesis can be found in the following
recent reviews (Deng et al., 2018; de Felippes, 2019).

siRNA-Triggered Transitivity
Compared to miRNAs, transitivity initiated by siRNAs is less
understood. The precursor dsRNA is primarily processed by the
hierarchical activity of DCL4, DCL2 and DCL3 into 21, 22 and 24
nt molecules, respectively. DCL4 is the primary processor of
dsRNA of different origins, being dominant over DCL2. Only
when the former is absent, can DCL2-dependent siRNAs be easily
detected (Gasciolli et al., 2005; Xie et al., 2005; Deleris et al., 2006;
Fusaro et al., 2006). These 22 nt siRNAs seem to be able to initiate
transitivity. Parent et al. (Parent et al., 2014) showed that DCL2
activity promotes secondary siRNA production, corroborating an
earlier observation that transitivity requires the action of this
enzyme, but not DCL4 (Mlotshwa et al., 2008). These results
suggest that, as with miRNAs, siRNA-triggered transitivity relies
mainly on the re-programing of AGOs with 22 nt sRNAs (Figure
1B). However, two pieces of evidence sit uncomfortably with this
scenario. DCL4 is dominant over DCL2, thus much lower levels of
22 nt than 21 nt siRNAs are produced in the normal situation of
both DCLs being present (Gasciolli et al., 2005; Xie et al., 2005;
Deleris et al., 2006; Fusaro et al., 2006; Moissiard et al., 2007); and
Frontiers in Plant Science | www.frontiersin.org 3
secondly, in contrast to miRNAs, siRNA-triggered transitivity is
very limited when the target mRNA is from an endogene
compared to the situation with transgenic transcripts or viral
RNA (Figure 1B) (Vaistij et al., 2002; Himber et al., 2003;
Kościańska et al., 2005; Miki et al., 2005; Petersen and
Albrechtsen, 2005; Bleys et al., 2006b; Aregger et al., 2012). This
suggests the existence of an additional mechanism that drives
transgenic and viral RNA into the RDR6 pathway.

As for transitivity, transgenes are also more prone than
endogenes to become self-silenced. This observed susceptibility
of transgenic sequences to silencing (Napoli et al., 1990; van der
Krol et al., 1990) led to the development of co-suppression
technologies to downregulate gene expression, even before the
discovery of siRNAs. In this mechanism, also known as sense-
PTGS (S-PTGS), dsRNA molecules are generated from
sequences expressed in sense by RDR6-mediated activity,
leading to the generation of siRNAs (Waterhouse et al., 1998;
Dalmay et al., 2000; Mourrain et al., 2000). Since transitivity is
equally dependent on RDR6 function (Vaistij et al., 2002), the
same reasons causing transgenes to become self-silenced could
also be behind their propensity to support transitivity when
targeted by siRNAs. Next, we discuss the different factors that
might influence RDR6-dependent silencing of transgenes and the
onset of siRNA-triggered transitivity.
A B

FIGURE 1 | Transitivity mechanisms in plants. (A) Transitivity can be initiated by miRNAs that are 22 nt or originate from an asymmetric duplex. Alternatively,
secondary siRNA production can also be triggered by the miR390 loaded into AGO7. MiRNA-dependent transitivity is efficiently initiated whether the target is an
endogene or not. (B) dsRNA precursors are processed into 21, 22, and 24 nt primary siRNAs by the hierarchical activity of DCL4, DCL2, and DCL3, respectively. In
contrast to miRNAs, transitivity triggered by siRNAs is less understood and tends to manifest on targets of exogenous origin, such as transgenes, with endogenous
sequences being usually resistant to RDR6 routing, as indicated by the proportion of the arrows.
August 2020 | Volume 11 | Article 579376

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


de Felippes and Waterhouse Transitivity in Plants
High Levels of Transgene Expression
One of the first factors used to explain the higher susceptibility
of transgenes to the RDR6 pathway is the high levels of
expression usually associated to those lines. Often, transgene
expression is driven by strong, constitutive promoters, such as
the cauliflower mosaic virus (CaMV) 35S regulatory sequence.
Indeed, several reports showing transitivity in plants involved
the expression of a transgene using the 35S promoter
(Braunstein et al., 2002; Vaistij et al., 2002; Himber et al.,
2003; Kościańska et al., 2005; Miki et al., 2005; Petersen and
Albrechtsen, 2005; Bleys et al., 2006a; Bleys et al., 2006b;
Dadami et al., 2013). In petunia, silencing of the endogenous
CHALCONE SYNTHASE (CHS) gene by co-suppression was
positively correlated with the strength of the 5′ regulatory
sequence used, with silencing efficiency increasing when
stronger promoters were employed (Que et al., 1997). In
addition, the degree of co-suppression detected for CHS was
positively related to the transgene copy number, suggesting a
dosage effect (Jorgensen et al., 1996). Analysis of a population
of transgenic plants has shown that higher transgene expression
can correlate with higher numbers of insertions. However, over
a certain copy number, silencing is likely to be triggered,
suggesting that excessively transcribed genes (Schubert et al.,
2004), or the likelihood of insertion as an inverted repeat
(Waterhouse et al., 1998) gives rise to sRNAs. Possibly, the
high levels of expression linked to the transgene could be
recognized by the plant cell as a sign of non-self, triggering a
defense mechanism dependent on siRNAs. Alternatively, the
intense transcriptional activity supported by such strong
promoters could result in an increased number of aberrant
mRNAs being generated. Accordingly, transcripts lacking a
poly(A) tail have been shown to be substrates for RDR6
activity (Luo and Chen, 2007; Baeg et al., 2017). Nevertheless,
several lines of evidence refute such a scenario. As discussed
before, miRNA targets, many of which highly expressed,
usually do not sustain transitivity, except for events involving
programmed AGOs (de Felippes, 2019). Despite being the most
expressed gene in plants, transitivity was never detected when
the endogenous RuBisCO was targeted by siRNAs (Vaistij et al.,
2002; Himber et al., 2003). Furthermore, even when expression
of the endogene VIRP1 is controlled by the CaMV 35S
promoter, siRNAs targeting this locus do not trigger
transitivity, contrasting with a GFP reporter driven by the same
regulatory sequence (Kościańska et al., 2005). Nonetheless, the level
of transcript that can serve as template for RDR6 seems to affect
the level of secondary siRNAs produced, and therefore, the
efficiency of the silencing signal (Garcıá-Pérez et al., 2004; Bleys
et al., 2006a).

Structure and Sequence of the
Transgene-Derived Transcript
Most transgenic constructs designed for plant transformation
consist of a cDNA regulated by a promoter and terminator of
viral or bacterial origin, such as the CaMV 35S, the OCTOPINE
SYNTHASE (OCS) and the NOPALINE SYNTHASE (NOS)
regulatory sequences. This specific configuration is strongly
Frontiers in Plant Science | www.frontiersin.org 4
related to prokaryotic genes, and could thus, be recognized by
plants as a foreign nucleic acid that needs to be shut down. The
idea that such features in a transgenic sequence are perceived by
the plant cell and differently handled when compared to an
endogenous gene is supported by studies using a GFP reporter
construct designed to mimic an endogene (Dadami et al., 2013;
Dadami et al., 2014). In these studies, GFP was expressed as a
genomic sequence carrying the introns and the regulatory
regions from the tobacco RuBisco small subunit gene.
Compared to a classical GFP construct containing the reporter
cDNA under the 35S promoter and the NOS terminator
regulation, the endogene-resembling GFP was more stably
expressed, supported less siRNA production and showed
delayed onset of local and systemic silencing (Dadami et al.,
2013). Most interestingly, no transitivity could be detected in
plants stably expressing the modified reporter after a hpRNA
targeting GFP was used to trigger RNA silencing (Dadami
et al., 2014).

To simplify transgenic constructs, they often incorporate
cDNA rather than intron-bearing genomic sequences. Thus,
plants could use this feature to differentiate between self and
non-self sequences and make transcripts that undergo splicing
more invisible to the RDR6 pathway. Indeed, genome-wide
analysis in Arabidopsis revealed a positive correlation between
intronless loci and the presence of endogenous sRNAs (Christie
et al., 2011). In addition to the example presented previously,
where a GFP mimicking the RuBisCo gene does not show signs
of transitivity, other lines of evidence corroborate the idea that
transcripts carrying introns are more stably expressed and less
susceptible to become templates of RDR6. For instance,
transient expression efficiency of GFP using viral replicons is
dramatically improved when multiple introns are added to the
reporter sequence (Marillonnet et al., 2005). A similar effect was
also observed when an intron-containing GFP transgene was
agro-infiltrated in Nicotiana benthamiana leaves, although this
effect was dependent on the accompanying terminator
sequence (de Felippes et al., 2020). Furthermore, the
abundance of RDR6-dependent siRNAs originating from a
35S-driven transgene is reduced when a GFP containing
introns is used (Christie et al., 2011). Transitivity, however, is
still detected in transgenes carrying introns, but the onset,
frequency, and efficiency are decreased in such constructs,
with the reduction being proportional to the number of
introns that were added (Vermeersch et al., 2010). However,
this effect of introns on transitivity is most likely related to the
addition of a sequence between the different elements of the
reporter transgene and a possible limitation in the range of
RDR6 activity, which will be discussed in more detail later on.
Nonetheless, the effect that introns have in repressing silencing
suggests a competition between this mechanism and splicing.
So, in the presence of introns, transcripts would be favorably
routed away from RDR6 and the silencing pathway. The fact
that in C. elegans RNA silencing of endogenous genes, but not
transgenes, requires the action of an RNA helicase supports the
notion that introns add an extra layer of protection to these loci
(Akay et al., 2017).
August 2020 | Volume 11 | Article 579376
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Efficiency of Transgene Transcriptional Termination
Usually relegated to a feature of less significance, it is becoming
clear that terminators and transcriptional termination are
important elements for a strong and stable expression of
transgenes. During transcription, sequences in the terminator
region are recognized by the 3′ end processing machinery
resulting in the addition of a poly(A) tail to the nascent
transcript and triggering the end of the polymerization process
by the RNA polymerase II (Mandel et al., 2007; Kumar et al., 2019;
Thore and Fribourg, 2019). A growing number of studies have
shown that different terminators can have a distinct influence in
the efficiency of transgene expression (Ingelbrecht et al., 1989;
Nagaya et al., 2009; Yang et al., 2009; Hirai et al., 2011; Pérez-
González and Caro, 2018; de Felippes et al., 2020). The improper
formation of the mRNA 3′ end has also been implicated with
enhanced silencing of transgenes. Several members of the
polyadenylation machinery have been identified in mutagenesis
screens where silencing of GFP was used as a reporter system (Herr
et al., 2006; de Felippes et al., 2020). Plants carrying mutations in
those genes presented increased levels of read-through, which
could lead to transcripts missing a poly(A) tail. In accordance,
Luo and Chen (Luo and Chen, 2007) observed that improperly
terminated transcripts lacking a poly(A) tail are target by RDR6
and become template for dsRNA production. Likewise, the
existence of the poly(A) tail seems to inhibit the initiation of
dsRNA synthesis by RDR6 (Baeg et al., 2017). These studies
indicate that an efficient termination of transcription is a key
step to protect genes from become silenced. Indeed, genes lacking a
transcriptional termination signal are potent inducers of RDR6-
dependent secondary siRNA production, while the use of double
terminators can improve 3′ end processing and protect transgenes
from silencing (Luo and Chen, 2007; Nicholson and Srivastava,
2009; Yamamoto et al., 2018). The key function of terminators in
avoiding mRNAs being channeled to RDR6 has been made evident
in a recent study analyzing the role of different genetic elements in
the onset of transgene silencing. Compared to promoters and the
presence of introns, terminator usage was the factor that most
impacted the production of sRNAs originating from a GFP
reporter transgene (de Felippes et al., 2020). Interestingly, the
protective role of terminators could be seen even when strong
promoters were used, suggesting that adverse effects caused by high
levels of transgene expression, as the one induced by the CaMV
35S, could be counter-balanced by strong 3′ regulatory sequences.
Thus, it is possible that endogenes had evolved to have compatible
regulatory sequences, resulting in low levels of aberrant transcripts
being produced, and consequently, avoiding the mRNA being
routed to the RDR6 pathway. Transgenic constructs, in contrast,
could carry insufficiently strong terminators when used with most
of the popular strong promoters.

Competition With the RNA Decay Pathway
Eukaryotic cells need to keep an appropriated balance of their
mRNAs and quickly eliminate aberrant transcripts that might
interfere with the proper cell function. An important mechanism
to achieve this is through the RNA decay pathway, which
degrades mRNAs missing their poly(A) tail or the 5′ cap. In
Frontiers in Plant Science | www.frontiersin.org 5
plants, uncapped transcripts are efficiently degraded by
XRN4, while mRNAs missing the poly(A) became targeted
by the RNA exosome, which is a multimeric complex that
includes SKI2, SKI3 and SKI8, among others (Souret et al.,
2004; Moreno et al., 2013; Branscheid et al., 2015; Yu et al.,
2015; Zhang et al., 2015). The RNA decay pathway is also
responsible for eliminating transcripts cleaved by sRNAs
(Souret et al., 2004). Interestingly, suppression of this
degradation mechanism results in increased levels of sRNAs
originating from endogenous genes, including miRNA targets
(Gregory et al., 2008; Branscheid et al., 2015; Yu et al., 2015;
Zhang et al., 2015). Transgene expression is also affected by the
lack of XRN4 and the exosome functions. In plants carrying
mutations in these factors, transgenes become silenced, and in
both cases, the appearance of siRNAs is dependent on RDR6
(Gazzani et al., 2004; Moreno et al., 2013; Branscheid et al., 2015;
Yu et al., 2015; Zhang et al., 2015). Plants also code for two
nuclear exoribonucleases, XRN2 and XRN3. In mutants where
the expression of these factors is compromised, transgene
silencing was also enhanced, however, in much lower levels
than has been described for the cytoplasmic XRN4 (Gy et al.,
2007). In order to be targeted for XRN4/exosome degradation,
some mRNAs need to go through a process of decapping or
deadenylation of the poly(A) tail (Liu and Chen, 2016). In plants
carrying mutations in factors involved in these preliminary steps,
several endogenes become sources of siRNA, and S-PTGS of
transgenes is boosted (Thran et al., 2012; Moreno et al., 2013;
Martıńez de Alba et al., 2015). Thus, a competition between the
RNA decay and the RDR6 pathway seems to exist for access to
aberrant transcripts. In the case of most endogenes and heritably
stable transgenes, the RNA decay mechanism would be
dominant, leading to efficient degradation of aberrant transcripts
and sRNA targets. In contrast, the transgenic mRNAs in unstable
lines might escape the exosome and XRN4, thus retaining aberrant
transcripts to feed the RDR6 pathway. This would explain their bias
toward transitivity.

What are the signals responsible for sorting mRNAs into one
or the other pathway? The answer could lie in some of the aspects
discussed previously, such as improperly terminated transcripts,
possible structures present in genetic elements usually utilized
for transgene expression, or the lack of them, as in the case of
transcripts without introns. HEN2 (HUA enhancer 2) is another
gene that when mutated leads to increased S-PTGS (Lange et al.,
2014). The product of this gene interacts with several components
of the exosome and in hen2 plants several transcripts known to be
substrates of this degradation pathway accumulate. Among these
transcripts, many genes that might go through alternative 3′ end
processing or read-through can be found, as well as incompletely
splicedmolecules. In addition, HEN2 seems to interact with proteins
of the exon junction complex, further implicating splicing as a
possible feature used by the cell to sort transcripts between RNA
decay or PTGS (Lange et al., 2014). Moreover, the possible role of
splicing in this sorting process is supported by the finding that
SERRATE (SE) and the cap binding protein ABH1/CBP80 are
required for the intron-mediated suppression of transgene silencing
(Christie et al., 2011; Christie and Carroll, 2014); and that se and
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abh1/cbp80 accumulate several transcripts showing splicing defects
(Laubinger et al., 2008). Finally, many alternative splicing variants
and transcripts with long 3′ UTR are tagged by the nonsense-
mediated mRNA decay (NMD) machinery, a RNA surveillance
mechanism that recognizes aberrant mRNAs and sends them to the
exosome/XRN4 for degradation (Kertész et al., 2006; Ohtani and
Wachter, 2019). Mutations in factors of this pathway have also been
shown to increase PTGS of a transgene reporter (Moreno
et al., 2013).
TRANSITIVITY SPREADING PATTERN
IN PLANTS

Transitivity is not exclusive to plants, but is also present in other
organisms that have RNA-dependent polymerases, such as
nematodes and fungi (Sijen et al., 2001; Nicolás et al., 2003). In
Caenorhabditis elegans, transitivity is only detected in the 5′
region of the original targeted site (Sijen et al., 2001; Alder et al.,
2003). In fungi, secondary siRNA has been reported to originate
from either region, with transitivity occurring upstream for
Schizosaccharomyces pombe and Aspergillus oryzae (Simmer
et al., 2010; Fernandez et al., 2012), or downstream of the
targeted area for Mucor circinelloides (Nicolás et al., 2003). In
plants, transitivity is bi-directional, with the silencing signal
spreading to both directions (Vaistij et al., 2002). Yet, the
expansion of the silencing signal in plants shows a clear
tendency toward the 3′ region of the transcript (Braunstein
et al., 2002; Petersen and Albrechtsen, 2005; Bleys et al., 2006b;
Haque et al., 2007; Moissiard et al., 2007; Aregger et al., 2012;
Dadami et al., 2014; Wroblewski et al., 2014; Han et al., 2015; de
Felippes et al., 2020). How might this be explained?

A hallmark of polymerases is the extension of the nascent
strand with new nucleotides being added following a 5′-3′
direction. The spread of transitivity to regions upstream of the
target sequence is consistent with this directionality of DNA and
RNA polymerases, since elongation of the complementary strand
would occur toward the 5′ end of the transcript (Figure 2A). In
addition, the sRNA triggering secondary siRNA production
could act as a primer, setting the location where cDNA
synthesis would start and providing the 3′ end OH required
for the activity of some polymerases. Indeed, this is the current
model to explain the spread of silencing through transitivity in C.
elegans (Sijen et al., 2001). It is possible that this same
mechanism also accounts for the spreading of transitivity to
the 5′ region in plants (3′-5′ direction). However, the high level
of secondary siRNAs accumulating from the 3′ region of the
target transcript suggests an alternative mechanism.

Several authors have proposed that, in order for the 5′-3′
spread of transitivity to occur, RDR6 activity would most likely
involve an unprimed synthesis of the complementary strand
(Vaistij et al., 2002; Tang et al., 2003; Petersen and Albrechtsen,
2005; Bleys et al., 2006b). Supporting this view, early
characterization of a tomato RDR has shown that this enzyme
is capable of generating dsRNA with or without a primer
(Schiebel et al., 1993). Similar conclusions were made by Tang
Frontiers in Plant Science | www.frontiersin.org 6
and colleagues (Tang et al., 2003) when using wheat germ
extract. The authors showed that a plant extract contains RDR
activity able to convert single strand RNA (ssRNA) into dsRNA,
and consequently siRNAs, without the presence of primers. In
addition, only unprimed activity was detected in vitro for the
Arabidopsis RDR6 (Curaba and Chen, 2008). More recently, the
primer-dependent activity of RDR6 was also demonstrated in
vitro, but this was less efficient than the non-primed functionality
of this enzyme (Devert et al., 2015). Interestingly, in all these
A

B

FIGURE 2 | The sequence-spread of transitivity in plants. Transitivity can
spread bi-directionally in plants. (A) One possible mechanism to explain 3′-5′
silencing spreading involves the use of the primary siRNA as a primer for
RDR6 activity. (B) However, given that secondary siRNAs are often more
abundant at the 3′ end of the target mRNA, “non-primed” RDR6 function
would be the most likely mechanism accounting for the pattern of transitivity
spreading detected in plants. dsRNA synthesis by RDR6 would start at the 3′
end of the template sequence, and it would be impacted by other factors
such as the more effective degradation of the 5′ cleavage fragment (indicated
by the width of the arrow), and a drop in efficiency of RDR6 during
transcription (illustrated by the disassociation of RDR6 from its template
before reaching the end of the molecule). Taken together, all this factors
would justify the transitive signal being strongly detected at the 3′ end of the
target transcripts.
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works, the unprimed activity of RDRs tend to initiate at or close
to the 3′ end of the template molecule. This observation is
corroborated by the analysis of tasiRNA biogenesis. Both,
TAS1 and TAS2 transcripts are converted to dsRNAs after
being targeted by miR173, resulting in the generation of
tasiRNAs. Analysis of the dsRNA precursor revealed that
synthesis of the complementary strand encompassed the whole
transcript, included the poly(A) tail (Rajeswaran et al., 2012).
Likewise, RDR6-dependent dsRNA synthesis having as template
TAS3 transcripts, which are targeted by miR390, starts from the
third most terminal nucleotide of the fragment spawning
tasiRNAs (Rajeswaran and Pooggin, 2012). Therefore, a
scenario arises where transitivity in plants relies mostly on a
non-primed activity of RDR6, with dsRNA synthesis initiating
preferentially at the 3′ end of the template sequence. This modus
operandi would ensure that this region is frequently converted
into dsRNA, contributing for the over-representation of
transitive siRNAs detected in the 3′ region of a transcript
(Figure 2B).

Nonetheless, other factors need to be taken in consideration
and probably contribute for the preferred spreading of transitivity
toward the 3′ region of the target transcript. With RDR6
transcription initiating at the 3′ extremity of a sequence, siRNA
production from parts of the transcript located closer to the 5′ end
of the RNA would rely on the complementary strand synthesis
continuing until it reaches such regions. Different studies have
estimated the range of RDR6 processivity and indicate that the
enzyme could support RNA synthesis spanning at least 750 nt
(Petersen and Albrechtsen, 2005; Bleys et al., 2006b; Moissiard
et al., 2007; Vermeersch et al., 2010). However, RDR6 efficiency
seems to decrease the further a region is from the 3′ termini of the
RNA. In Arabidopsis, the accumulation of transitive siRNAs
originating from a reporter gene was shown to decline
progressively toward the 5′ end of the transcript (Moissiard
et al., 2007). The drop in RDR6 processivity is also supported
by studies involving the “XYZ” reporter system. In this system,
plants express three different constructs: the “X” part codes for a
trigger of RNA silencing, such as a hairpin RNA, targeting the 3′
region of “Y,” while “Z” carries a reporter gene that share
sequence similarities with the 5′ end of “Y.” Since there is no
overlap between the region targeted by “X” and the gene in “Z,”
silencing of the reporter can only be detected when transitivity on
the “Y” construct is occurring. It has been reported that the
efficiency and frequency of transitivity-dependent silencing on the
reporter gene can be negatively affected when the space between
the 3′ region and the “Z” overlapping sequence in “Y” is increased
(Bleys et al., 2006b; Vermeersch et al., 2010). Possibly, a
significant fraction of RDR6-dependent RNA synthesis would
not reach regions that are too far from the transcription
beginning, even if the sequence is within range of the enzyme
activity, due to early disassociation of the polymerase from the
template (Figure 2B). All together, these factors would further
contribute for the preferential spread of transitivity observed in
direction of the 3′ region of transcripts.

The consequences of the primary sRNA targeting event also
need to be taken into consideration. After cleavage of the target
Frontiers in Plant Science | www.frontiersin.org 7
RNA, two fragments will be formed (a 5′ and a 3′ one). In
principle, this should not contribute for the over-representation
of siRNAs being produced from the 3′ region, since both cleavage
fragments are produced at the same ratio, and the 5′ one could
also support RDR6 activity in ways similar to the one seen for the
3′. But this seems not to be the case. As discussed before, each of
these fragments is degraded by different processes. The 5′
fragment, which no longer carries a poly(A) tail, is degraded
by the exosome, while the uncapped 3′ fragment is targeted by
XRN4, with both processes competing with RDR6 for the target
transcript (Gazzani et al., 2004; Souret et al., 2004; Gregory et al.,
2008; Moreno et al., 2013; Branscheid et al., 2015; Yu et al., 2015;
Zhang et al., 2015). Therefore, any difference in efficiency
between this two degradation processes could affect the
amount of complementary RNA molecules synthesized by
RDR6, since the quantity of template seems to have an impact
on the levels of transitive silencing (Bleys et al., 2006a).
Comparison between ski3 (one of the components of the
exosome) and xrn4 mutants revealed that the former has a
weaker effect on the onset of S-PTGS than the latter (Yu et al.,
2015). The authors suggested that when 3′ to 5′ degradation is
compromised, decapping of the 5′ fragment would occur,
exposing the transcript to XRN4 activity and limiting the
exposure to the RDR6 pathway. As a consequence, most
siRNAs would be produced from a dsRNA that would
originate from the 3′ cleavage fragment, containing sequences
from the 3′ end of the original transcript up to the cleavage site,
which would once more, contribute to a stronger level of
transitivity in the 5′-3′ direction (Figure 2B).
FINAL REMARKS

Despite the importance of transitivity to plant defense and
development, several aspects of the mechanism are still poorly
understood. In this review, we focused on two characteristics that
are unique to this process: the considerable bias toward the
production of secondary siRNAs from transgenic transcripts,
and the preferential spreading of the silencing signal to the 3′ end
of the gene.

Several factors have been identified and used to explain the
susceptibility of transgenes to transitivity, especially when
triggered by siRNAs. Among them, the proper formation of
the mRNA 3′ end seems to be of major importance, directly
influencing the recruitment of RDR6 and compensating for the
negative effect that might be associated with other elements,
such as the high expression levels of some transgenes and the
origin of their regulatory sequences. The competition between
the RNA decay pathway and the silencing pathway also seems
to play a major role, and that defects introduced into the RNA
degradation machinery strongly induce PTGS. However, the
biological relevance of this interplay still needs to be tested.
Given the universal role of the exosome and XRN4 in
degrading aberrant mRNAs, it seems unlikely that changing
the efficiency of this process would be a reliable way for the cell
to control gene expression, since it would probably affect
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several unrelated genes. Nonetheless, the identification of cell
types or physiological conditions where the activity of the RNA
decay pathway is altered would be a good indication that cells
do indeed modulate the degradation of mRNAs to control
gene expression.

Despite all the advances in this field, some aspects of siRNA-
triggered transitivity are still elusive. For instance, while many
features affecting the onset of transitivity occur in the nucleus,
such as splicing and transcription termination, RDR6 and other
factors involved with secondary siRNA generation are mainly
present at the cytoplasm, most specifically at specialized foci
known as siRNA bodies (Glick et al., 2008; Elmayan et al., 2009;
Kumakura et al., 2009; Jouannet et al., 2012; Pumplin et al.,
2016). This difference in localization implies that unknown
factors exist that mediate the cross-talk between these cellular
structures and allow potential RDR6 templates to be transported
to such RDR6-containing structures. Another aspect requiring
further investigation refers to the mechanisms and factors
recognizing aberrant transcripts, such as mRNAs missing the
poly(A) tail. Concerning the transitivity triggered by miRNAs,
investigating how 22 nt/asymmetric molecules can re-program
AGOs to support secondary siRNA production, and what makes
AGO7 able to do the same, would be of extreme value to better
understand the biology of phasiRNAs.

There is no doubt that transitivity plays a central role in many
different processes in plants. It adds more plasticity to the gene
Frontiers in Plant Science | www.frontiersin.org 8
regulation mediated by sRNAs and at the same time boosts the
intensity of the silencing signal. However, this process needs to
be strictly regulated to avoid sRNA silencing going out of control
and spreading to loci that should not be downregulated. The
onset of transitivity has most likely evolved to be a rare event,
occurring only in certain conditions. This is probably reflected in
the dominance of DCL4 over DCL2 and in the relative low
abundance of 22 nt sRNAs, which are known to be triggers of
secondary siRNA biogenesis. The fact that transgenes are more
sensitive to transitivity might be a consequence of the
participation of this process in the defense against exogenous
sequences, and therefore, part of the mechanism allowing plants
to recognize “self” from “non-self.”
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