
fpls-11-577063 November 4, 2020 Time: 15:56 # 1

ORIGINAL RESEARCH
published: 10 November 2020

doi: 10.3389/fpls.2020.577063

Edited by:
Yiannis Ampatzidis,

University of Florida, United States

Reviewed by:
Jakub Nalepa,

Silesian University of Technology,
Poland

Sailendra Nath Sarkar,
University of Calcutta, India

*Correspondence:
Chu Zhang

chuzh@zju.edu.cn

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 28 June 2020
Accepted: 06 October 2020

Published: 10 November 2020

Citation:
Feng L, Wu B, Zhu S, Wang J,

Su Z, Liu F, He Y and Zhang C (2020)
Investigation on Data Fusion

of Multisource Spectral Data for Rice
Leaf Diseases Identification Using

Machine Learning Methods.
Front. Plant Sci. 11:577063.

doi: 10.3389/fpls.2020.577063

Investigation on Data Fusion of
Multisource Spectral Data for Rice
Leaf Diseases Identification Using
Machine Learning Methods
Lei Feng1,2, Baohua Wu1,2, Susu Zhu1,2, Junmin Wang3, Zhenzhu Su4, Fei Liu1,2,
Yong He1,2 and Chu Zhang1,2*

1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China, 2 Key Laboratory
of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China, 3 Institute of Crop Science and Nuclear
Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China, 4 State Key Laboratory for Rice
Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China

Rice diseases are major threats to rice yield and quality. Rapid and accurate detection
of rice diseases is of great importance for precise disease prevention and treatment.
Various spectroscopic techniques have been used to detect plant diseases. To rapidly
and accurately detect three different rice diseases [leaf blight (Xanthomonas oryzae pv.
Oryzae), rice blast (Pyricularia oryzae), and rice sheath blight (Rhizoctonia solani)], three
spectroscopic techniques were applied, including visible/near-infrared hyperspectral
imaging (HSI) spectra, mid-infrared spectroscopy (MIR), and laser-induced breakdown
spectroscopy (LIBS). Three different levels of data fusion (raw data fusion, feature fusion,
and decision fusion) fusing three different types of spectral features were adopted to
categorize the diseases of rice. Principal component analysis (PCA) and autoencoder
(AE) were used to extract features. Identification models based on each technique and
different fusion levels were built using support vector machine (SVM), logistic regression
(LR), and convolution neural network (CNN) models. Models based on HSI performed
better than those based on MIR and LIBS, with the accuracy over 93% for the test set
based on PCA features of HSI spectra. The performance of rice disease identification
varied with different levels of fusion. The results showed that feature fusion and decision
fusion could enhance identification performance. The overall results illustrated that the
three techniques could be used to identify rice diseases, and data fusion strategies have
great potential to be used for rice disease detection.

Keywords: hyperspectral imaging, mid-infrared spectroscopy, laser-induced breakdown spectroscopy, data
fusion, rice disease

INTRODUCTION

With the increase of population, the demand for food supply will surge. To meet such a great need
of food, it is critical to improve crop efficiency to increase the food supply. Cereals are stable food
supply for human beings. Due to the changes in climate and environment, biological and abiotic
stresses which hinder the normal growth of crops become increasingly frequent. The disease is one
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of the major stresses of crops, causing severe losses in quality and
yield (Skolik et al., 2019; Yang et al., 2019).

Rice is one of the most popular staple food sources in
the world, and rice is widely planted all over the world,
especially in Asia and Africa. However, there are various diseases
influencing rice growth. Bacterial leaf blight (Xanthomonas
oryzae pv. Oryzae) (Alberto, 2018), blast (Pyricularia oryzae)
(Gaoqiang et al., 2020), and sheath blight (Rhizoctonia
solani) (Yuan et al., 2019) are the three major diseases of
rice (Kumar et al., 2020; Molla et al., 2020). Prevention
and treatment of disease is an indispensable task for rice
growth management at the current time. Traditionally, on
the one hand, detection of rice diseases is mainly based on
the experts or experienced farmers, with their visual and
manual work. On the other hand, with the development of
molecular biology and the related techniques, rice diseases
can be accurately detected, and these techniques have been
widely used as “standard” or “reference” techniques in the
related fields. The shortcomings of these techniques are
also obvious. They are time consuming, expensive, and
complex to be operated.

Rapid and accurate techniques for rice disease detection
are of great importance for rice growth management. For
the past decades, optical characteristics of plants have widely
been studied (Carter and Knapp, 2001; Altangerel et al., 2017;
Ribeiro et al., 2018; Liu et al., 2019; Zahid et al., 2019). Under
the stress of diseases, external features such as morphology,
color, and texture are changed. The plants’ self-defense systems
also work to alleviate the damage, resulting in the changes
of physiological and biochemical parameters. These changes
can be captured by various spectroscopic techniques based on
different principals. Researchers have used various spectroscopic
techniques for plant disease detection (Zhang et al., 2017;
Thomas et al., 2018; Farber et al., 2019; Liu et al., 2019).
In this study, to detect rice diseases, spectral information of
visible/near-infrared hyperspectral imaging (HSI), mid-infrared
spectroscopy (MIR), and laser-induced breakdown spectroscopy
(LIBS) were used.

HSI integrates both visible/near-infrared spectroscopy and
imaging techniques. Visible/near-infrared spectroscopy has a
strong relationship with biological and physiological parameters
and internal structures of plants, and it is the most widely
used spectroscopic technique to monitor plant growth and
plant stresses (Knauer et al., 2017; Asaari et al., 2018;
Ribeiro et al., 2018). MIR is a spectroscopic technique to
study the fundamental vibrations and associated rotational-
vibrational structure of chemical bonds (Machado et al., 2018;
Skolik et al., 2019). MIR is used to identify the chemical
components of plants and monitoring the change in those
components can help to identify plant growth status. LIBS
is a spectroscopic technique to detect elements and their
concentrations by analyzing spectral signal constituted by
the light emission from laser plasma (Peng et al., 2016).
LIBS is used for quantitative and qualitative analysis of
elements in plants.

Among these three spectroscopic techniques, HSI (Knauer
et al., 2017; Thomas et al., 2018) is the most widely used

technique for plant disease detection, while fewer studies have
used MIR (Hawkins et al., 2010; Zhang et al., 2017) and LIBS
(Ponce et al., 2018; Liu et al., 2019) for disease detection.
Thomas et al. adopted HSI to detect barley cultivars inoculation
with powdery mildew. An accurate assessment of the disease
severity for all six cultivars at measurements over 30 days
was achieved (Thomas et al., 2018). Luo et al. (2019) applied
HSI to grade the severity of rice blast, and the probabilistic
neural network obtained the best performance with the highest
classification accuracy of 97.8%. For MIR, Zhang et al. (2017)
explored and validated the feasibility of using MIR to detect
oilseed rape leaves infected with Sclerotinia stem rot. Healthy
and infected leaves had a difference on the average MIR spectra,
and the accuracy over 80% was achieved with three chemometric
methods. In terms of disease detection with LIBS, Ponce et al.
(2018) applied LIBS for discrimination between healthy and
Huanglongbing-affected citrus. The wavebands that had the
most obvious difference between healthy and HLB-affected trees
were the same for all species. With chemometric analysis, the
healthy status of plants was differentiated with a high degree
of precision.

Several groups of scientists are involved in disease detection
using spectral features and modeling (Alberto, 2018; Luo
et al., 2019; Gaoqiang et al., 2020). However, these studies
did not detect different diseases simultaneously. In natural
conditions, there are various diseases affecting rice growth,
and they can happen within one field. Since many external
and internal symptoms of rice leaves are similar under
different disease pressures, it is difficult to detect multiple
diseases simultaneously. For this reason, it is of significant
importance and applicability to detect various rice diseases at
the same time with one model. Besides, only one detection
technique was used to detect plant diseases in each study.
Although the single dataset can be used to solve the same
problem, a combination of information from different modalities
have the potential to provide a better understanding of
the problem since each technique has unique advantages as
well as limitations.

Information fusion of multiple modalities is the key to
combine these three techniques. However, the use of datasets with
various modalities is a challenging issue. In general, information
fusion can be categorized as low-level fusion (raw data are directly
combined), mid-level fusion (features extracted from the raw
datasets are combined), and high-level fusion (known as decision
fusion, the decision results are combined) (Castanedo, 2013;
Borras et al., 2015; Zhou et al., 2020). Information fusion aims
to reveal the benefits of multisensor measurement, and they are
expected to perform better than individual sensors, providing
more robust and accurate decisions. In this study, the three fusion
levels of HSI, MIR, and LIBS to detect rice diseases were explored.

The objective of this study was to use HSI, MIR, and LIBS
to detect three different diseases of rice, including rice leaf
blight, rice blast, and rice sheath blight. The specific objectives
were to (1) explore the spectral differences among rice leaves
inoculated by different diseases; (2) conduct low-level, medium-
level, and high-level data fusion for disease identification; (3)
develop detection models based on fused data and nonfused data.
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MATERIALS AND METHODS

Sample Preparation
To verify the proposed methods in this article being effective
despite rice varieties, two different rice varieties were used in this
study, including a commercial variety (Zhefujing83) and a newly
developed variety (AD516, which is provided and cultivated by
the Institute of Crop Science and Nuclear Technology Utilization,
Zhejiang Academy of Agricultural Sciences, Hangzhou, China).
After 1 month of sowing seed into the seed plots, the seedlings
were transplanted into the laboratory greenhouse with regular
fertilization and watering.

To obtain inoculated samples, the in vitro inoculation method
was applied. Rice blast and rice sheath blight are fungal diseases,
while rice leaf blight is a bacterial disease. Thus, funguses of rice
blast and rice sheath blight were cultured on potato dextrose
agar medium, and bacteria of rice leaf blight were cultured
in conical flasks.

The leaves cut from healthy plants were used to inoculate
fungus and bacteria. Then the leaves were put into sterilized
plastic flat plates. To prevent the rice leaves from drying out, the
leaves were placed on distilled water–sterilized wipes. For rice
blast and rice sheath blight inoculation, the mycelial pellets were
placed on the leaves, with two or three pellets per leaf. For rice leaf
blight inoculation, the solutions of bacteria were sprayed on to
the leaf surface. After inoculation, the plates were sealed and then
placed in a room with a temperature of about 26◦C and relative
humidity about 60%, and healthy leaves were used as control.
Four days later, leaves with visible symptoms were collected.

Representative images of diseased leaves are shown in
Supplementary Figure 1. The infected leaves were collected for
hyperspectral image acquisition. The number of leaves used in
this study is presented in Table 1. Six or twelve leaves were
acquired in one image. If an image contained 12 leaves, this image
would be divided into two subimages with six leaves in each
image. After hyperspectral image acquisition, the six leaves were
dried as one sample for MIR and LIBS analysis in an oven at the
temperature 75◦C for 12 h a day for 3 days in a row. Then the
dried leaves were placed into centrifuge tubes and ground into
powder using an electrical grinder for 5 min with an oscillation
frequency of 60 Hz. Unground leaf veins were removed from the
centrifuge tubes.

Regarding data splitting, 30 and 5 samples of each category
were randomly selected into the training set and validation set,

TABLE 1 | The number of leaves under different disease inoculations (six
leaves per sample).

Cultivar BYKa DWBb WKBc CKd

Zhefujing83 276 (46)e 324 (54) 312 (52) 240 (40)

AD516 294 (49) 330 (55) 336 (56) 264 (44)

The numbers in the brackets were the numbers of samples to be studied.
The numbers outside the brackets were the numbers of leaves. aThe samples
inoculated by rice leaf blight. bThe samples inoculated by rice blast. cThe samples
inoculated by rice leaf blight. dThe samples inoculated by rice sheath blight. eSix
leaves were used as one sample.

and the remaining samples of each category were all selected into
an external test set. Besides, the order of samples in different sets
of three spectra was the same. In this study, the category value
of the healthy samples (CK) was assigned as 0, and the category
values of the samples inoculated by rice leaf blight (BYK), rice
blast (DWB), and rice sheath blight (WKB) were assigned as 1, 2,
and 3, respectively.

Hyperspectral Image Acquisition and
Spectra Extraction
A visible/near-infrared hyperspectral imaging system covering
the spectral range of 400–1,000 nm was used to acquire
hyperspectral images of healthy and infected leaves. The
hyperspectral imaging system is formed by an imaging
spectrograph (ImSpector V10E; Spectral Imaging Ltd., Oulu,
Finland), a highly sensitive EMCCD camera (Raptor EM285CL,
Raptor Photonics limited, Larne, United Kingdom), and a
long camera lens (OLES23; Specim, Spectral Imaging Ltd.,
Oulu, Finland). The illumination of the system is provided by
150 W tungsten halogen lamps (3900 Lightsource, Illumination
Technologies Inc., United States). This hyperspectral imaging
system conducts line scanning, and a moving plate driven by a
stepper motor (GYB751D5-RC2, Fuji Electric (Dalian) Co., Ltd.,
Dalian, China) is used to move the samples.

To acquire clear and nondeformable images, the distance
between the camera lens and the moving plate, the exposure
time of the camera, and the moving speed of the moving plate
was adjusted to 26 cm, 55 ms, and 2.6 mm/s. The acquired
hyperspectral images were then corrected by using the white
reference image (acquired using a piece of pure white Teflon
board with nearly 100% reflectance) and the dark reference image
(acquired covering the lens using a black lens cap with nearly 0%
reflectance) according to the following equation:

IC =
IR − ID
IW − ID

(1)

where IC is the corrected image, IR is the raw image, IW is the
white reference image, and ID is the dark reference image.

After image correction, all six leaves were defined as a region of
interest (ROI); wavelet transform (Wavelet function: Daubechies
8; Decomposition level: 3) was used to denoise the pixel-wise
spectra. The average spectrum of the six leaves was calculated
as one sample spectrum. The head and the tail of the spectra
contained obvious noises produced by the hyperspectral imaging
system. Only the spectra in the range of 448–945 nm were
used for analysis.

Mid-Infrared Spectra Collection
To conduct MIR spectra acquisition, rice leaves were dried,
ground, and pressed into pellets. Potassium bromide (KBr) was
used to be mixed with the leaf powders for mid-infrared spectra
acquisition. The KBr powders were first dried at 105◦C in an oven
for 4 h and then mixed. To obtain the pellet, 0.02 g leaf powders
and 0.98 g KBr powders were weighed and mixed thoroughly.
Then 0.2 g mixtures were used for tableting. To obtain mid-
infrared spectra, a Nicolet iS10 FT-IR spectrometer (Thermo
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Fisher ScientificTM, Madison, WI, United States) was used. The
spectral range was 400–4,000 cm−1, and the spectral resolution
was set as 4 cm−1. For each sample, 32 measurements were
conducted, and the average value was used as the transmittance
spectrum of the sample to reduce variations and random
noises. Before spectra acquisition, background correction was
performed, and the background correction was conducted every
30 min during spectra acquisition. The spectral data was saved as
.csv format for further analysis.

LIBS Spectra Acquisition
To conduct LIBS spectra acquisition, 0.1 g rice leaf powders
were used for tableting. The tablets were dried for 4 h at 75◦C
before LIBS spectra acquisition. An assembled LIBS system was
used to acquire LIBS spectra. The LIBS system used in this
research consists of a Q-switch Nd:YAG nanosecond pulsed laser
(Vlite-200, Beamtech, Beijing, China). The second harmonic laser
(532 nm, pulse duration of 8 ns, beam diameter of 7 mm) was
used to ignite the sample with the help of a plano-convex lens
(f = 50 mm). The detection system consists of a Mecchelle
spectrograph (ME5000, Andor, Belfast, United Kingdom) and an
ICCD camera (DH334, Andor, Belfast, United Kingdom), which
was used to collect plasma emission spectra with the range from
230 to 880 nm. Samples were placed at an X-Y-Z translation stage.

To improve the signal to noise rate, the delay time and the
integration time were optimized to 1.5–10 µs, respectively. The
laser was fired with a pulse energy of 60 mJ at 1 Hz. For each
sample, 10 successive spectra were acquired at each location, and
16 different locations were measured with the help of translation
stage in ambient air.

Data Feature Extraction
Since full spectra of HSI, MIR, and LIBS have high
dimensionalities of features, it will increase computing time and
the difficulty to build models. Reducing the feature dimensions
while keeping the most useful information is a good approach
to make full use of the features. Feature extraction methods are
effective tools to extract most informative features for dimension
reduction. In this study, two feature extraction methods used
in spectral data analysis were applied for feature extraction,
principal component analysis (PCA), and autoencoder (AE).

PCA is a widely used feature extraction method for data
compression in spectral data analysis. It can reduce the
dimensionality of spectral information through calculating the
linear combination of the original data (Diniz et al., 2014). The
variables after transformation are called principal components
(PCs). After the orthogonal transformation of PCA, the first
few PCs contain a majority of the information pertaining to
the original variables (Zhu S.et al., 2019). The accumulative
explained variance determines the number of PCs. Considering
making use of original information as much as possible, the first
few PCs with accumulative explained variance over 99.99% were
adopted as extracted features in this study. Therefore, the number
of PCs of three different sources was not identical.

The deep learning (DL) framework has been introduced into
feature extraction and data reduction in spectra analysis recently

due to its powerful representation ability. As part of the DL
framework, the AE network can learn abstract features through
the hidden layer in an unsupervised manner (Zabalza et al., 2016),
which makes AE quite popular for feature extraction. With the
assistant of hidden layers in neural networks, data reduction is
achieved while maintaining the effective information of the data
(Zabalza et al., 2016).

AE is a neural network that reconstructs the value of output
to be as the same as possible to the value of the input, which
indicates the output layer has the same number of nodes as the
input layer (Xing et al., 2016). A basic architecture of AE can be
seen in Figure 1. In the encoder part, a basic AE has an input layer
of i neurons, which is equal to the dimensionalities of features of
the input. A hidden layer with h neurons (h < i) following with
the input layer is also introduced. This hidden layer is used to
extract features with an activation function. In the decoder part,
the h is mapped to an output layer with o neurons (o = i) to
reconstruct the input data (Lin et al., 2013). This network is used
to reconstruct the original spectra by minimizing the loss of mean
squares, which maintains the key information of original data.

AE can simply introduce several hidden layers between
the input and the output for feature extraction. After several
trials, the shallow AE network was found to be more effective
for reconstructing the original spectra of rice leaves. The
architectures of AE used in this work and the change of
data dimensionalities are reported in Supplementary Figure 2.
For HSI, the input layer was a fully connected layer, and
dimensionalities of the output were 64. Next, the dimensionality
of data became 32 after encoder, and the features were
further used for classification. Then the decoder increased the
dimensionality of data to 64, and further increased to the
same dimensionality of input data. Apart from the last output
layer in the AE, the other three fully connected layers were all
followed by a batchnorm layer. Besides, all other three layers
used the rectified linear unit (ReLU) as an activation function
while the last output layer did not use any activation function.
The data dimensionalities from beginning to the end could
be simply recorded as 390–64–32–64–390. In terms of MIR
spectra, the architecture with total four layers was also adopted,
and the change of dimensionalities could be simply recorded
as 7,468–64–16–64–7,468. Since LIBS spectra had over 20,000
dimensionalities of features, we increased the dimension of the

FIGURE 1 | The basic architecture of autoencoder.
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output of the first layer. Thus, the change of dimensionalities
could be simply recorded as 22,036–256–64–256–22,036.

Data Fusion Strategies
Data fusion is a method to fuse data collected from multiple
sensors (Doeswijk et al., 2011). To fully dig effective information
from different sources, different kinds of data fusion strategies
were used to investigate the feasibility of combining the
information with HSI, MIR, and LIBS datasets for rice
disease detection.

Low-Level Data Fusion
In the case of low-level fusion strategy, the original HSI, MIR,
and LIBS datasets were concatenated into a single matrix. Two or
three data sources were fused. The four combinations were listed
as follows: HSI-MIR (this means the fusion of HSI spectra and
MIR spectra, and other abbreviations are similar to this fashion),
HSI-LIBS, MIR-LIBS, and HSI-MIR-LIBS. However, the full use
of the datasets of different spectra is a challenge because the
informative parameters with small value will be ignored due to
the existence of large value parameters during data fusion (Wang
et al., 2016). Therefore, a z-score normalization was applied
firstly to rescale the spectra values of different sensors before the
model construction.

Mid-Level Fusion
In mid-level fusion, two strategies were adopted: (1)
concatenating the PCA/AE features from three data sources,
respectively. As shown in Figure 2, PCA features separately
extracted from three kinds of spectra were concatenated. There
were four combinations for PCA features: PCA-HSI-MIR (this
means concatenating the PCs of HSI and the PCs of MIR, and

other abbreviations are similar to this fashion), PCA-HSI-LIBS,
PCA-MIR-LIBS, and PCA-HSI-MIR-LIBS. In terms of AE
features, fused data could be briefly recorded as AE-HSI-MIR,
AE-HSI-LIBS, AE-MIR-LIBS, and AE-HSI-MIR-LIBS; (2)
concatenating the PCA features and the AE features from the
same data source, and the fused data can be briefly recorded as
AE-PCA-HSI, AE-PCA-MIR, and AE-PCA-LIBS. Furthermore,
the aforementioned concatenated features of three different
instruments were further combined. These combined features
could be briefly recorded as AE-PCA-HSI-MIR, AE-PCA-HSI-
LIBS, AE-PCA-MIR-LIBS, and AE-PCA-HSI-MIR-LIBS, as
shown in Figure 3.

High-Level Fusion
The high-level fusion is also called decision-level fusion. Majority
voting is commonly applied to make the final prediction
according to the prediction results of single models (Ballabio
et al., 2018). For the same modeling method, models were built
using HSI, MIR, and LIBS datasets, and the voting weights of each
dataset were set as equivalent. For the same sample, if two or three
of the models predicted it as the same value, then this value was
set as the final prediction value of the sample. If the prediction
value of the same sample by the models using the three datasets
were all different, it means that the sample was unidentified.

In summary, we conducted three fusion strategies for rice
disease detection: (1) the preprocessed spectra were concatenated
as a new dataset to build classification models directly; (2)
to conduct mid-level fusion, PCA and AE were used as
feature extraction methods. The features extracted by the same
feature extraction method (PCA/AE) of the three datasets were
combined. Also, the features extracted by different feature
extraction methods of each dataset were combined. Furthermore,

FIGURE 2 | Concatenation of PCA/AE features of different spectra.
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FIGURE 3 | Concatenation of AE features and PCA features of the same spectra and further concatenating the fusion data of different spectra.

aforementioned fused features of the three datasets were further
combined; (3) decision fusion was conducted by combining
the prediction results of different datasets using the same
modeling method.

Classification Methods
Discriminant methods were used in this study to classify
different rice diseases. These methods included logistic regression
(LR), support vector machine (SVM), and convolutional
neural network (CNN).

LR is a linear regression method used for classification. LR
model is basically used to solve the binary classification problems.
It outputs probabilities of two situations, and the class of the
corresponding sample is determined based on the probabilities.
The general idea of LR is to map the real value predicted
by the linear regression model into the value in range 0–1
(probability) by a sigmoid function. LR can also be extended
to multiclass classification problems by using the one vs. rest
strategy (Tremblay et al., 2019; Zhu S.S.et al., 2019).

SVM is a widely used machine learning method for
classification and regression. For linearly separable data, a linear
equation can be obtained to construct the hyperplanes. For data
which are not linearly separable, SVM maps the original data into
high-dimensional spaces to transform the problem into linearly
separable issues and constructs hyperplanes to maximally divide
the samples from different categories in the new spaces (Feng
et al., 2018; Sun et al., 2018; Zhang et al., 2018). Kernel functions
are essential for the mapping, and radial basis function (RBF) is a
widely used kernel function of SVM. In this study, RBF was used
as the kernel function for SVM with a grid-search procedure for
parameter optimization.

CNN is a promising method in various fields nowadays.
CNN consists of multiple convolution layers and pooling layers,
which enable this neural network to extract abstract shallow and
deep features of the input automatically. Due to its powerful
representative ability, CNN recently has been introduced to
vibration spectral data analysis for classification (Wu et al., 2018;
Feng et al., 2019; Zhu S.S.et al., 2019) and regression (Ng et al.,
2020; Zhang et al., 2020).
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FIGURE 4 | The flowchart of procedures of training CNN.

As shown in Figure 4, the general flowchart of training CNN
in this article included: (1) feeding training set and validation
set into a network and keep training with changing learning
rate until the training accuracy and validation accuracy reach
up to thresholds; (2) applying the trained network to predict the
whole training set and validation set and inspecting whether the
training accuracy and validation accuracy were high enough and
whether the overfitting problem existed; (3) if the accuracy was
high enough and the overfitting did not exist, the trained network
was saved and all results with this trained network were recorded;
otherwise, changing the learning rate and keep training the
network. The training procedure was performed by optimizing
the cross-entropy loss with the SGD algorithm. Furthermore,
the relationship between epochs and training performances is
provided in Supplementary Figure 3, which illustrated the
change of training accuracy and train loss as the change of
epochs. This is an initial step of training process. After this step,
several small learning rates were used to finetune the CNN, and
a threshold (e.g., accuracy >0.98) was set to stop the training
process (which is not shown in the figure).

Model Establishment, Evaluation, and
Software
To develop the SVM model, the RBF kernel was set as the
kernel function. The optimal combination of penalty parameter

(c) and kernel coefficient parameter gamma (γ) of SVM was
searched using the GridSearchCV function provided by scikit-
learn (version 0.21.3), a Python machine learning package. The
search range of parameters was set as 10−10 to 1010 for both c
and γ, and the three-fold was used for cross-validation strategy.
In addition, the scoring parameter of the function was set
as “accuracy.” In terms of the optimization algorithm of LR,
“liblinear” was chosen for L1 penalization and “newton-cg” was
chosen for L2 penalization in this article. After optimizing these
parameters, a fine-tuning of the parameters was implemented on
the training set and the validation set. Except for the traditional
SVM and LR models, CNN was also used for the classification
task. Since the dimensionalities of features of raw spectra were
varied with the type of technique, the architectures of CNN
were not identical. Besides, different spectra data have different
data structures, and different CNN architectures were tried and
a superior one was chosen for each specific input to get better
results (shown in Supplementary Figures 4–19).

Each preprocessed spectrum of each technique was further
implemented with the standardization process before being
fed into SVM and LR. This standardization preprocessing
standardized features of the training set by removing the
mean and scaling to unit variance and performed the same
standardization on the validation set and the test set by a
utility class StandardScaler in scikit-learn. Concerning modeling
with PCA features, the standard preprocessing was also applied.
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According to self-designed AE, 32 dimensionalities features of
HSI spectra extracted by AE were fed into SVM and LR models.
Before being fed into SVM and LR, features of the training set,
the validation set, and the test set were firstly standardized by the
StandardScaler as mentioned before. This standard preprocessing
was also applied to AE features of MIR and LIBS. In terms of
building CNN, data without the preprocessing of StandardScaler
was found to be helpful to achieve better performance. Therefore,
each source of spectra, PCA features, and AE features were
directly fed into CNN. In terms of features of different levels
of fusion, Standardscaler transformation was applied on merged
datasets to compensate for the scale differences before feeding
these features into classifiers.

The spectra extraction of HSI, MIR, and LIBS were
conducted on MATLAB R2015b (The Math Works, Natick,
MA, United States). To evaluate the model performances,
classification accuracy was used, which was the ratio of the
correctly classified number of samples and the total sample
number. Deep learning was conducted by python3 with MXNET
framework (Amazon, Seattle, WA, United States) with GPU
acceleration. A computer with Intel Core-i7 8700k CPU, NVidia
GTX1060 GPU, 16 GB RAM, and 256 GB SSD was used
for calculation.

RESULTS

Spectral Profiles
After standardization preprocessing for each dataset, the average
spectra for both rice cultivars were plotted for visualization.
Figures 5A,B shows the average HSI spectra of healthy and
infected leaves of the two rice cultivars. Figures 5C,D presents the
average MIR spectra of healthy and infected leaves of the two rice
cultivars. Figures 5E,F shows the average LIBS spectra of healthy
and infected leaves of the two rice cultivars. The differences
between HSI spectra, MIR spectra, and LIBS spectra could be
observed intuitively.

Concerning HSI spectra, there was some noise at the
beginning and end of spectra due to the response of the
spectroscopic instrument, which made a difference among curves
of leaves in four health conditions. Therefore, this range of
spectra is out of the discussion. The spectra among healthy leaves
and leaves suffering from three different diseases presented an
obvious difference in the range of 530–650 nm. The average
spectra of healthy leaves were distinguishingly higher than leaves
of DWB and WKB around the spectral region of 530–650 nm.
However, some overlaps existed among the spectral curves of
leaves under different conditions. Therefore, it required further
study to make a better distinction.

There were obvious differences among the MIR spectra of
leaves in four different health conditions as well. In the range of
500–1,500 cm−1, the spectra of healthy leaves of the Zhefujing83
had higher values than the leaves infected with DWB and
BYK. On the contrary, the spectra of healthy rice leaves of the
Zhefujing83 had lower values than the leaves infected with DWB
and BYK around 2,000–2,750 nm. In terms of the AD516, the
tendency of MIR spectra was similar.

As for LIBS spectra, each peak of LIBS spectra was related
to the specific element, which would vary with the change
of environmental and intrinsic factors (such as the health
condition). With respect to Zhefujing83, the peak intensity
of leaves infected by DWB and BYK were smaller than that
of healthy leaves. In terms of AD516, the peak intensity of
leaves with WKB, DWB and BYK were all smaller than that
of healthy leaves.

Classification Models Using Each Single
Spectroscopic Datasets
The results of the classification models using each single
spectroscopic datasets are shown in Table 2. Among the three
original spectroscopic datasets, the highest prediction accuracy
was obtained from HSI spectral data of two rice varieties. CNN
model with HSI data of Zhefujing83 could achieve the accuracy
of 100% for the test set that was better than 90.38% (SVM) and
98.08% (LR). As for AD516, both CNN and LR models using
HSI data achieved the accuracy of 100% for the training set, the
validation set, and the test set. Furthermore, the confusion matrix
of CNN based on the full HSI spectra of AD516 is illustrated in
Supplementary Figure 20. The confusion matrix indicated the
three diseases were separable based on the spectral data.

In terms of the results of MIR, both CNN and LR using MIR
data of Zhefujing83 obtained the accuracy of 82.69% for the
test set, which was higher than SVM (79.69%). As for AD516,
LR obtained the best performance, with the accuracy of 96.88%
for the test set.

Based on Full-LIBS spectra of Zhefujing83, CNN (the accuracy
of 86.54% for the test set) obtained a higher accuracy of 15.39
and 19.23% for the test set than the corresponding SVM (71.15%)
and LR (67.31%), respectively. CNN with Full-LIBS spectra of
AD516 were inferior to the corresponding LR but superior to
the corresponding SVM. This might result from the severity of
diseases varying with rice variety.

Classification Models Based on Feature
Extraction
PCA-Based Classification
The results of models based on features extracted by PCA are
shown in Table 3. Among PCA features from three spectroscopic
instruments, the highest prediction accuracy was obtained from
PCA features of HSI spectra for both rice varieties.

In terms of HSI, the first 14 PCs explaining 99.99% of the
information in original spectra were adopted to modeling. For
two rice varieties, the accuracy of the training set of SVM
and LR models were all over 98%, while the accuracy of the
validation set and the test set exceeded 96%. CNN with PCA
features of HSI spectra obtained the accuracy over 93% for both
varieties. Overall, models based on PCA features achieved better
performance than models based on full spectra.

With respect to MIR, the number of PCs for two rice
varieties was not identical in the condition of the same
accumulative explained variance. The results of the training
set and validation set all reached 100% based on both SVM
and LR models, and the results of the test set were all
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FIGURE 5 | The average spectra of two varieties of rice leaves in different health conditions. (A) HSI spectra of Zhefujing83; (B) HSI spectra of AD516; (C) MIR
spectra of Zhefujing83; (D) MIR spectra of AD516; (E) LIBS spectra of Zhefujing83; (F) LIBS spectra of AD516.

above 90%. CNN obtained the accuracy of 90.38% for the
test set as well. Compared with the results based on Full-MIR
spectra, the performance of the three models was improved

overall. This indicted PCA was not only helpful in reducing
the dimension of data but also contributed to improving
classification accuracy.
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TABLE 2 | The classification results based on multisource spectra.

Cultivar Features Variables Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%)

Zhefujing83 Full-HSI 390 SVM 95.00 90.00 90.38 LR 98.33 95.00 98.08 CNN 98.33 95.00 100

Full-MIR 7,468 100 100 76.92 100 100 82.69 100 95.00 82.69

Full-LIBS 22,036 100 100 71.15 100 100 67.31 100 100 86.54

AD516 Full-HSI 390 100 100 96.88 100 100 100 100 100 100

Full-MIR 7,468 99.17 90.00 85.94 100 100 96.88 100 90.00 81.25

Full-LIBS 22,036 100 100 75.00 100 100 87.50 100 100 81.25

Other abbreviations are similar to this fashion. Tr, training set; Val, validation set; Te, test set; Full-HSI, full spectra of HIS.

TABLE 3 | The classification results based on PCA/AE features of different spectral sources.

Cultivar Features Variables Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%)

Zhefujing83 PCA-HSI 14 SVM 98.33 95.00 100 LR 98.33 100 100 CNN 100 95.00 94.23

PCA-MIR 34 100 100 90.38 100 100 90.38 100 95.00 90.38

PCA-LIBS 114 100 85.00 63.46 100 85.00 63.46 100 95.00 78.85

AE-HSI 32 98.33 70.00 76.92 98.33 70.00 65.38 98.33 80.00 63.4

AE-MIR 16 94.17 80.00 84.38 96.67 95.00 76.92 100 100 78.85

AE-LIBS 64 99.17 95.00 63.46 99.17 90.00 65.38 100 100 69.23

AD516 PCA-HSI 14 100 100 96.88 100 100 100 100 100 93.75

PCA-MIR 42 100 100 96.88 100 100 95.31 100 95.00 78.13

PCA-LIBS 103 100 90.00 81.25 100 95.00 81.25 95.83 95.00 85.94

AE-HSI 32 94.17 75.00 81.25 97.5 95.00 84.38 95.00 85.00 84.38

AE-MIR 16 96.67 80.00 87.50 95.00 85.00 84.38 99.17 85.00 78.13

AE-LIBS 64 100 90.00 73.44 100 95.00 81.25 100 95.00 73.44

Other abbreviations are similar to this fashion. Tr, training set; Val, validation set; Te, test set; PCA-HSI, the features of HSI extracted by PCA; AE-HSI, the features of HSI
extracted by AE.

As for LIBS, the number of PCs for two rice varieties
was also not identical for a similar reason. After parameter
optimization, classification results of SVM and LR for the
training set were all 100% for both varieties, and the prediction
results of AD516 were 81.25%, while prediction results of
the Zhefujing83 were 63.46%. These results revealed that the
variety of rice might have an influence on rice leaf disease
discrimination. CNN model based on PCA-LIBS of Zhefujing83
obtained the accuracy of 100 and 95% for the training set
and the validation set, respectively, which were better than
corresponding SVM and LR models. The accuracy for the test
set increased from 63.46% (SVM and LR) to 78.85% (CNN). The
change trend of results of CNN for the AD516 was similar to
the Zhefujing83.

Compared with the results based on Full-HSI spectra, the
accuracy of models based on PCA features was improved but with
only 14 dimensionalities of features. This contributed to saving
computing resources and computing time. In addition, the results
based on PCA features of Full-MIR data were obviously improved
than the results based on Full-MIR data, while the dimensionality
of data was decreased from 7,468 to 34 for Zhefujing83 and 42 for
AD516. The results based on Full-LIBS data was overall slightly
better than the results based on PCA-LIBS. However, the models
with PCA-LIBS only used less than 114 dimensionalities (114 for
Zhefujing83 and 103 for AD516) of data, while the former used
22,036 dimensionalities of Full-LIBS data. Overall, PCA was an
effective tool for feature extraction.

Autoencoder-Based Classification
As shown in Table 3, the accuracy of the test sets of two rice
varieties all exceeded 75% by SVM models using AE features.
Meanwhile, LR only achieved the accuracy of 84.38% for the test
set of AD516 but obtained only 63.58% for Zhefujing83. CNN
based on AE-HSI obtained the accuracy of 67.31% for the test set
of Zhefujing83 and obtained 79.69% for AD516.

In terms of AE-MIR, the performance of the SVM model was
superior to the LR model after parameter optimization, with the
accuracy surpassing 94% for the training set, reaching 80% for
the validation set, and all the accuracy over 84% for the test
set. Compared with the results based on Full-MIR spectra, SVM
based on features from AE performed slightly better. Meanwhile,
LR based on AE-MIR obtained worse classification results than
LR based on Full-MIR. For Zhefujing83, CNN based on AE-
MIR obtained the accuracy of 100% for both the training set and
the validation set. However, it only obtained 75% for the test
set. Besides, CNN obtained 78.13% for the test set of AD516. It
indicated CNN had limited power on the small dataset (only 30
samples per category of rice). Besides, the results based on AE
were inferior to the results based on PCA. The features extracted
from AE had no more than half of the dimensionalities of features
extracted by PCA.

Considering the massive dimensionalities of the Full-LIBS
spectra, 64 dimensionalities of features were extracted for
classification models. The performance of SVM and LR models
using AE-LIBS were similar, and both models obtained the
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accuracy surpassing 99% for the training set and the accuracy
surpassing 90% for the validation set for both rice varieties.
CNN (71.88% for the test set) based on AE-LIBS was inferior
to the corresponding SVM (73.44% for the test set) and LR
(81.25% for the test set). Besides, all three classifiers obtained a
higher accuracy for AD516 than Zhefujing83. It indicated that the
variety of rice influenced feature extraction.

Overall, the performance of models varied with the feature
extraction methods. This might attribute to that different
feature extraction methods learned and represented different
aspects of the features of the original data. Integrating features
extracted by different methods might contribute to improving
classification performance. Thus, feature fusion was conducted
for classification.

Classification Models Based on Data
Fusion
Low-Level Fusion
In the low-level fusion approach, spectra from different sources
were directly concatenated. After parameter optimization, the
results of SVM, LR, and CNN are presented in Table 4.

The combination of HSI and MIR helped to improve
classification accuracy by about 4–6% compared with Full-
MIR spectra. Moreover, models based on HSI-LIBS fusion data
obtained better performance than models based on the Full-
LIBS spectra. However, the accuracy based on HSI-MIR and
HSI-LIBS declined compared with the results only based on
the HSI data. The reason might attribute to the irrelevant
information contained in full MIR and LIBS spectra. Fused data
of individual spectra had a higher dimension and contained more
irrelevant information, which interfered with the discriminative
power of classifiers. In addition, compared with Full-MIR, the
combination of Full-MIR and Full-LIBS only helped to improve
the accuracy of SVM for the Zhefujing83. In contrast, the
accuracy of SVM for AD516 and the accuracy of LR models for
both rice varieties had all slightly declined.

In terms of Zhefujing83, CNN based on HSI-LIBS achieved
an accuracy of 90.38% that was higher than 76.92% (SVM)
and 69.23% (LR). For MIR-LIBS, CNN obtained an accuracy
of 86.54% for the test set that was around 6% higher than the
corresponding LR. CNN based on MIR-LIBS (with the accuracy

of 86.54% for the test set) was better than CNN based on Full-
MIR alone (with 82.69% for the test set). CNN based on HSI-
MIR-LIBS performed better than the corresponding SVM and
LR. Besides, CNN based on HSI-MIR-LIBS obtained the accuracy
of 92.31% for the test set, which were higher than both CNN
based on MIR (82.69%) and CNN based on LIBS (86.54%). In
terms of AD516, though CNN achieved the accuracy of 100%
for both the training set and the validation set despite the data
sources, CNN obtained lower accuracy for the test set when
compared with SVM and LR.

In summary, the accuracy based on low-level fusion was
not improved, but the dimensionalities of the input data
were multiplied. In consequence, the computing resources
and computing time were increased. Therefore, the low-level
fusion strategy was not efficient enough for classification
improvement in this study.

Mid-Level Fusion
Fusion of AE Features and PCA Features of Each Spectral
Dataset
In the case of mid-level fusion, the informative features separately
extracted by AE and PCA were concatenated into a single matrix
that was further used for multivariate analysis. The results are
shown in Table 5. Satisfactory results were obtained with feature
fusion analysis.

In terms of HSI, both the Zhefujing83 and the AD516 have
46 variables after concatenation. With respect to Zhefujing83, in
contrast with the model performance of the AE-based model,
the accuracy for the training set, the validation set, and the
test set was improved after data fusion, which was not much
different from the results of the PCA feature-based model. The
accuracy of SVM based on AE-PCA-HSI improved to 98.33,
100 and 98.08% for the three datasets (training, validation, and
test), respectively, when compared with SVM based on AE-
HSI (98.33, 70, and 76.92%). The accuracy of LR based on
AE-PCA-HSI improved to 98.33, 100, and 100% for the three
datasets, respectively, when compared with LR based on AE-
HSI (98.33, 70, and 65.38%). The accuracy of CNN based on
AE-PCA-HSI improved to 98.33, 85, and 90.38% for the three
datasets, respectively, when compared with CNN based on AE-
HSI (99.17, 80, and 67.31%). The changing trend of results was
similar for AD516. This indicted combining features extracted

TABLE 4 | The accuracy rates of classification models based on fusion data.

Cultivar Features Variables Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%)

Zhefujing83 HSI-MIR 7,858 SVM 100 95.00 84.62 LR 100 100 86.54 CNN 100 95.00 84.62

HSI-LIBS 22,426 100 100 76.92 100 100 69.23 100 100 90.38

MIR-LIBS 29,504 100 100 86.54 100 100 80.77 100 100 86.54

HSI-MIR-LIBS 29,894 100 100 90.38 100 100 82.69 100 100 92.31

AD516 HSI-MIR 7,858 100 100 92.19 100 100 100 100 95.00 85.94

HSI-LIBS 22,426 100 100 81.25 100 100 90.63 100 100 84.38

MIR-LIBS 29,504 100 100 84.38 100 100 92.19 100 100 84.38

HSI-MIR-LIBS 29,894 100 100 85.94 100 100 92.19 100 100 81.25

Other abbreviations are similar to this fashion. Tr, training set; Val, validation set; Te, test set; HSI-MIR, the concatenation of full HSI and MIR spectra; HSI-LIBS, the
concatenation of full HSI and LIBS spectra; MIR-LIBS, the concatenation of full MIR and LIBS spectra; HSI-MIR-LIBS, the concatenation of full HSI, MIR, and LIBS spectra.
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TABLE 5 | The classification accuracy based on fusion data of AE and PCA features of different spectral sources.

Cultivar Features Variables Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%)

Zhefujing83 AE-PCA-HSI 46 SVM 98.33 100 98.08 LR 98.33 100 100 CNN 98.33 85.00 90.38

AE-PCA-MIR 50 100 100 86.54 100 100 88.46 100 100 86.54

AE-PCA-LIBS 178 100 90.00 61.54 99.17 95.00 67.31 100 95.00 73.08

PCA-HSI-MIR 48 100 100 96.15 100 100 98.08 100 95.00 88.46

PCA-HSI-LIBS 128 100 95.00 96.15 100 100 100 100 85.00 63.46

PCA-MIR-LIBS 148 100 100 86.54 100 100 86.54 100 95.00 48.08

PCA-HSI-MIR-LIBS 162 100 100 96.15 100 100 96.15 100 100 80.77

AE-PCA-HSI-MIR 96 100 100 94.23 100 100 98.08 100 95.00 84.62

AE-PCA-HSI-LIBS 224 100 95.00 75.00 100 95.00 75.00 100 95.00 75.00

AE-PCA-MIR-LIBS 228 100 100 88.46 100 100 90.38 100 100 86.54

AE-PCA-HSI-MIR-LIBS 274 100 100 92.31 100 100 92.31 100 100 78.85

AD516 AE-PCA-HSI 46 100 100 92.19 100 100 100 100 95.00 92.19

AE -PCA-MIR 58 100 100 95.31 100 100 96.88 100 95.00 84.38

AE -PCA-LIBS 167 100 85.00 79.69 100 100 84.38 100 95.00 73.44

PCA-HSI-MIR 56 100 100 98.44 100 100 100 100 95.00 90.63

PCA-HSI-LIBS 117 100 100 98.44 100 100 98.44 100 95.00 87.5

PCA-MIR-LIBS 145 100 100 85.94 100 100 85.94 100 95.00 85.94

PCA-HSI-MIR-LIBS 159 100 100 95.31 100 100 98.44 100 100 87.5

AE-PCA-HSI-MIR 104 100 100 98.44 100 100 100 100 100 85.94

AE-PCA-HSI-LIBS 213 100 100 82.81 100 100 90.63 100 95.00 73.44

AE-PCA-MIR-LIBS 225 100 100 79.69 100 100 85.94 100 100 78.13

AE-PCA-HSI-MIR-LIBS 271 100 100 82.81 100 100 100 100 90.00 78.13

Other abbreviations are similar to this fashion. Tr, training set; Val, validation set; Te, test set; AE-PCA-HSI, the concatenation of PCA features and AE features of
HSI; PCA-HSI-MIR, the concatenation of PCA features of HSI and PCA features of MIR; AE-PCA-HSI-MIR, the concatenation of AE-PCA features of HSI and AE-PCA
features of MIR.

by different feature extraction methods was helpful to improve
classification performance.

In the case of MIR, the performance of models based on
this fusion was better than those based on the AE-based model.
Concerning Zhefujing83, the results of SVM with AE-PCA-
MIR were improved to 100, 100, and 86.54% for the three
datasets, respectively, when compared with SVM based on AE-
MIR (94.17, 80, and 84.38%). The accuracy of LR with AE-PCA-
MIR was improved to 100, 100, and 88.46% for the three datasets,
respectively, when compared with LR based on AE-MIR (96.67,
95, and 76.92%). The accuracy of CNN based on AE-PCA-MIR
was improved to 100, 100, and 86.54% for the three datasets,
respectively, when compared with CNN based on AE-MIR (100,
100, and 75%). The change trend of results was similar with
respect to AD516.

In the case of LIBS, compared with the accuracy based
on PCA features, the accuracy based on the fusion data were
decreased by about 2% for Zhefujing83, which were increased
by about 3% for AD516. Overall, integrating features extracted
by different feature extraction methods was helpful for better
classification performance.

Fusion of Features from Three Spectral Datasets
From the section “Classification Models Based on Feature
Extraction,” we found that the models based on features extracted
from PCA had the best performance compared with models
based on the AE features. Thus, the PCA features extracted from

three spectroscopic data were further fused for classification.
The results are shown in Table 5. SVM and LR were carried
out on the fused features using the previously used parameter
optimization method.

In terms of the Zhefujing83, on the one hand, in contrast with
the results based on PCA-HSI, the accuracy for the training set
and the validation set increased to 100% with both SVM and
LR models based on the integration of PCA features of HSI
and MIR. The accuracy of the test set was 96.15% for SVM and
98.08% for LR. On the other hand, compared with results based
on PCA features of MIR, the accuracy for the test set respectively
increased by 5.77 and 7.7% for SVM and LR based on integrated
features of HSI and MIR.

As for AD516, the models based on PCA-HSI-MIR obtained
the best performance among all combinations, followed by
PCA-HSI-LIBS, PCA-HSI-MIR-LIBS and PCA-MIR-LIBS. In
contrast with the corresponding models using single source of
PCA features, the LR based on PCA-HSI-MIR achieved the
classification accuracy of 100% for the training set, the validation
set, and the test set, which were identical with LR based on
PCA-HSI and were better than the LR based on PCA-MIR.
Moreover, SVM based on PCA-HSI-MIR obtained good results
for the training set, the validation set, and the test set, with the
classification accuracy of 100, 100, and 98.44%, respectively. SVM
based on PCA-HSI-MIR were better than SVM based on PCA-
HSI. Besides, SVM based on PCA-HSI-MIR were better than
SVM based on PCA-MIR as well. CNN based on PCA-HSI-MIR
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achieved 100, 95, and 90.63% for the training set, the validation
set, and the test set, respectively.

However, integrating PCA-MIR with PCA-LIBS deteriorated
the performance of three kinds of models; the accuracy was 5–
10% lower than models based on PCA-MIR. Beyond that, the
results based on PCA feature fusion were close to even better than
the results based on a single source of PCA features.

Except for integrating PCA features from three kinds of
spectra, we further fused the AE-PCA fusion data of different
data sources in the previous section. The results are shown in
Table 5. Before being fed to SVM and LR, the fusion data were
preprocessed by the StandaradScaler as mentioned before.

For Zhefujing83, in contrast with models based on AE-PCA
features of MIR, the classification accuracy of the SVM and
LR based on AE-PCA-MIR-LIBS was improved by about 2%.
The accuracy increased more when compared with models
based on the AE-PCA features of LIBS. Besides, SVM and
LR based on this kind of fusion had better performance
than models based on full spectra overall for both rice
varieties. Among all combinations, the performances of
models in descending order were as follows: AE-PCA-
HSI-MIR, AE-PCA-HSI-MIR-LIBS, AE-PCA-MIR-LIBS,
and AE-PCA-HSI-LIBS. CNN obtained the best results
using PCA-HSI-MIR, with the accuracy of 100, 95, and
88.46% for the training set, the validation set, and the test
set, respectively.

For AD516, in contrast with the best SVM and LR based on
the AE-PCA feature from a single data source, the integration
of AE-PCA features of HSI and MIR contributed to obtaining
better classification results. Besides, the integration of AE-PCA
features of three spectra was helpful to obtain the accuracy of
100% for three datasets with LR. CNN based on this kind of
fusion did not exhibit good enough performance, though CNN
obtained the accuracy of 100% and over 95% for the training
set and the validation set, respectively. Among all combinations,
CNN using PCA-HSI-MIR obtained the highest accuracy for the
test set (90.38%).

In summary, this section studied the feasibility of CNN to
classify rice leaves in four conditions with AE-PCA features. The
results were inferior to SVM and LR overall. Considering the
number of samples in the training set and the validation set being
120 and 20, respectively, CNN may not be able to exhibit its
power for classification for lack of enough samples. However, the
results could indicate the great potential of deep learning based

approaches for rice disease detection. More samples were needed
in future studies to fully reveal the advantage of deep learning.

High-Level Fusion
The high-level fusion strategy based on majority voting was
applied to classification results (Tables 2 and 3) obtained by
classification models based on a single source of spectra. High-
level fusion was applied to full spectra, PCA features, and AE
features, respectively. A classifier developed on one specific
analytical data made its own predictions. With these predictions
from different sources of data, the final decisions of high-level
fusion were calculated according to a majority of vote rule.
Classification results achieved by using the combination of all
three sources of full spectra, the combination of all three sources
of PCA features, and the combination of all three sources of AE
features are listed in Table 6.

On the one hand, SVM based on high-level fusion using full
spectra of Zhefujing83 obtained the accuracy of 100 and 100%
for the training set and the validation set, which were higher than
SVM based on Full-HSI spectra (95 and 90%), with the accuracy
of 90.38% for the test set of the two SVM models. CNN based
on high-level fusion obtained the classification accuracy of 100%
for the training set, the validation set, and the test set, which was
better than the corresponding CNN based on Full-HSI (98.33,
95, and 100% for the training set, the validation set, and the test
set, respectively), Full-MIR (100, 95, and 82.69%) and Full-LIBS
(100, 100, and 86.54%). On the other hand, in terms of AD516,
the accuracy of SVM for the test set declined to 93.75% after
high-level fusion, with the accuracy for the training set and the
validation set being the same as 100%. Fusion results of CNN
only obtained the accuracy of 87.5% for the test set since both
CNN based on Full-MIR and Full-LIBS only achieved 81.25% for
the test set. Besides, compared with the accuracy of SVM models
based on Full-MIR, the accuracy for the test set was improved
from 76.92 to 90.38% for Zhefujing83 and from 85.94 to 93.75%
for AD516. When compared with the accuracy of SVM models
based on Full-LIBS, the accuracy for the test set was improved by
over 18% after high-level fusion.

For high-level fusion of classifiers based on PCA features, the
accuracy for both the training set and the validation set was
increased to 100% compared with the accuracy based on PCA
features of a single type of spectra. In terms of Zhefujing83,
SVM based on high-level fusion obtained the accuracy of 98.08%
for the test set, which exceeded the corresponding accuracy of

TABLE 6 | The classification accuracy rate based on high-level fusion.

Feature type Rice cultivar Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%) Model Tr (%) Val (%) Te (%)

Full Zhufujing83 SVM 100 100 90.38 LR 100 100 88.46 CNN 100 100 100

AD516 100 100 93.75 100 100 98.44 100 100 87.50

PCA features Zhufujing83 100 100 98.08 100 100 98.08 100 100 96.15

AD516 100 100 96.88 100 100 98.44 100 100 90.63

AE features Zhufujing83 100 100 80.77 99.17 90.00 75.00 100 100 73.08

AD 516 100 85.00 90.63 100 95.00 89.06 100 90.00 85.94

Tr, training set; Val, validation set; Te, test set; Full, Full spectra; PCA features, featuers extracted by principal component analysis; AE features, features
extracted by autoencoder.
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SVM based on PCA-MIR and PCA-LIBS. Besides, LR based on
high-level fusion obtained the accuracy of 98.08% for the test
set, which was much higher than 90.38 and 63.46% of LR based
on PCA-MIR and PCA-LIBS, respectively. CNN based on high-
level fusion obtained the accuracy of 96.15% for the test set,
which were much higher than 94.23, 90.38, and 78.13% of CNN
based on PCA-HSI, PCA-MIR, and PCA-LIBS, respectively. With
respect to AD516, SVM based on high-level fusion obtained an
accuracy of 96.88%, which was 15.63% more than the SVM model
based on PCA-LIBS. In addition, LR obtained the accuracy of
98.44% for the test sets, which were higher than 95.31 and 81.25%
of LR based on PCA-MIR and PCA-LIBS, respectively. Besides,
CNN obtained the accuracy of 90.63% for the test set, which was
higher than 78.85 and 85.94% of CNN based on PCA-MIR and
PCA-LIBS, respectively.

In terms of high-level fusion of classifiers based on AE
features, the SVM and LR models after high-level fusion were
all better than models based on individual type of spectra. In
terms of Zhefujing83, the accuracy of SVM was increased to
100% for both the training set and the validation set after data
fusion, and the accuracy of the test set after high-level fusion
was 3.85 and 17.31% higher than that base on AE-HSI and
AE-LIBS, respectively. Besides, the improvement trend of the
accuracy of SVM and LR for AD516 complied with that of
Zhefujing83. For Zhefujing83, CNN based on high-level fusion
obtained the accuracy of 73.08% for the test set, which were
5.77 and 17.31% higher than CNN based on AE-HSI and AE-
LIBS, respectively. For AD516, CNN based on high-level fusion
obtained the accuracy of 85.94% for the test set, which were
improved when compared with CNN based on AE-HSI (79.69%
for the test set), CNN based on AE-MIR (78.13% for the test set),
and CNN based on AE-LIBS (71.88% for the test set).

In all, classification performances based on the high-level
fusion approach were slightly better than those based on one
single analytical source.

DISCUSSION

In this study, two different rice varieties were used to verify
the proposed methods in this article being effective despite rice
varieties. According to Tables 2 and 4, classification accuracy
between Zhefujing83 and AD516 was different in general.
Overall, LR and SVM obtained higher prediction accuracy for
AD516 than those for Zhefujing83. Besides, CNN models for
Zhefujing had a better overall performance than those for
AD516. There existed a variance among the performance of
different models using different datasets of different varieties
of rice. The deep reasons for the varietal variances would be
further investigated in future studies with more samples with
physiological and biochemical analyses.

In terms of data fusion strategies, low-level fusion directly
integrates the original data, so it has an immense data calculation.
In this study, the original HSI, MIR, and LIBS spectra had
390, 7,468, and 22,036 dimensionalities of features, respectively.
After concatenating every two of them, the dimensionalities
of new data would greatly increase. This would increase the

computing time. Apart from the high dimension of input, the
limited number of samples in the training set (only 30 samples
per category) restricted the performance of CNN.

Besides, the increase in information brought by low-level
fusion may not compensate for irrelevant or spurious variance
brought by this fusion strategy (Biancolillo et al., 2014). The
low-level fusion has some limitations which are a high data
volume and the possible predominance of one data source over
the others (Borras et al., 2015). In our case, models based on full
HSI spectra had very satisfying classification results. However,
after concatenating full HSI with full MIR or full LIBS, the
accuracy of models has declined slightly when compared with
results based on full HSI but increased obviously when compared
with results based on full MIR or full LIBS. That indicated full
HSI spectra had predominance over the other data sources. It
should be addressed that the different sources of data can have a
very different scale, and the appropriate preprocessing is of great
importance before establishing models. Besides, there can exist
some redundant information when using different instruments.
In these conditions, it is critical to preprocess the raw data before
data fusion, and sometimes fusion of fewer techniques might be
able to obtain satisfactory results.

Mid-level fusion can partially overcome the high-data–
volume problem. The data dimensionality could be significantly
reduced with feature extraction methods. Besides, this fusion
strategy is helpful to filter individual instrument noise and
enable the interpretation of the results because of the fewer
dimensionalities of inputs (Borras et al., 2015). Berdugo et al.
(2014) adopted mid-level fusion with at least one feature
per sensor among hyperspectral imaging, thermography, and
chlorophyll fluorescence to detect cucumber disease. The
most discriminant features from thermography and chlorophyll
fluorescence had limited power to identify or differ plant diseases
or abiotic stress. However, hyperspectral imaging was good
at assessing disease-specific changes. Therefore, the features
extracted from different instruments were cooperative, and the
fusion of these features was helpful to filter noise existing in each
instrument and obtain more complete information.

Furthermore, the fewer features within mid-level fusion
were helpful to develop a real-time disease detection system.
Moshou et al. (2005) assessed the real-time implementation
of the Self-Organizing Map (SOM) neural network to detect
wheat disease. The three selected spectral reflectance values were
further fused with one fluorescence feature. The SOM classifier
based on the fusion data achieved the overall classification
accuracy of around 99%, which was higher than using one
fluorescence feature. Besides, the fusion of features from different
instruments may cause the issue of redundant information.
To detect grape leaf disease, Adeel et al. (2019) implemented
canonical correlation analysis for feature fusion and further
performed neighborhood correlation analysis to reduce the
dimensionalities and redundant information of the fused data
before feeding the fused data into the classifier. This strategy
helped to achieve an accuracy of 94.1% that was superior to the
existing methods. In terms of disadvantages, mid-level fusion
requires a preliminary feature extraction stage. Besides, taking
account the many combinations of feature extraction methods
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and preprocessing, testing all the combinations makes the whole
process cumbersome, computationally intensive, and difficult to
validate (Borras et al., 2015).

Lastly, high-level fusion is operated with the classification
results of individual classifiers. These separate models are
developed based on the data of different instrumental techniques.
Their predictions are then integrated into a single final response.
Through a majority vote, a sample is assigned to the most-
frequently predicted category. In this study involving four
categories and three instrumental data, if the sample was
predicted as class 1 by the two of the three classifiers, it would be
assigned to class 1. Moreover, there are some other more complex
protocols, such as Bayesian statistics (Biancolillo et al., 2014),
which can be applied for decision making of high-level fusion.
Concerning this type of fusion, every individual instrument is
treated independently. Therefore, the responses from inefficient
techniques (like LIBS spectra in this article) do not worsen the
overall performance. Moreover, it is easy to add new techniques
for final decision making when a new type of data is available.
This increases the versatility of the decision-making process.

To better understand the differences across different methods,
the ANOVA analysis was carried out. Diagnostic analysis among
models was mainly discussed here, and the variance of rice
variety and spectroscopic techniques was not considered. The
influence of the type of input (full spectra, PCA features, and
AE features) on classification results of CNN was analyzed.
Besides, the difference of CNN based on different levels of fusion
was also analyzed. On the one hand, the ANOVA analysis was
performed on results based on full spectra (including Full-HSI,
Full-MIR, and Full-LIBS), PCA features (including PCA-HSI,
PCA-MIR, and PCA-LIBS), and AE features (including AE-HSI,
AE-MIR, and AE-LIBS). The analysis results are summarized in
Supplementary Table 1 (based on classification results of the
training set), Supplementary Table 2 (based on classification
results of the validation set), and Supplementary Table 3 (based
on classification results of the test set), respectively. Since all CNN
models achieved the accuracy of about 100% on the training
set, all p values in Supplementary Table 1 were greater than
0.2, which indicated there was no obvious difference between
classification results based on full spectra and those based on
features. Similar results could also be found in Supplementary
Table 2. However, Supplementary Table 3 showed that the
significance value (p = 0.008) between classification results based
on full spectra and classification results based on AE features was
smaller than 0.05, which suggested classification results based on
these two sources of data had significant differences. On the other
hand, the ANOVA analysis was carried out on a different level of
fusion, including nonfusion, low-level fusion, mid-level fusion,
and high-level fusion. The ANOVA results are summarized in
Supplementary Table 4 (based on classification results of the
training set), Supplementary Table 5 (based on classification
results of the validation set), and Supplementary Table 6 (based
on classification results of the test set), respectively. The analysis
results based on the training set and the validation set revealed
most p values across two different groups were greater than
0.25, which suggested different levels of fusion had little effect
on classification results. Besides, a p value equaled to 0.063 in

Supplementary Table 6, which indicated the difference between
classification results based on nonfusion and results based on
mid-level fusion was not significant at the α = 0.05 level but
was significant at the α = 0.1 level. In addition, another p value
equaled to 0.055 in Supplementary Table 6, which indicated
the difference between classification results based on mid-fusion
and results based on high-level fusion was significant at the
α = 0.1 level as well.

CONCLUSION

In this study, HSI, MIR, and LIBS were applied to detect rice
leaves inoculated by different diseases. Models based on full
HSI spectra had the best performance among three full spectra.
Based on full HSI, SVM, LR, and CNN obtained the accuracy of
90.38, 98.08, and 100% for the test set, respectively. PCA was an
effective tool to extract key information. All three classifiers based
on PCA-HSI obtained 94% accuracy for the test set. Besides,
as part of the deep learning framework, AE was proved to be
effective to extract features and reduce data dimension. Three
kinds of data fusion strategies were explored for classification.
The low-level fusion strategy was the least effective among the
three fusion strategies due to the huge dimensions of fused data.
Combined with appropriate feature extraction methods, the mid-
level fusion exhibited better performance when compared with
nonfused data. By integrating the PCA features of HSI and the
PCA features of MIR, LR achieved an accuracy of over 98%
for both rice varieties. Besides, it took less time to model with
features. Overall, decision level fusion was a good way to avoid
the limitation of decision making based on a single kind of
classifier. In terms of the high-level fusion of classifiers based
on full spectra, compared with the accuracy of SVM models
based on full MIR, the accuracy of the test set after fusion was
improved from 76.92 to 90.38% for Zhefujing83 and from 85.94
to 93.75% for AD516. Concerning high-level fusion of classifiers
based on PCA features, the accuracy of both the training set
and the validation set was increased to 100% compared with the
accuracy based on PCA features of a single type of spectra. In
terms of the high-level fusion of AE features, the accuracy of
SVM was increased to 100% for both the training set and the
validation set after data fusion, and the accuracy for the test set
after fusion obtained 3.85 and 17.31% higher than that based
on AE-HSI and AE-LIBS, respectively. In this work, CNN did
not achieve excellent performance due to the limited number of
samples in the training set (only 30 samples per category), but
the great potential of CNN for rice diseases detection could be
observed. More samples are required to make full use of CNN.
More rapid and sensitive analytical techniques are available in
industrial processes and laboratories, which will keep promoting
advances in data fusion in various fields. There is still room for
improvement in different levels of fusion.
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