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Unmanned aerial vehicle (UAV) technology is an emerging powerful approach for
high-throughput plant phenotyping field-grown crops. Switchgrass (Panicum virgatum
L.) is a lignocellulosic bioenergy crop for which studies on yield, sustainability, and
biofuel traits are performed. In this study, we exploited UAV-based imagery (LiDAR
and multispectral approaches) to measure plant height, perimeter, and biomass yield
in field-grown switchgrass in order to make predictions on bioenergy traits. Manual
ground truth measurements validated the automated UAV results. We found UAV-based
plant height and perimeter measurements were highly correlated and consistent with the
manual measurements (r = 0.93, p < 0.001). Furthermore, we found that phenotyping
parameters can significantly improve the natural saturation of the spectral index of the
optical image for detecting high-density plantings. Combining plant canopy height (CH)
and canopy perimeter (CP) parameters with spectral index (SI), we developed a robust
and standardized biomass yield model [biomass = (m × SI) × CP × CH] where the
m is an SI-sensitive coefficient linearly varying with the plant phenological changing
stage. The biomass yield estimates obtained from this model were strongly correlated
with manual measurements (r = 0.90, p < 0.001). Taking together, our results provide
insights into the capacity of UAV-based remote sensing for switchgrass high-throughput
phenotyping in the field, which will be useful for breeding and cultivar development.

Keywords: phenotype, LiDAR, spectral index, biomass, Nitrogen

INTRODUCTION

Switchgrass (Panicum virgatum L.) is a native North America prairie grass that has been studied
as a potential bioenergy crop in the United States and Europe since the mid-1980s (Lewandowski
et al., 2003). It is a perennial grass, with C4 metabolism, which is adapted to cultivation in much of
the eastern United States and similar regions requiring low agronomic inputs (Vogel, 2004; Bouton,
2007; Schmer et al., 2008). It grows as a “clonal modular plant” from tillers (Boe and Casler, 2005).
Each plant produces a population of tillers that can grow up to 4 m tall (Bouton, 2007). Switchgrass
is highly self-incompatible, and its reproductive structures consist of a diffuse panicle arranged at
the end of long branches (Barnes et al., 1995; Vogel, 2004). It produces high aboveground biomass
each growing season as well as high lignin and cellulose content in cell walls (Vogel, 2004). The
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biomass produced by switchgrass serves as a feedstock for
bioenergy production as an effort to create green energy to reduce
the consumption of fossil fuels (McLaren, 2005; Naik et al., 2010).

Since the beginning of switchgrass bioenergy feedstock
development, breeding programs have utilized germplasm with
desirable phenotypes such as high biomass production, nutrient
use efficiency and stress tolerance (Barney et al., 2009; Jakob et al.,
2009). Despite progress-to-date, there is still a significant frontier
to be explored in switchgrass given its high genetic diversity
(Lemus et al., 2008; Casler, 2012). Conventional phenotyping
studies have been implemented to identify, principally, high
biomass phenotypes. However, these trials are performed
manually, which is resource-intensive and requires destructive
harvests. Also, the results obtained from manual evaluations are
prone to assessment errors and are limited in time and space
(Vogel et al., 2011).

Reliable and efficient automated high-throughput
phenotyping of switchgrass, especially to predict end-of-
season biomass, would be a significant advance in the field. Thus,
the overriding goal is to rapidly collect high-quality data from
a standoff for which current methods are not suited (Walter
et al., 2019). One important automated phenotyping tool is
light detection and ranging (LiDAR) technology. LiDAR is a
laser-based sensor that produces high-throughput and high-
density three-dimensional (3D) point clouds by photon-counting
(Lim et al., 2003). Another tool that complements LiDAR is
multispectral imaging, which collects vegetation spectral indices
to be analyzed together with LiDAR data. LiDAR has been widely
used for plant architecture measurements such as plant height
(Bendig et al., 2015; Jimenez-Berni et al., 2018). While optical
imagery models have been made to non-destructively estimate
plant biomass (Hansen and Schjoerring, 2003; Bendig et al.,
2014), these models have been criticized for the low accuracy
and high uncertainties in estimating biomass (Shabanov et al.,
2003; Garrigues et al., 2006). One problem inherent to optical
imagery techniques is the potential for natural light saturation
for detecting the high-density biomass plants (Mutanga and
Skidmore, 2004; Li et al., 2014). Integration of LiDAR and
spectral index technologies have been used to address these
underlying factors determining plant biomass varying with
plant type and phenotyping parameters (e.g., plant height and
fractional canopy cover) (Tucker et al., 1985; Popescu et al., 2003;
Li et al., 2018).

In order to apply current automated phenotyping technologies
to estimate switchgrass biomass, our goal was to incorporate
plant phenotyping parameters into the spectral index-based
biomass models. Our testbed was a common garden in Knoxville,
TN, United States growing a diverse collection of switchgrass
clones (330 genotypes) under low and moderate nitrogen fertility
conditions. The objectives of the present study were to (1)
use standoff automation to measure plant height and perimeter
for each plant from an over-the-field vertical perspective using
unmanned aerial vehicle (UAV)-based LiDAR technology, (2) to
improve the capacity of remote sensing to model plant biomass
by integrating LiDAR and imagery technologies, and (3) to
assess the stability of our biomass model over the growing
season. To our knowledge, this is the first study to fully extend

UAV technologies into the assessments for high-throughput
switchgrass phenotyping and biomass yield estimating under
field conditions.

MATERIALS AND METHODS

Switchgrass Field Site and Experimental
Design
The 75.2 × 122.5 m common garden was located at the
University of Tennessee Plant Sciences Unit of the East Tennessee
Research and Education Center (ETREC). The 330-switchgrass
natural variant accessions were transplanted from a greenhouse
to the field with four tillers per plant on May 28 and 29,
2019 (Figures 1A,B). The switchgrass clones used are mostly
lowland (tetraploid) accessions provided by Dr. Thomas Juenger,
University of Texas – Austin (Lowry et al., 2019). The field
experiment is part of a switchgrass domestication project
consisting of 330 accessions planted under two nitrogen (N)
fertility treatments, one with moderate (135 kg of N ha−1) and
another with low (0 kg of N ha−1) supplementation in July
2019. Each accession has four replicates in the field (2 replicates
per N treatment), totaling 1,320 switchgrass plants, which were
arranged in honeycomb design with ∼2.5 m interplant spacing
(Figure 1C). The N treatment is part of another long-term
study focusing on nitrogen use efficiency (NUE) in switchgrass.
This provided the opportunity to determine the impacts of
differential growth conditions on automated measurements. The
experimental field was surrounded by switchgrass cv “Blackwell”
border plants. The N treatment plots were separated by a
centralized row of border plants. Water-permeable weed cloth
coverage on the soil surface was used to reduce weed interference.
Switchgrass was planted in 1× 1 m holes in the cloth. Any weeds
growing adjacent to switchgrass plants were manually removed.

Manual Measurements of Plants
Each plant canopy perimeter and height was manually measured
twice during the field season: once in August 2019 (mid-season)
and once in December 2019 (end-of-season). The plant canopy
height measurement consisted of the distance from ground level
to the tip of the tallest central tiller using a tape. The plant
canopy perimeter was determined with distance measurement
for the outside border of plant canopy from a vertical viewpoint.
Measurements were made without touching the plants, and
required two people to work 2 days each time. The aboveground
plant biomass was determined at the end-of-season after plant
senescence (Table 1). Dry above ground biomass was determined
at the end of the season by harvesting and weighing each plant.
Subsequently, the ten tallest tillers were collected from each plant
and oven-dried at 45◦C for 72 h to determine the ratio of dry-to-
fresh weight. Total dry biomass was determined by calculating
the percentage of water loss recorded for each subsample and
subsequently applying the water loss percentage to the respective
total “wet” biomass weight for each plant. Plants with ten or fewer
tillers were not subsampled, and whole plants were subjected
to the same drying conditions and dry biomass was recorded
for each plant. End-of-season biomass measurements required
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FIGURE 1 | Switchgrass field establishment. (A) The 330 switchgrass accessions in pots awaiting transplanting to the field; (B,C) status of switchgrass growth
nearly 4 months after transplantation into the field site.

two people 2 weeks of work for harvesting, biomass drying, and
recording of biomass by plant.

UAV Observations
Over the mid-to-late growing season we made 10 UAV flights
to take single observations to estimate each trait by plant

TABLE 1 | UAV data routing observations and manual measurements in
the growing season.

Date collection sate Multispectral
image

LiDAR Manual
measurements

08/14/2019 × Plant perimeter and
height

09/09/2019 ×

09/19/2019 ×

09/25/2019 ×

10/03/2019 ×

10/17/2019 ×

11/01/2019 ×

11/18/2019 ×

12/04/2019 × × Plant perimeter and
height

01/21/2020 × × Plant biomass

(Table 1) using a Matrice 600 UAV Pro model (DJI Inc.,
Shenzhen, China) equipped with multiple sensors including
M200 Series Snoopy M8 LiDAR scanner (LiDARUSA Inc.,
Hartselle, AL, United States), and Red Edge-MX camera
(MicaSense, Inc., Seattle, WA, United States) and strict ground
control (Figure 2A). Flights were performed on cloud-free days
between 10:00 am and 12:00 pm with an automatic mode using
the drone flight planning mobile app – Pix4Dcapture (Pix4D
Inc., Prilly, Switzerland) at 20 m above the ground and speed of
approximately 4 km per hour (Figure 2B). The settings of image
coverage overlapping between UAV-footprint snapshots was 85%
in front and 70% on sides. The UAV-footprint shooting images
over the field (Figure 2B) at a sampling resolution of 1 × 1 cm
were mosaicked and transformed into the absolute reflectance
images along with the image of the calibrated reflectance panel
(CRP) captured prior to implementing flight mission, including
blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm),
and near-infrared (842 nm) bands, using Pix4Dmapper (Pix4D
Inc., Prilly, Switzerland). Afterward, geometric rectification for
the multispectral image was manually performed using the
georeferencing tool in ArcGIS software (Esri Inc., Redlands, CA,
United States) according to seven ground control points (GCP),
which were evenly preassigned over the field and accurately
measured using the global positioning system (GPS) base-station
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FIGURE 2 | UAV ground control and flight operations. (A) Bare ground elevation data (i.e., digital terrestrial models, DTM) obtained after the switchgrass harvest
(January 21, 2020) using UAV-based LiDAR scanning technology. The UAV ground control system included a GPS base station used for post-processing differential
correction of LiDAR point clouds, horizontal GCP used for geometric rectification of multispectral image. Shown is the planting site for the 1,320 switchgrass plants.
(B) UAV route over the field, as well as the calibrated reflectance panel (CRP) used to convert raw pixel values from multispectral images to absolute reflectance,
where the CRP image was obtained before or after the flight.

with a <4 cm horizontal accuracy. The LiDAR data obtaining
was operated by tracking distances and angles through eight
individual lasers at a shooting frequency of 440,000 points/s,
along with the sensor position (i.e., latitude, longitude, and
altitude) through the Global Navigation Satellite Systems (GNSS)
and the sensor orientation (i.e., pitch, roll, and yaw) through
the inertial measurement unit (IMU), as well as the real-
time GPS base-station recording. To achieve a highly precise
positioning for both horizontal and vertical (±3 cm), the raw
LiDAR data recorded by those devices were repositioned by
post-processing differential corrections based on the GPS base-
station as well as the IMU data using Inertial Explorer Xpress
8.7 (NovAtel Inc., Calgary, AB, Canada) and were then further
converted into the point clouds in the LAS (.las) format using
ScanLook Point Cloud Creation (LiDARUSA Inc., Hartselle,
AL, United States).

Automated Phenotyping Measurements
The 3D plant canopy was delineated by the point clouds that
were composed of a high-density mass of point vectors, with
each one having its own set of horizontal positioning (latitude
and longitude), elevation coordinates, and additional attributes.
Individual plant canopy polygons were identified using the
MATLAB programming package (Math Works Inc., Natick,
MA, United States) through three steps, including plant height
calculation, spatial filtering, and boundary identifying (Figure 3).

(1) Plant height calculation: Individual.las files were combined
into LAS datasets (.lasd) that were further interpolated
into 1 × 1 cm gridded digital surface models (DSM,
generated during the growing season and representing
the incorporation of the bare ground elevation and plant

canopy) in the Tagged Image Format File (.tiff ) format
using ArcGIS software to match the sampling results for
the multispectral image. To precisely calculate plant canopy
height, the bare ground elevation data, namely the digital
terrestrial models (DTM), were generated by UAV-based
LiDAR scanning technology after the switchgrass harvest
(Figure 2A). The plant canopy height models (CHM) were
calculated by DSM in the growing season, subtracting the
DTM (e.g., Figure 3A).

(2) Spatial filtering: Generally, the plant canopy contains gaps
between leaves that impact the complete identification of
plant canopy. To simplify the process, we applied a spatial
filter to the CHM to fill the gaps to unite all the pieces
of canopy together. Specifically, the order-statistic filtering
function (i.e., ordfilt2) with the domain of 5 × 5 pixels and
the value of the 25th percentile was used to smooth the CHM
(e.g., Figure 3B).

(3) Boundary identifying: The CHM was binarized with the
threshold of 10 cm, below which was considered as the
invalid value resulting from point cloud positioning error
as well as ground relative elevation changes. Based on the
central coordinates of the plant, the gridded plant canopy
was divided from CHM, and the function of bwboundaries
was used to trace the exterior boundary of the plant canopy.
To simplify the boundary, a 2 m line that originated from the
center of the plant was used to detect the intersected points
between initial plant canopy boundary and scanning line
following an interval of 30-degree. Generally, 3–12 points
were identified, depending on the overlapping case with the
surrounding plants (e.g., Figure 3C). The identified points
were further converted into the polygon in the Esri shapefile
(.shp) format using shapewrite function.
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FIGURE 3 | Process of plant phenotyping parameter extraction. (A) The gridded plant height. (B) The spatially filtered plant height. (C) The binarization of plant
height for identifying the location of plant canopy based on the central coordinates of plants (red + symbol) and the 2 m scanning line following the 30-degree
interval, where the blue points (i.e., P1, P2, . . ., to P12) are the location of intersection between plant canopy boundary and scanning line.

After obtaining the plant canopy polygon for each plant,
plant canopy perimeter was measure in a similar way to manual
measurements by calculating the distance around the outside
plant canopy border as viewed from a vertical perspective. Plant
canopy perimeter and area were calculated using the functions
of perimeter and polyarea, respectively. By overlaying each plant
canopy polygon to the gridded CHM, the maximum CHM value
was identified and used for comparison with manual ground-
truth measurements that were implemented referring to the top
of the central panicles in the plant, and the mean CHM value
over the plant canopy was used for the subsequent driving of
the UAV-biomass model. The mean reflectance for each plant
and band in the multispectral image was calculated to derive
the spectral vegetation index as another driving variable for
UAV-biomass modeling.

Plant Biomass Model and Evaluation
The plant canopy perimeter and height, as vital measurements
for plant phenotyping structure characteristics, are theoretically
related to the magnitude of plant stems (Fernandez et al., 2009).
Also, the spectral index was developed based on the fact that
leaf chlorophyll electromagnetic spectra measurements are highly
correlated with plant leaf density (i.e., leaf area index – LAI)
(Broge and Leblanc, 2001). Here, we modeled the plant biomass
as a linear combination of phenotyping measurements and
spectral index response in the form of (Eq. 1):

fBiomass = (m× SI)× CP× CH (1)

where CP and CH refer to the plant canopy perimeter
and height, respectively. These phenotyping variables change
significantly during the growing stage, but are supposed to
approach to a constant status after peak growing season; SI is
the spectral index calculated from UAV-based reflectance bands;
m is a SI-sensitive coefficient relying on a specific spectral
index as well as plant phenological stage. To evaluate biomass
yield for the mature plants, all driving variables were obtained
during the peak growing season to assure a robust prediction
with the UAV-biomass model. This is imperative given plants
may “de-green” with plant senescing after peak growing season,
and “de-greening” may lower the performance of spectral index

(Tillack et al., 2014). Several widely used indices were explored
for SI including the spectral index developed in the early period,
such as the ratio vegetation index (RVI; Eq. 2) (Pearson and
Miller, 1972) and the normalized difference vegetation index
(NDVI; Eq. 3) (Rouse et al., 1974), as well as spectral index
suggested later for improving sensitivity to vegetation, such as the
enhanced vegetation index (EVI; Eq. 4) (Huete et al., 1997) and
the normalized difference red edge index (NDRE; Eq. 5) (Hansen
and Schjoerring, 2003). These indices were calculated using the
following equations:

RVI =
RNIR

RRed
(2)

NDVI =
RNIR − RRed

RNIR + RRed
(3)

EVI = 2.5×
RNIR − RRed

RNIR + 6RRed − 7.5RBlue + 1
(4)

NDRE =
RNIR − RRE

RNIR + RRE
(5)

where RNIR is the reflectance at the near-infrared wavelength,
RRed is the reflectance at the red wavelength, RBlue is the
reflectance at the blue wavelength, and RRE is the reflectance at
the red-edge wavelength.

Standard criteria, namely the Pearson coefficient (r), root
mean square error (rmse), and relative error (re), were
used to evaluate how well the assembly of phenotyping
measurements and SI-response predicted the biomass compared
to manual measurements.

RESULTS

UAV-Based Plant Phenotyping
Parameters and Validations
There was a wide range of values from manual measurements
of switchgrass perimeter, height, and biomass yield among the
330 genotypes (Figure 4). Plant perimeter ranged from 0.36 to
12.37 m with an average (and standard deviation) of 4.15 m
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FIGURE 4 | Manual phenotyping measurements for 330 genotypes of switchgrass during mid-season (August 14, 2019) and end-of-season (December 04, 2019),
as well as biomass harvest (January 21, 2020). (A) Plant perimeter, (B) plant height, and (C) plant biomass, where the numbers on the figure represent the mean and
standard deviation (std) for 1,320 plants with 330 genotypes and four repetitions for each genotype.

(±1.58) and 4.49 m (±1.55) for measurements taken at the
mid- and the end-of-season, respectively (Figure 4A). In the
same way, switchgrass height (i.e., central panicle) ranged from
0.13 to 2.29 m, with an average of 1.28 m (±0.34) and 1.29
(±0.34) (Figure 4B). Dry biomass ranged from 2 to 1,855 g per
plant, with an average of 386.14 g (±314.2) (Figure 4C). Trait
variation may be related to genetic diversity among the accessions
(Martinez-Reyna and Vogel, 2002; Casler, 2012).

We applied the programming process (involving three steps,
i.e., plant height calculation, spatial filtering, and boundary
identifying) to the LiDAR point clouds collected from early
peak season (Figure 5A) to the end-of-season (Figures 5B,C)
for determining switchgrass phenotyping parameters including
plant canopy height and perimeter. Compared to the manual
measurements (i.e., from December 4, 2019), we achieved

promising results for plant canopy perimeter (r = 0.95, rmse = 0.6,
and re = 0.11; Figure 5D) as well as canopy height (r = 0.93,
rmse = 0.1, and re = 0.07; Figure 5E) using LiDAR. The
box statistics showed that plant phenotyping parameters for
both perimeter and height slightly increased from September
9 to November 1, 2019 (Figures 5F,G). Afterward, a notable
decrease in height was observed on December 4, 2019. This
result might be attributed to plant lodging responses associated
with genetic characteristics of each genotype, as well as
interactions with environmental effects such as rainfall and snow
(Tripathi et al., 2003).

Performance of UAV-Biomass Model
Using the maximum plant phenotyping parameters (i.e., plant
perimeter and height on November 1, 2019; Figure 5) as a
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FIGURE 5 | Changes in UAV-based plant phenotyping parameters and validation. (A–C) Spatiotemporal changes in plant canopy perimeter and height based on
UAV measurements during the growing season; (D,E) validation of the UAV-based plant perimeter and height with manual measurements for a total of 1,320 plants,
where plant canopy height was compared based on the top of the central panicles. The UAV and manual measurements were collected on December 4, 2019;
(F) and (G) boxplots of the changes in plant perimeter and height, respectively, from peak season to the end of the season, where the red line on the box indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.

static forcing variable, we explored the UAV-based biomass
models accompanied with changes of varying spectral index
and phenological process from early peak season (i.e., August
14, 2019) to the end-of-season (i.e., November 18, 2019)
(Figure 6). We found that the assembly of phenotyping
measurements (plant height and perimeter) and spectral index
demonstrated promising performance in predicting the plant
biomass (r ≥ 0.74), but also varied among the spectral indices
as well as phenological stages (r = 0.74–0.9). Noticeably, the
spectral indices derived from peak season to just prior to
the end-of-season (e.g., September 19 to October 17, 2019)
demonstrated consistent and robust performance in predicting

plant biomass (r ≥ 0.86). Compared to NDRE, the commonly
used spectral indices of RVI, NDVI, and EVI demonstrated a
stronger relationship with plant biomass (r ≥ 0.89). Out of these
three spectral indices, EVI demonstrated the lowest estimated
bias (rmse ≤ 137.16). In contrast, using the spectral indices
derived from the early peak season (i.e., August 14, 2019) and the
end-of-season (i.e., November 18, 2019) were weaker predictions
of plant biomass (r ≤ 0.87).

Plant Responses to N Treatments
Manual and automated measurements of the variables (e.g.,
plant height, perimeter, area, biomass density, and biomass
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FIGURE 6 | Performance of the assembly of phenotyping measurements (CP, canopy perimeter; CH, canopy height) and spectral index in predicting the plant
biomass with changes of the growing season, as well as a different spectral index. (A) RVI, (B) NDVI, (C) EVI, and (D) NDRE.

production) demonstrated there were no significant differences
in switchgrass growth between the low and moderate N
treatments (Figure 7). These results were strongly correlated
between the automated and manual methods (Figure 5), and
we found the differential N growth conditions had no effect
on automated phenotypic characterization. Based on UAV
measurements, we found similar patterns in the distribution of
switchgrass plant biomass (Figure 7A), as well as biomass density
over the field (Figure 7B) between the low and moderate N
fertilization plots. In contrast, we observed a general positive
plant growth response to the N fertilization over the 330
switchgrass genotypes (Figure 8). These observations suggested
that the high genetic variability of the 330 genotypes is
responsible for the large-ranging differences in plant growth
factors rather than the N fertilization itself (Cassida et al.,
2005). However, there were patterns among genotypic responses
to N treatments. We characterized genotype responses as: a)
N-positive responsive genotypes, in which growth was positively
associated with N (Figure 8, representative genotypes above
1:1 line); b) N-neutral genotypes that had congruent growth
in both N treatments (Figure 8, representative genotypes
at 1:1 line); and c) N-negative genotypes that had lower

growth with more N (Figure 8, representative genotypes
below the 1:1 line).

DISCUSSION

LiDAR-Based Plant Phenotyping
Measurements
Unmanned aerial vehicle-based LiDAR scanning technology was
very useful in measuring switchgrass plant morphological traits
over the field. The automated method we are reporting in
the present study was validated by the manual measurements
with a wide range of phenotypic variabilities. Our assessment
demonstrates the reliability of the system for use in different
switchgrass growing conditions with high accuracy. It should be
noted that the LiDAR sensor used in this study (i.e., M200 Series
Snoopy M8 LiDAR scanner) can only record the single echo,
implying there may be some uncertainty in accurately calculating
plant canopy height (i.e., CHM) relying on single-pass-obtained
point cloud data (James and Robson, 2014). To simplify the
processing procedure and ensure the measuring accuracy, plant
canopy height in the growing season was determined by DSM
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FIGURE 7 | Comparisons of different N treatments for switchgrass. (A) Spatial distribution of switchgrass biomass over the experimental field mapped to individual
plants. (B) Spatial distribution of switchgrass biomass density that is normalized by plant canopy coverage area. (C) Boxplots for plant phenotyping parameters (i.e.,
plant perimeter, height, and plant area), as well as plant yield (single plant biomass and biomass-density) between two levels of N treatments, where the red line on
the box indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.

generated in the plant growing season by subtracting DTM
(Figure 2A) generated after all the plants are harvested (i.e.,
CHM = DSM − DTM). This strategy could be applicable to
this study by assuming that the changes in the background
surface elevation are negligible. However, most situations require
capacities of large-scale detection and timely variable calculation.
In these cases, the full waveform or multi-echo LiDAR-scanning
technologies can be helpful for producing DTM, DSM, and
CHM variables at once through the algorithm of decomposing
LiDAR waveforms (Reitberger et al., 2008; Mallet and Bretar,
2009). The value of LiDAR scanning technology is not only
characterized by its highly efficient reproducibility and accuracy
(Madec et al., 2017) but also due to its irreplaceability. For
example, we conducted manual measurements for plant canopy
height by sampling representative tillers on each plant. However,
because there was a considerable height variation among tillers,
the single or multiple tiller height measurements using manual
methods, e.g., tape measure will inevitably produce uncertainty

in delineation of plant height. Instead, the highly dense LiDAR
point clouds have higher repeatability to delineate the height
variations for plant tillers, and that consequently can ensure
the robust phenotyping measurements, as well as the precise
yield prediction with UAV-biomass model. For example, when
manual height measurements were made, it took two people
2 days to measure the tallest tiller for each of the 1,320 plants.
The single point measurement for each plant may not be an
absolute representation of “true plant height,” whereas the UAV
platform is scalable and able to collect a data cloud for each
plant.

We explored the applicability of structure-from-motion
(SFM) algorithms using the Pix4Dmapper programming package
for the generation of the DSM and DTM based on a large
set of overlapping images (Oliensis, 2000). When compared
with the LiDAR method, we found that SFM method was
suboptimal to capture plant canopy structural details. Lussem
et al. (2019) showed that SFM-derived CHM provided a varying
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FIGURE 8 | Comparisons of two contrasting N treatments for each genotype with four replicates (2 replicates per N treatment). The comparisons are performed
among the plant canopy perimeter, height, and area, as well as single plant biomass and biomass-density, where the data for the plant canopy perimeter, height, and
area are derived from peak season of plant growth (i.e., September 25, 2019). Each data point represents an average of two replicates per each N treatment (low
and moderate) for a total of 330 switchgrass genotypes.

performance in predicting grassland biomass, indicating this
method may not be widely adaptable. The success of SFM
depends on several factors, including the complexity of research
object, UAV flight control accuracy, image quality, as well
as the selection of SFM algorithms (Dandois and Ellis, 2013;
Remondino et al., 2014). Based on our study, we suggest that
SFM may not be optimal for quantifying small objects with
a high degree of accuracy. Rather, SFM may be useful to
3D visualization or structure parameter measurements specific
to large objects such as trees and buildings (Bolles et al.,
1987). In addition, we experimented with extracting plant
canopy perimeters through the spectral index (e.g., NDVI)
calculated by the multispectral image. Once a threshold used
for segmenting spectral index image is determined, we found
this method is applicable for the calculation of plant canopy
coverage perimeter and area. However, one substantial problem
is determining the appropriate threshold value, which varies
with dynamic leaf chlorophyll content during plant development.
For example, after switchgrass growth peaks in late summer
and senescence ensues, the leaves will be less green. An
undistinguished phenotype may be observed along with diverse
stresses (e.g., drought, plant pests, and diseases) over the
growth season (Anjum et al., 2011; Mahlein et al., 2013). In
contrast to the optical image processing method, the LiDAR
scanning method appeared to be more robust and applicable

for estimating switchgrass phenotypic parameters, such as plant
canopy height and perimeter.

Flexibility of UAV-Biomass Model
In recent years, UAV-based biomass models have been developed
using UAV platforms equipped with a LiDAR scanner and/or
multispectral sensor. When the LiDAR scanning is used,
plant biomass is modeled as the function of CHM, such as
[α∗e(β∗CHM)] (Bendig et al., 2014). CHM models have high
predictive value because the technique precisely delineates plant
stem density and height, but suboptimally estimates biomass
density in the unit of volume (Asner et al., 2012). Some biomass
estimation models largely ignore image spectral index with forms
such as [α∗SI + β] or [α∗SIβ] (Bendig et al., 2015). However,
because of the attenuation of electromagnetic wave propagation
when passing through a very dense vegetation canopy, namely
the saturation of optical remote sensing, these kinds of models
may not be appropriate to predict biomass (Shabanov et al., 2003;
Mutanga and Skidmore, 2004; Li et al., 2014). Meanwhile, the
model coefficients (i.e., α and β vary with choice of spectral
index, and its associated phenological stage, as well as taxa. These
variations in model forms and coefficients prevent us from cross-
analysis among traits, including phenotyping heterogeneity,
biomass composition and density, as well as evaluating NUE
(Hardin et al., 2013; Li et al., 2018). Taking this a step further, it
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will impede our understanding of whether biomass production is
largely explained by genotype and canalized phenotypes (Casler,
2012). In the present study, a standardized model is proposed to
estimate switchgrass biomass and its coefficients. The model was
relatively straightforwardly and applicable to efforts to improve
switchgrass cultivation as a bioenergy feedstock across diverse
environmental conditions.

UAV-based remote sensing technologies are of value not only
for increasing precision of trait measurement (e.g., biomass
and LAI) but also for superior performance of mapping large-
scale vegetation coverage areas (CAs) (Baret and Guyot, 1991;
Jimenez-Berni et al., 2018). Accordingly, when the UAV-based
biomass model proposed here is applied to plants grown under
agronomic conditions with broad spatial and temporal scales,
it is important to validate methods. First, plants grown under
agronomic conditions vary in a continuous or undistinguished
pattern, along with a certain fractional soil exposure. In this case,
instead of using the purely individual plant canopy parameters
(i.e., plant phenotyping parameters and spectral index) for
modeling biomass, UAV-based remote sensing images for each
pixel cell at a certain spatial resolution (e.g., 0.5 × 0.5 m, mostly
relying on UAV flying altitude) may be used to build models.
To reduce the impacts of bare soil on the spectral index, we
suggest using the pure vegetation index (PVI) proposed by Li
et al. (2016) for substitution of the spectral index in the UAV-
biomass model. Since the soil component is completely excluded
from PVI, based on the spectral mixture analysis (SMA) method
(Adams et al., 1995), this substitution can be congruent with the
role of pure vegetation canopy spectral index used in this study.
It will hold a proportional response to changing biomass values.
As for plant perimeter, initially, we thought that the assembly
of plant canopy area and height could be mathematically used
to determine the plant canopy volume magnitude, while adding
spectral index can play a role in qualifying the biomass density of
the canopy volume. However, we found that this type of assembly
suffers a non-proportional response to biomass changes, resulting
in a higher bias in predicting biomass yield. The choice of
using the different model forms (e.g., exponential or polynomial
forms) is possible, but may complicate model applications, given
the variations of model form and its coefficients. In addition,
we found that plant perimeter plays an important role in the
optimization of modeling plant biomass yield. However, plant
perimeter used here is only derived from each individual plant.
As for biomass modeling based on a pixel cell, we suggest
using a highly related function for converting from plant canopy
CA in the pixel cell to plant perimeter, which is developed
based on UAV phenotyping measurements in the switchgrass
field (i.e., CP = 3.6789 × CA0.4892, r2 = 0.998; Figure 9).
Indeed, in agronomic fields of switchgrass, taking individual plant
measurements, e.g., perimeter, will be challenging.

Spectral Index Sensitivity
In some cases, after peak growth season, plants may “de-
green,” which will alter the performance of spectral index used
for plant monitoring (Tillack et al., 2014). However, based on
varying spectral indices from peak season to before end-of-season

(e.g., September 19 to October 17, 2019) used for the UAV-
biomass modeling, we found an insignificant impact of plant
phenological changes on its performance in modeling biomass
(Figure 6). The only changes appear in the coefficient of m
in the UAV-biomass model (i.e., Eq. 1), which varies with the
choice of the spectral index (i.e., RVI, NDVI, EVI, and NDRE)
and its association with the plant-phenological stage changing
(Figure 10). This finding suggests that we have a broader time
window (e.g., during September and October in this study) to
reliably estimate the end-of-season plant biomass using UAV-
based remote sensing technologies, rather than rushing into
the peak growing season for UAV data collection; this stage
would have maximum content of chlorophyll in the leaf. The m
coefficient, calculated as the ratio between biomass yield and the
assembly of plant phenotyping parameters and spectral index, i.e.,
[m = biomass/(SI×CP×CH)], represents the change in biomass
yield per unit change in the integration of plant multi-traits.
These traits vary between genotypes and among plant species, as
well as phenological stages. Generally, m is determined through
in situ destructive measurements along with UAV data collecting
(Walter et al., 2019). By exploring the time series spectral
index, we found that the m magnitude is significantly positively
correlated with the spectral index changes that are associated with
plant phenological stages (r = 0.994–0.998, p≤ 0.006; Figure 10).
Among the selected spectral indices, the highly sensitive spectral
index of EVI demonstrated a more robust performance to
determine the m-value for calibration of the UAV-biomass model
(i.e., m = −2289.67 × EVI + 1092.27; r = −0.998, p = 0.002;
Figure 10C). This finding implies that the coefficient of m in the
UAV-biomass model can be determined according to the spectral
index of its property, rather than through in situ destructive
sampling measurement of plant biomass (Li et al., 2018), which
is not desirable.

Unmanned aerial vehicle-biomass models varying with
diverse forms are primarily attributed to a non-linear response
to biomass increasing changes, which is so-called the natural
saturation of optical remote sensing detections (Baret and Guyot,
1991; Gitelson, 2004). Based on the experiments from this
study, we found that the plant phenotyping variables (e.g., plant
canopy height and perimeter) measured by LiDAR technology,
and spectral index measured by multispectral image all are
subjected to the influence of saturation with varying degrees in
response to increasing biomass in the plant canopy of leaves and
stems (Figure 11). Overall, out of these input variables, plant
canopy height is the single best trait to estimate end-of-season
aboveground biomass (r = 0.78, p < 0.001), followed by plant
perimeter (r = 0.76, p < 0.001), and then diverse spectral indices
(r = 0.54–0.68, p < 0.001). Among the spectral indices, a slight
difference exists when the individual spectral index is used for
biomass modeling, but the insignificant difference is found when
assembled with plant canopy perimeter and height.

Effects of N Fertilization on Switchgrass
Growth
Nitrogen is an essential nutrient that is important to manage
in bioenergy and forage crop production (Monti et al., 2019).
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FIGURE 9 | The functional relationship between plant canopy area (CA) and canopy perimeter (CP) according to the UAV-based phenotyping measurements.

FIGURE 10 | Relationship between the coefficient of m in UAV-biomass models and plant phenotype changes qualified by the various spectral indices from the early
peak season to the end of the growing season. (A) RVI; (B) NDVI; (C) EVI; and (D) NDRE. Time-specific variations of the spectral index for the 1,320 switchgrass
plants in the field are reflected by boxplot statistics, where the red line on the box indicates the median, and the bottom and top edges of the box indicate the 25th

and 75th percentiles, respectively.

Frontiers in Plant Science | www.frontiersin.org 12 October 2020 | Volume 11 | Article 574073

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-574073 October 14, 2020 Time: 19:36 # 13

Li et al. UAV Phenotyping of Bioenergy Switchgrass

FIGURE 11 | Relationship between the plant phenotyping parameters (CH, canopy height; CP, canopy perimeter), spectral index (i.e., RVI, NDVI, EVI, and NDRE),
and plant biomass, where the corresponding data are derived from peak season of plant growth (i.e., September 25, 2019).

We observed that N-supplementation had no significant effects
on the global biomass production of the 330 switchgrass
genotypes included in this study. This is in contrast to other
studies that have shown switchgrass is more productive under
N-fertilizer treatments when water is not limited (Schmer et al.,
2012; Emery et al., 2020), and when N-supplementation is
applied to established fields and during more than one year
(Jung and Lal, 2011). However, N-supplementation does not
always result in higher biomass production and may have
unintended effects on switchgrass growth (Emery et al., 2020).
The present study was performed during the establishment
year (year one), where switchgrass establishment has been
reported to be slow and yield reduction has been observed
in the first year (Baxter et al., 2014). This factor may have
had a negative influence on biomass production obviating any
potential positive effects of N supplementation. However, we
emphasize the contribution of N uptake in switchgrass still needs
further investigation, especially with the support of UAV-based
multi-trait measurements proposed in this study. Meanwhile, to
elucidate underlying mechanisms in switchgrass NUE from the
perspective of genetic characteristics will be a concern-deserved
topic in the follow-on study.

CONCLUSION

Unmanned aerial vehicle (UAV)-based LiDAR and multispectral
technologies were assessed for their application of high-
throughput phenotyping of switchgrass and biomass estimation

in the field. We found that UAV-based LiDAR is a useful tool
for the precise qualification of plant phenotypic indicators
(i.e., plant canopy perimeter, and height). Furthermore, a
relatively simple and standardized model was developed for
the estimation of switchgrass biomass yield through combing
plant phenotyping characteristics (e.g., plant canopy height
and perimeter) measured by LiDAR technology, and plant
biomass density, which is detected by a widely used spectral
vegetation index. We found that combining these phenotypic
indicators significantly improves the performance of the
spectral index in modeling and estimating biomass yield in
a non-destructive manner. Finally, we found that, globally,
N fertilization had non-significant effect on switchgrass
phenotyping traits including biomass. In summary, the
UAV-based approaches proposed in this study, including
plant phenotyping automatic extracting method and biomass
predicting model, facilitated high-throughput and precise
phenotype mapping, which should have impact on accelerating
bioenergy crop breeding as well as practical use in the field to
estimate switchgrass biomass prior to destructive harvests at the
end of the season.
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