AUTHOR=Xu Ling , Liu Hui , Kilian Andrzej , Bhoite Roopali , Liu Guannan , Si Ping , Wang Jian , Zhou Weijun , Yan Guijun TITLE=QTL Mapping Using a High-Density Genetic Map to Identify Candidate Genes Associated With Metribuzin Tolerance in Hexaploid Wheat (Triticum aestivum L.) JOURNAL=Frontiers in Plant Science VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2020.573439 DOI=10.3389/fpls.2020.573439 ISSN=1664-462X ABSTRACT=
Tolerance to metribuzin, a broad-spectrum herbicide, is an important trait for weed control in wheat breeding. However, the genetics of metribuzin tolerance in relation to the underlying quantitative trait loci (QTL) and genes is limited. This study developed F8 recombinant inbred lines (RILs) from a cross between a highly resistant genotype (Chuan Mai 25) and highly susceptible genotype (Ritchie), which were used for QTL mapping of metribuzin tolerance. Genotyping was done using a diversity arrays technology sequencing (DArTseq) platform, and phenotyping was done in controlled environments. Herbicide tolerance was measured using three traits, visual score (VS), reduction of chlorophyll content (RCC), and mean value of chlorophyll content for metribuzin-treated plants (MCC). A high-density genetic linkage map was constructed using 2,129 DArTseq markers. Inclusive composite interval mapping (ICIM) identified seven QTL, one each on chromosomes 2A, 2D, 3A, 3B, 4A, 5A, and 6A. Three major QTL—