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Cytokinins are crucial signaling molecules that regulate plant growth and development.

OsCKX2 irreversibly degrades nucleobase cytokinins by encoding cytokinin

oxidase/dehydrogenase to control grain production in rice. In this study, OsCKX2

was specifically overexpressed in roots using RCc3 promoter to investigate the effects of

root-source cytokinins on the growth of rice. OsCKX2 overexpressed (OE) rice showed

retarded growth with lower cytokinin levels and biomass production. Shoot-specific

transcriptome analysis betweenOsCKX2OE rice and wild type (WT) revealed differentially

expressed genes (DEGs) associated with cell division, cell wall structure, phytohormone

signaling, and assimilation and catabolism. Metabolome analysis indicated that a

majority of differential primary metabolites, such as amino acids and organic acids,

increased, while lipids decreased in OsCKX2 OE rice. Integration of transcriptomic and

metabolomic data showed that several DEGs and differential metabolites were related

to glycolysis and tricarboxylic acid cycle (TCA). To conclude, reduced cytokinin levels

via root-specific overexpression of OsCKX2 resulted in developmental defects, which

confirmed the importance of root-source cytokinins in plant growth and morphogenesis.

Keywords: OsCKX2, cytokinin, transcriptome, metabolome, root-specific expression

INTRODUCTION

Cytokinins are a class of fundamental phytohormones, which are signalingmolecules thatmodulate
various developmental processes. Naturally occurring cytokinins are adenine derivatives and
are classified into isoprenoid cytokinins and aromatic cytokinins; the former includes N6-(12-
isopentenyl) adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), dihydro-zeatin (DZ) and their riboside,
ribotide, or glycoside conjugates. Among these, tZ and iP are ubiquitously and predominantly
present in plant species (Hirose et al., 2008). Many studies have illustrated the role of cytokinins and
their signaling pathways in almost all the plant growth and developmental processes, such as seed
germination (Wang et al., 2011), shoot meristem development (Gordon et al., 2009), root growth
(Bielach et al., 2012), chloroplast development (Cortleven and Schmülling, 2015), and reproductive
development (Jameson and Song, 2016).

Cytokinin biosynthesis, activation, translocation, and degradation are regulated andmaintained
by multiple enzymes. Biosynthesis starts with the production of iP-nucleotides by adenosine
phosphate-isopentenyltransferases (IPTs), the rate-limiting enzymes (Sakakibara et al., 2005).
Cytochrome P450 mono-oxygenase CYP735A hydroxylates and transforms these products into
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tZ-nucleotides (Hirose et al., 2008). The tRNA
isopentenyltransferase (tRNA-IPT) degrades cis-hydroxy
isopentenyl tRNAs to produce cZ-nucleotides. Nucleoside
5′-monophosphate phosphoribohydrolases, encoded by
LONELY GUY (LOG) genes, catalyze and convert inactive
cytokinin nucleotides into active free-base forms in plants
and plant-interacting organisms (Kurakawa et al., 2007; Seo
and Kim, 2017). Purine permeases (PUPs) and equilibrative
nucleoside transporters (ENTs) act as influx carriers to
transport cytokinins in an active manner (Liu et al., 2019).
Cytokinin oxidase/dehydrogenases (CKXs) preferentially and
irreversibly degrade nucleobase cytokinins by cleavage of
unsaturated N6-isoprenoid side chains to adenines, to control
plant cytokinin levels (Ashikari et al., 2005). The multistep
His-Asp phosphorelay, which consists of histidine kinase
(HK) receptor, histidine phosphotransfer (HP) protein, and
separate response regulator (RR), controls the perception and
signal transduction of cytokinins (Tsai et al., 2012). Many
studies have demonstrated the role of cytokinin signaling
genes in plant growth and development. Overexpression
of IPT in tobacco maintained high water content, retained
photosynthetic activity, and retarded leaf senescence under
drought conditions (Rivero et al., 2007). Mutation in CYP735A
genes, involved in trans-zeatin biosynthesis in Arabidopsis
thaliana, resulted in an abnormal lateral root primordia
positioning phenotype (Chang et al., 2015).Mutation in LONELY
GUY (LOG), a cytokinin-activating enzyme, caused premature
termination of shoot meristem and yield reduction in rice
(Kurakawa et al., 2007).

In past decades, extensive studies have been carried
out on CKX gene family, which encodes cytokinin
oxidase/dehydrogenase to degrade cytokinins in plants.
CKX2 manipulates endosperm growth to control seed size
in Arabidopsis thaliana (Li J. et al., 2013). TaCKX6-D1 and
HvCKX1 play crucial roles in grain weight and yield in wheat
and barley, respectively (Zalewski et al., 2010; Zhang et al., 2012).
Overexpression of AtCKX genes in tobacco and Arabidopsis
caused remarkable developmental alteration in the shoot and
root system (Werner et al., 2001, 2003). Ectopic overexpression
of Arabidopsis thaliana CKX1 elevated drought and heat
stress tolerance in tobacco (Macková et al., 2013). In rice, the
CKX gene family consists of 11 members, and so far only
OsCKX2 and OsCKX4 have been well-characterized. Studies
have demonstrated the role of OsCKX2 in rice grain production
(Ashikari et al., 2005; Li S. Y. et al., 2013). Knockdown of
OsCKX2 decreased grain yield penalty under salinity stress
conditions (Joshi et al., 2018). OsCKX4, combined with auxin
response factor (OsARF25) and cytokinin response regulators
(OsRR2 and OsRR3), coordinated crown root formation in rice
(Gao et al., 2014).

Cytokinins are mainly biosynthesized in root system, and
OsCKX2 is scarcely expressed in roots (Ashikari et al., 2005;
Yeh et al., 2015). It is unknown what the effect of root-
specific overexpression of OsCKX2 on endogenous cytokinin
levels and growth and development of rice. Therefore, OsCKX2

OE rice was constructed using the root-specific promoter RCc3
(Xu et al., 1995; Gao et al., 2014) to explore the phenotypic
changes at seedling and mature stages and to expound the
regulatorymechanism of cytokinins through transcriptomics and
metabolomics analysis.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Xinfeng 2 (Oryza sativa L. ssp. japonica) variety and OsCKX2
OE rice were used in this study. Wild type (WT; Xinfeng 2)
and OsCKX2 OE rice were grown under greenhouse condition
with 14 h, 28◦C/10 h, 25◦C for light/dark cycle, and natural
field condition at Henan Agricultural University research
farm, Henan Province, China (34◦53′ N, 113◦35′ E, 94m
altitude) during the rice-growing seasons with normal crop
maintenance practices and rigorous separation measures.
Seedlings were cultivated under normal nutrient solution
culture condition in the greenhouse to four to five leaf
stage, phenotypic data of seedling stage were measured, and
plant samples for cytokinin measurement, transcriptome
and metabolome analyses were collected, respectively.
Phenotypic data at mature stage were measured under natural
field condition.

Plasmid Construction and Rice
Transformation
The coding sequence (CDS) of OsCKX2 (Os01g0197700) gene
was obtained from the Rice Annotation Project Database (rap-
db; http://rapdb.dna.affrc.go.jp/) and optimized and synthesized
by Sangon Biotech (Shanghai, China; Supplementary Table 1).
The synthetic CDS with KpnI and SpeI restriction sites was
ligated to pMDC140 vector driven by RCc3 promoter (Gao et al.,
2014) for root-specific expression (Supplementary Figure 1).
This plasmid was introduced into Agrobacterium tumefaciens
strain EHA105 and subsequently transformed into the
scutellar calli of mature Xinfeng 2 seeds to obtain OsCKX2
OE rice.

Phenotypic Measurement
Fresh weight, dry weight, grain yield, and 1,000 grain weight were
measured using 1/10,000 electronic analytical balance (Sartorius,
Beijing, China). Stem thickness wasmeasured using an automatic
vernier caliper (SATA, Shanghai, China). Root thickness was
evaluated under an Olympus DP27 microscope with CellSense
software (Olympus, Tokyo, Japan). Grain length and grain
width were measured using a rice appearance quality detector
(JMWT12, Dong Fu Jiu Heng, Beijing, China). All phenotypic
measurements consisted of 15 biological replicates.

Cytokinin Measurement
The cytokinin contents were measured using the seedlings at
four to five leaf stage and the whole plants at mature stage
in WT and OsCKX2 OE rice. The fresh sample (50mg) was
frozen in liquid nitrogen, ground into powder, and extracted
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with 0.5mL methanol/water/formic acid (15:4:1, v/v/v) at 4◦C.
The extract was vortexed for 10min and centrifuged at 14,000
rpm for 5min at 4◦C, and the supernatant was collected. The
supernatant was further vortexed for 5min and centrifuged
for 5min at 4◦C. Then the extract was evaporated to dryness
under nitrogen gas stream, reconstituted in 80% methanol (v/v),
ultrasonicated for 1min, filtrated through PTFE membrane filter
(0.22µm; ANPEL, Shanghai, China) and placed in a sample
injector for UPLC-MS/MS analysis using an LC-ESI-MS/MS
system (HPLC, Shim-pack UFLC SHIMADZU CBM30A system,
http://www.shimadzu.com.cn/; MS, Applied Biosystems 6500
Triple Quadrupole, http://www.appliedbiosystems.com.cn/). The
analytical conditions were as follows: HPLC column, Waters
ACQUITY UPLC HSS T3 C18 (1.8µm, 2.1mm × 100mm);
solvent system, water (added 0.04% acetic acid): acetonitrile
(added 0.04% acetic acid); flow rate, 0.35 mL/min; temperature,
40◦C; and injection volume, 2 µL. The effluent was connected to
an ESI-triple quadrupole-linear ion trap (Q-TRAP)-MS. The ESI
source operation parameters were as follows: ion source, turbo
spray; source temperature, 500◦C; ion spray voltage (IS), 5,500V;
curtain gas (CUR), 35.0 psi; and collision gas (CAD), medium.
Three biological replicates were maintained per sample.

RNA-Sequencing and Statistical Analysis
The shoots of WT and OsCKX2 OE rice at four to five leaf
stage, including the sheaths and leaves, were collected for total
RNA extraction with three biological replicates. Total RNA
was extracted by Trizol reagent (Invitrogen). Sequence libraries
were constructed using NEBNext Ultra RNA Library Prep
Kit for Illumina (NEB, USA). The clustering of the index-
coded samples was performed using TruSeq PE Cluster Kit v3-
cBot-HS (Illumina). The prepared libraries were sequenced on
Hiseq X Ten Platform (Illumina). The expression differences
between samples were analyzed using DESeq 2.0 (Love et al.,
2014). False Discovery Rate (FDR) was obtained by Benjamini-
Hochberg method. Genes with |log2 fold change| ≥1.0 and
false discovery rate (FDR) <0.05 were defined as differentially
expressed genes (DEGs) between OsCKX2 OE rice and WT.
Gene Ontology (GO) enrichment analysis on DEGs was done
by BiNGO plugin of Cytoscape (Shannon et al., 2003). Each
GO term was evaluated by hypergeometric test and Benjamini-
Hochberg FDR correction. GO terms with a corrected P <

0.01 were considered as significantly enriched. FPKM (fragments
per kilobase of transcript per million mapped reads) was
deemed an indicator of gene expression levels, and log2
(FPKM) values of DEGs were used to draw heatmaps. Pathway
analyses of DEGs were conducted according to the Kyoto
Encyclopedia of Gene and Genomes (KEGG) (http://www.
genome.jp/kegg/) database.

Gene Expression Analysis
First strand cDNA was synthesized from the extracted RNA
using GoScriptTM Reverse Transcription System (Promega,
Madison, WI) following the manufacturer’s instructions. Semi-
quantitative PCR (semi-qPCR) was performed using EasyTaq
DNA Polymerase (TransGen Biotech, Beijing, China) under the
following conditions: initial denaturation for 5min at 95◦C; 30

cycles of denaturation for 30 s at 95◦C, annealing for 30 s at a
temperature dependent on the primers, and elongation for 30 s
at 72◦C, and final extension for 5min at 72◦C. Subsequently,
the expression levels of endogenous and syntheticOsCKX2 genes
were detected with 28 cycles of amplification by agarose gel
electrophoresis, and the housekeeping gene, Actin, was detected
with 30 cycles of amplification in semi-qPCR. Quantitative real-
time polymerase chain reaction (qRT-PCR) was carried out on
CFX96 Real-Time PCR System (Bio-Rad, Hercules, CA) using
GoTaq R© qPCR Master Mix (Promega, Madison, WI) according
to manufacturer’s instructions. All qRT-PCR reactions were
repeated three times on three biological replicates, and relative
gene expression levels were calculated by 2−11CT method.
Rice Actin gene was used as an endogenous control in both
semi-qPCR and qRT-PCR. The primers used are listed in
Supplementary Table 2.

Metabolomic Profiling and Statistical
Analysis
Freeze-dried shoots of WT and OsCKX2 OE rice were triturated
in a mixer mill (MM 400, Retsch) with a zirconia bead for
1.5min at 30Hz. Three biological replicates were analyzed
for each sample. The powder (100mg) was weighed and
extracted with 1.0mL 70% aqueous methanol overnight at
4◦C. After centrifugation at 10,000 g for 10min, the extract
was collected using CNWBOND Carbon-GCB SPE Cartridge
(ANPEL, Shanghai, China) and filtered through a membrane
filter (0.22µm pore size; ANPEL, Shanghai, China) before
HPLC-MS analysis. The HPLC analytical conditions used were
identical to that of cytokinin measurement, with a flow rate
of 0.40 mL/min. Linear ion trap (LIT) and triple quadrupole
(QQQ) scans were acquired on a triple quadrupole-linear ion
trap mass spectrometer (QTRAP, Boston, USA), API 4500
Q TRAP LC/MS/MS system, equipped with an ESI Turbo
Ion-Spray interface, based on the optimized declustering
potential (DP) and collision energy (CE), and controlled by
Analyst 1.6.3 software (AB Sciex, Singapore). The ESI source
operation parameters were as follows: ion source, turbo spray;
source temperature, 500◦C; ion spray voltage (IS), 5,500V;
ion source gas I (GSI), 55.0 psi; gas II (GSII), 60.0 psi, curtain
gas (CUR), 25.0 psi; and collision gas (CAD), high. Metabolite
identification was carried out according to secondary spectral
information, based on metabolite public databases, namely
MassBank (http://www.massbank.jp/), KNAPSAcK (http://
kanaya.naist.jp/KNApSAcK/), HMDB (http://www.hmdb.ca/),
MoToDB (http://www.ab.wur.nl/moto/), and METLIN (http://
metlin.scripps.edu/index.php/). Metabolite quantification was
analyzed using the multiple reaction monitoring (MRM) mode
of QQQ. Unsupervised principal component analysis (PCA) and
supervised multiple regression orthogonal partial least-squares-
discriminant analysis (OPLS-DA) were performed to visualize
the metabolic alterations among experimental groups after mean
centering and unit variance scaling. Metabolites with |log2 fold
change| ≥1.0 and variable importance in projection (VIP) ≥1.0
were identified as the differential metabolites between OsCKX2
OE rice and WT. Annotated metabolites were mapped to the
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FIGURE 1 | Characteristics of OsCKX2 OE rice. Expression of synthetic and endogenous OsCKX2 in root, sheath, and leaf by semi-qPCR (A). Contents of cytokinins

in different forms of tZ, IP, and cZ at seedling stage (B–D) and mature stage (E–G). Data represents means ± SEM (n = 3). *P < 0.05, **P < 0.01.
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FIGURE 2 | Phenotypes of OsCKX2 OE rice and WT at seedling stage. Plant morphology at seedling stage (A). Statistical analysis of shoot length (B), aboveground

fresh weight (C), and aboveground dry weight (D). Data represents means ± SEM (n = 15). **P < 0.01. Scale bars: 5 cm.

FIGURE 3 | Phenotypes and yield related traits of OsCKX2 OE rice and WT at mature stage. Plant morphology at mature stage (A). Statistical analysis of plant height

(B), stem thickness (C), reduction degree of yield related traits (D), grain yield (E), panicle number (F), grain number per panicle (G), 1,000 grain weight (H), and filling

rate (I). Data represents means ± SEM (n = 15). **P < 0.01, *P < 0.05. Scale bars: 10 cm.
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FIGURE 4 | Detailed panicle and grain features of OsCKX2 OE rice and WT. Phenotypes of panicles (A), and grains (B,C). Statistical analysis of length of panicle (D),

first branch number (E), second branch number (F), grain length (G), and grain width (H). Data represents means ± SEM (n = 15). **P < 0.01, *P < 0.05. Scale bars:

2 cm (A), 1 cm (B,C).

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database (http://www.kegg.jp/kegg/pathway.html/) to analyze
pathway associations.

RESULTS

Root-Specific Overexpression of OsCKX2
Reduced Cytokinin Levels
The synthetic OsCKX2 was driven by root-specific promoter

RCc3 to obtain OsCKX2 OE rice (Supplementary Figure 1),

and its expression was quite root-specific confirmed by semi-
qPCR and qRT-PCR (Figure 1A and Supplementary Figure 2).

Cytokinin measurement by UPLC-MS/MS showed significantly
lower tZ, IP, and cZ levels in OsCKX2 OE rice at seedling

and mature stages (P < 0.05; P < 0.01) (Figures 1B–G).
These results indicated that endogenous cytokinins were

degraded resulted from root-specific overexpression
of OsCKX2.

Phenotypic Traits of OsCKX2 OE Rice at
Seedling Stage
The phenotypes of OsCKX2 OE rice and WT plants were
evaluated at seedling stage. Compared to WT, OsCKX2 OE rice
had shorter shoots (Figures 2A,B) and reduced aboveground
fresh and dry weight (Figures 2C,D). The traits shoot length,
aboveground fresh weight, and aboveground dry weight of
OsCKX2 OE rice were 18.33–20.18%, 52.76–57.91%, and 48.12–
53.80% lower than the WT plants, respectively. In the field,
the growth of OsCKX2 OE rice was retarded in the vegetative
growth phase (Figure 5A). Overall, root-specific overexpression
of OsCKX2 significantly reduced shoot length and biomass at
seedling stage.
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Phenotypic Traits of OsCKX2 OE Rice at
Mature Stage
OsCKX2 OE rice exhibited reduced plant height and stem
thickness at mature stage compared with WT (Figures 3A–C).
Grain yield of OsCKX2 OE rice was 53.04–82.94% lower than
WT (Figure 3E). The traits panicle number, grain number per
panicle, 1,000 grain weight, and filling rate of OsCKX2 OE
rice were 20.79–72.02%, 43.27–58.87%, 3.76–5.39%, and 7.62–
14.00% lower, respectively (Figures 3F–I). Among these yield
parameters, panicle number, and grain number per panicle
mainly contributed to yield decline followed by filling rate
(Figure 3D). OsCKX2 OE rice produced smaller panicles and
fewer first and second branches (Figures 4A,D–F). Besides,
grains ofOsCKX2OE rice were smaller thanWTdue to decreased
grain length and grain width (Figures 4B,C,G,H). In the field,
OsCKX2 OE rice grew more weakly than WT (Figure 5B). In
general, overexpression of OsCKX2 reduced yield and multiple
phenotypic traits at mature stage.

Overview of RNA-seq Data Analysis
RNA-seq, using shoots of OsCKX2 OE rice and WT at
four to five leaf stage, resulted in approximately 52.35–71.46
million clean reads (Supplementary Table 3). The average rate
of reads mapped to the rice reference genome was >95.00%,
and the unique mapping rate ranged from 92.67 to 93.85%
(Supplementary Table 3). Distribution statistics of reads on the
gene showed that most of the reads (73.71–76.20%) were mapped
to the coding sequence (CDS) (Supplementary Figure 3). In
total, 1,743 DEGs were identified in the global transcriptional
profiles. The volcano plot of DEGs showed that 58.86% was
up-regulated, while 41.14% was down-regulated in OsCKX2
OE rice (Supplementary Figure 4). The expression levels of
several DEGs identified by RNA-seq were validated by qRT-PCR
(Supplementary Figure 5).

Down-Regulated DEGs Between OsCKX2

OE Rice and WT
GO enrichment analysis revealed that the down-regulated
DEGs participated in cellular processes, hormone and
signaling pathways, metabolic processes, substances transport,
stress response processes, and regulation and protection
function (Figure 6A and Supplementary Figure 6A). Many
down-regulated DEGs, such as Os10g0153900 encoding
cyclin-dependent kinase, Os02g0800500 and Os02g0801200
encoding cyclin B, OsFBX148, OsFBX237, OsFBX238,
OsFBX283, OsFBX435, and Os09g0341500 encoding cyclin-
like F-box domain containing proteins (FBXs), OsPSK4
encoding phytosulfokines 4 precursor, Os06g0317100 encoding
glycine-rich cell wall structural protein, OsCCR7 encoding
cinnamoyl-CoA reductase to regulate lignin biosynthesis,
Os10g0335000 encoding dirigent protein in lignin biosynthesis,
and OsEXPA19 encoding expansin precursor (Figure 6B),
were related to cell division or cell wall structure. A number
of DEGs were related to transcription factors and hormone
signaling, such as cytokinin, auxin, ethylene, and gibberellin
(Figures 6C,D). Several other DEGs, such as OsPsbR2, IGPS, and

FIGURE 5 | Phenotypes of OsCKX2 OE rice and WT in vegetative growth

phase (A) and at mature stage (B) under field condition.

Os03g0231600 encoding chloroplast precursors, Os03g0734000
and Os06g0184866 encoding pentatricopeptide repeat domain
containing proteins (PPRs), and genes encoding monosaccharide
transporters (MSTs), peptide transporters, lipid transfer proteins
(LTPs), and phosphate and potassium transporters, were
involved in chloroplast development and nutrients transport
(Figures 6E,F). Many down-regulated DEGs encoded receptor-
like cytoplasmic kinases (RLCKs), wall-associated kinases
(WAKs), glutathione-S-transferases (GSTs), and peroxidases
(Figures 6G,H).

Up-Regulated DEGs Between OsCKX2 OE
Rice and WT
GO enrichment analysis revealed that the up-regulated DEGs
were clustered in metabolic processes, response processes,
cellular processes, molecular regulation, and hormone and
signaling pathways. The GO term metabolic processes were
highly enriched (Supplementary Figure 6B). The prominent
categories of metabolic processes included cell wall components
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FIGURE 6 | Detailed analysis of down-regulated DEGs between OsCKX2 OE rice and WT. Terms clustering analysis of down-regulated DEGs (A). Value in the

X-coordinate is the corrected P-value by –log10. Expression levels of genes related to cell division and cell wall structure (B), hormone (C), transcription factor (D),

chloroplast formation (E), transporter (F), receptor-like kinase (G), and GST and peroxidase (H) decreased in OsCKX2 OE rice. The color legend indicates Log2
(FPKM) value.

metabolic process, nutrient substances metabolic process and
hydrolase activity (Figure 7A). Many up-regulated DEGs, such
as genes encoding pectinesterase (PME), polygalacturonase
(OsPGL21), xyloglucan endotransglycosylase/hydrolase (XTH),
and β-galactosidase (BGal), were related to cell wall degradation
(Figure 7B). Several other up-regulated genes, such as genes
encoding subtilisin-like protease, aspartic protease (OsAP25),
FtsH protease (OsFtsH6), β-amylase (OsISA2), and GDSL
esterase/lipase (GELP), were involved in nutrient substances
catabolic processes (Figure 7C). Moreover, numerous glycoside
and glycosyl hydrolase genes were up-regulated in OsCKX2 OE
rice (Figures 7D,E).

Metabolite Variation Between OsCKX2 OE
Rice and WT
A total of 778 metabolites were detected by UPLC-MS/MS
in the shoots of OsCKX2 OE rice and WT. A total of
54 metabolites showed differential accumulation in OsCKX2

OE rice compared with WT. Amino acids and derivatives,
organic acids and derivatives, flavonoids, phenolamides, lipids,
alkaloids, nucleotides and derivatives, and other metabolites
accounted for 18.5, 16.7, 12.9, 11.1, 9.3, 7.4, 5.6, and 18.5%
of the differential metabolities, respectively (Figure 8A). Many
differential primary metabolites, including all amino acids
and derivatives, 78% of organic acids and derivatives, and
67% of nucleotides and derivatives, were present at a greater
concentration in OsCKX2 OE rice than WT. On the contrary,
few differential primary metabolites, including all lipids, 22%
of organic acids and derivatives, and 33% of nucleotides and
derivatives, were present at a lower concentration inOsCKX2OE
rice (Figure 8B).

Integrated Transcriptomic and Metabolic
Data
An integrated analysis of transcriptomic and metabolomic
data revealed that the up-regulated DEGs and the elevated
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FIGURE 7 | Detailed analysis of up-regulated DEGs between OsCKX2 OE rice and WT. Terms clustering analysis of up-regulated DEGs (A). Value in the X-coordinate

is the corrected P-value by –log10. Expression levels of genes related to cell wall degradation (B), hydrolytic enzyme (C), glycoside hydrolase (D), and glycosyl

hydrolase (E) increased in OsCKX2 OE rice. The color legend indicates the Log2 (FPKM) value.

metabolites were related to glycolysis and tricarboxylic acid
cycle (TCA), mainly responsible for carbohydrate catabolism
(Figure 9). Glucose, the initial reactant of glycolysis, was present
at a greater concentration in OsCKX2 OE rice. Accompanied by
the up-regulation of several DEGs, such as genes encoding
6-phosphofructokinase (PFK), diphosphate-dependent
phosphofructokinase (PFP), fructose-bisphosphate aldolase
(ALDO) and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), phosphoenolpyruvic acid (PEP) content was
increased in OsCKX2 OE rice. Some genes related to anaerobic
glycolysis, which produced lactate and ethanol, were up-
regulated. The expression of the gene encoding pyruvate
dehydrogenase E1 component (aceE), which promoted the
synthesis of acetyl-CoA, was up-regulated. In OsCKX2 OE rice,
genes encoding ATP citrate (pro-S)-lyase (ACLY), isocitrate

dehydrogenase (IDH), and malate dehydrogenase (MDH) were
up-regulated, and citrate, 2-oxoglutarate, fumarate and malate
contents (of TCA pathway) were increased to varying degrees.

DISCUSSION

Regulation of endogenous cytokinin levels in addition to
exogenous application of cytokinins to regulate and improve
plant growth has become a topic for plant developmental
research. Researches on CKX gene family, which encodes
cytokinin-degrading enzymes to regulate cytokinin levels, help
to understand cytokinin regulatory roles and signaling pathway.
Increase in cytokinin contents by reducingOsCKX2 transcription
levels enhances meristem activity, elevates grain and tiller
number, and ultimately increases rice grain production (Ashikari

Frontiers in Plant Science | www.frontiersin.org 9 January 2021 | Volume 11 | Article 575304

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yan et al. Signatures of OsCKX2 Overexpressed Rice

FIGURE 8 | Overview of differential metabolites in OsCKX2 OE rice compared to WT. Categorization of differential metabolites (A). Histogram of metabolites with

significantly altered concentration (B). X-coordinate indicates the classification of differential metabolites, and Y-coordinate represents the magnitude of concentration

difference.

et al., 2005; Yeh et al., 2015), with no effect on plant
height (Joshi et al., 2018). Therefore, we aim at decrease in
cytokinin levels via increasing the transcription levels ofOsCKX2
specifically in roots to study the influence on rice growth.
Overexpression of OsCKX2 driven by the root-specific promoter
RCc3 reduced endogenous cytokinin contents, including tZ, IP,
and cZ, resulted in reduced plant height with weaker roots
(Supplementary Figure 7), thinner stems, fewer tillers, smaller
panicles, lower filling rate, and smaller grains. Among the
different type ctokinins, tZ-type are predominantly synthesized
in roots and are necessary for normal shoot development
(Matsumoto-Kitano et al., 2008; Kudo et al., 2010; Ko et al., 2014;
Zhang et al., 2014). Overexpression of OsCKX2 in roots reduced
cytokinin levels, especially tZ, led to retarded growth at seedling

and mature stages. These results implied that overexpression of
OsCKX2 in roots have disrupted the dynamic equilibrium of
cytokinins in the whole plants.

Cytokinins are essential signaling molecules that regulate cell
division and proliferation. RNA-seq data analysis revealed that
cell cycle-related genes, such as cyclin-dependent kinase gene,
cyclin B genes, several OsFBX genes and OsPSK4, were down-
regulated inOsCKX2OE rice. Studies have shown that cytokinins
regulate the expression of cyclin-dependent kinases and cyclins,
which play crucial roles in plant cell cycle progression (Guo et al.,
2007; Schaller et al., 2014). The F-box genes (FBXs) can affect
plant cell cycle and participate in the control of cell proliferation
(Boycheva et al., 2015). Phytosulfokine-α, a peptide plant growth
factor, encoded by PSK gene, is essential for cell proliferation
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FIGURE 9 | Pathway of carbohydrate catabolism combined transcriptome and metabolome. Rectangle in the pathway indicates metabolite. Legend of metabolite

shows fold change in OsCKX2 OE rice compared to WT. Bracket indicates enzyme corresponding to DEG. Gene heatmap shows the value of Log2 (FPKM) in WT (left

panel) and OsCKX2 OE rice (right panel). Solid arrow represents direct metabolism step. Broken arrow indicates indirect enzymatic reaction.

(Yang et al., 2000). The cellular processes regulate plant cell wall
integrity, and the coordination between cell cycle and plant cell
wall integrity is necessary for normal plant development (Gigli-
Bisceglia and Hamann, 2018). In this study, overexpression
of OsCKX2 decreased the expression of cell wall-related genes

(Os06g0317100, OsEXPA19, OsCCR7, and Os10g0335000), while
it increased the expression of genes encoding plant cell wall-
degrading enzymes, such as PME, OsPGL21, XTH, and BGal.
Cell wall damage induces high expression of CKX genes and
accelerates the degradation rate of cytokinins that in turn reduces
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the expression of cell cycle genes (Gigli-Bisceglia et al., 2018).
Down-regulated genes related to cell wall structure and up-
regulated genes related to cell wall degradation may disrupt
cell wall stability in OsCKX2 OE rice. Taken together, the
overexpression ofOsCKX2 reduced cell cycle activity and cell wall
stability in rice that subsequently led to retarded morphogenesis.

Crosstalk between cytokinins and other phytohormones
is crucial for plant growth and development. Cytokinins are
known to control the activity and function of shoot and panicle
meristems interacting with auxin and gibberellin signaling
(Durbak et al., 2012; Wu et al., 2016). Cytokinin/ethylene
crosstalk plays a key role in seed germination and early
seedling development (Zdarska et al., 2015). In OsCKX2 OE
rice, many genes related to hormone biosynthesis, transport,
and signal transduction, including cytokinin and auxin
transporters, auxin-responsive genes, gibberellin 20-oxidase
genes, putative gibberellin receptor and ethylene biosynthesis
genes, were down-regulated. Additionally, transcription factors
participate in phytohormone signal pathway. The expression of
transcription factors, such as OsERF and OsGATA13, was down-
regulated In OsCKX2 OE rice. AP2/ERF transcription factor
controls cytokinin-triggered shoot regeneration origination
(Banno et al., 2001). Cytokinin GATA transcription factor has
been reported to control chloroplast development and plant
architecture in rice (Hudson et al., 2013). Taken together,
the abnormal expression of phytohormone-related genes and
transcription factors may have led to poor growth of OsCKX2
OE rice.

Cytokinins have been proven to be involved in chloroplast
development (Cortleven and Schmülling, 2015). RNA-seq data
revealed that several nuclear genes encoding PsbR, chloroplast
precursors, and PPR proteins were down-regulated in OsCKX2
OE rice. PsbR regulates the formation of oxygen-evolving
complex of photosystem II (Allahverdiyeva et al., 2013), and PPR
proteins participate in plastid RNA processing in chloroplasts
(Legen et al., 2018; Zhang et al., 2019). Cytokinins also influence
nutrient uptake and translocation in plants. In this study, the
transcriptional levels of transporters, such as monosaccharide
transporters, peptide transporters and phosphate and potassium
transporters, were lower in OsCKX2 OE rice. Cytokinins
enhanced mRNA accumulation of hexose transporter genes
to supply carbohydrates to sink tissues (Roitsch and Ehneß,
2000). Studies have reported that cytokinins involve in amino
acid transport and phosphate and potassium homeostasis by
controlling the expression of related transporters or signaling
genes (Wang et al., 2006; Nam et al., 2012; Ninan et al.,
2019). Altogether, these findings indicate that chloroplast genesis
and nutrient transport in OsCKX2 OE rice may be defective,
which were detrimental to the assimilation, translocation, and
distribution of nutrients.

Carbohydrates provide energy for life activities via catabolism
and also get stored in sink organs to build up plant
biomass, which maintains a precise equilibrium partitioning of
carbohydrates during plant life cycle (Zakhartsev et al., 2016;
Julius et al., 2018). The disability to convert photosynthates
into starch resulted in higher soluble carbohydrate levels,
higher respiration rate and retarded growth in Arabidopsis

thaliana (Caspar et al., 1985). The integrated transcriptome
and metabolome data identified that many genes related to
glycolysis and TCA cycle were significantly up-regulated and
some intermediate metabolites associated with carbohydrate
catabolism were accumulated in OsCKX2 OE rice. In addition,
numerous DEGs encoding hydrolytic enzymes, including
subtilisin-like proteases, GDSL esterase/lipases, and glycoside
and glycosyl hydrolases, showed elevated expression in OsCKX2
OE rice, which may have accelerated the degradation of biomass
components. The abundances of amino acids, organic acids, and
their derivatives also increased in OsCKX2 OE rice. In general,
the excessive carbohydrate catabolic activity and hydrolytic
activity weakened the normal biomass accumulation, which
ultimately inhibited the growth of OsCKX2 OE rice.

CONCLUSION

The present study indicated that root-source cytokinins regulated
the growth and development of rice. Reduced cytokinin levels
by overexpressing OsCKX2 specifically in roots resulted in
dwarfing, lower biomass, fewer tillers, smaller panicles and
grains, lower filling rate, and reduced yield in rice. Transcriptome
and metabolome analysis revealed that OsCKX2 overexpression
affected cell cycle activity, cell wall structure, phytohormone
and transcription factor signaling, chloroplast development and
nutrient translocation, and nutrient degradation, which led to
poor growth and development during the entire life cycle. This
study broadens the understanding on the function of root-
source cytokinins, and provides a basis for changing endogenous
cytokinins by overexpression of OsCKX2 specifically in root to
regulate the biomass and yield in rice.
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Supplementary Figure 2 | Relative expression levels of the synthetic OsCKX2

gene in OsCKX2 OE rice under KT (0.1mM) treatment.

Supplementary Figure 3 | Statistical distribution of reads on gene structure in

OsCKX2 OE rice and WT. (A–F) CDS, coding sequence; UTR, untranslated

region; TSS, transcription start site; TES, transcription end Site.

Supplementary Figure 4 | Volcano Plot of DEGs between OsCKX2 OE rice and

WT. Red dot represents up-regulated DEG. Green dot represents down-regulated

DEG.

Supplementary Figure 5 | Verification of RNA-seq data by qRT-PCR.

Down-regulated DEGs (A) and up-regulated DEGs (B) in OsCKX2 OE rice

compared to WT. Data represents means ± SEM. ∗∗P < 0.01, ∗P < 0.05.

Supplementary Figure 6 | GO enrichment of down-regulated DEGs (A) and

up-regulated DEGs (B). The dot represents GO term. The size of dot indicates

gene number clustered in the GO term.

Supplementary Figure 7 | Root morphology of OsCKX2 OE rice. Statistical

analysis of root number (A), root thickness (B), root length (C), underground fresh

weight (D), and underground dry weight (E). Data represents means ± SEM (n =

15). ∗∗P < 0.01.

Supplementary Table 1 | The endogenous gene, synthetic gene, and protein

sequences of OsCKX2.

Supplementary Table 2 | List of primers used in this study.

Supplementary Table 3 | Summary of RNA sequencing and mapping using the

rice genome (Oryza sativa) as reference.
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