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Salt stress is one of the major devastating factors affecting the growth and yield of almost all
crops, including the crucial staple food crop sweet potato. To understand their molecular
responses to salt stress, comparative transcriptome and proteome analysis of salt-tolerant
cultivar Xushu 22 and salt-sensitive cultivar Xushu 32 were investigated. The results showed
the two genotypes had distinct differences at the transcription level and translation level even
without salt stress, while inconsistent expression between the transcriptome and proteome
data was observed. A total of 16,396 differentially expressed genes (DEGs) and 727
differentially expressed proteins (DEPs) were identified. Wherein, 1,764 DEGs and 93 DEPs
were specifically expressed in the tolerant genotype. Furthermore, the results revealed that
the significantly upregulated genes were mainly related to the regulation of ion accumulation,
stress signaling, transcriptional regulation, redox reactions, plant hormone signal
transduction, and secondary metabolite accumulation, which may be involved in the
response of sweet potato to salt stress and/or may determine the salt tolerance
difference between the two genotypes. In addition, 1,618 differentially expressed
regulatory genes were identified, including bZIP, bHLH, ERF, MYB, NAC, and WRKY.
Strikingly, transgenic Arabidopsis overexpressing IbNAC7 displayed enhanced salt
tolerance compared to WT plants, and higher catalase (CAT) activity, chlorophyll and
proline contents, and lower malondialdehyde (MDA) content and reactive oxygen species
(ROS) accumulation were detected in transgenic plants compared with that of WT under
salt stress. Furthermore, RNA-seq and gRT-PCR analysis displayed that the expression of
many stress-related genes was upregulated in transgenic plants. Collectively, these findings
provide revealing insights into sweet potato molecular response to salt stress and underlie
the complex salt tolerance mechanisms between genotypes, and IbNAC7 was shown as a
promising candidate gene to enhance salt tolerance of sweet potato.
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INTRODUCTION

Plants are often permanently exposed to a variety of abiotic
stresses, such as salinity, drought, heat, and cold. Among them,
salt stress is the major devastating factor affecting crop growth
and productivity (Parida and Das, 2005). About 9 billion hm?* of
land worldwide is affected by salt stress, accounting for at least
6% of the total land area, and 50% of irrigated land is facing
salinity problems (Flowers, 2004; Acosta-Motos et al., 2015;
Kumar et al., 2017). Therefore, salt stress is a widespread and
common feature of massive lands, and plants have evolved
various mechanisms to tolerate salt stress. Presently, a great
deal of documents have identified and characterized the
components of the salt stress signaling network. For instance,
the first established plant abiotic stress signaling pathway, the
SOS pathway, is a calcium-dependent protein kinase pathway
that plants use for salt stress signaling and Na" resistance
(Zhu, 2002; Zhu, 2016). However, the specific physiological
and molecular mechanisms of salt tolerance remain largely
unknown in plants.

Plants’ response to salt stress involves sophisticated and
diverse tolerance mechanisms that are activated and integrated
by the transcription of thousands of genes with enormous
biological roles (Kant et al, 2007; Zhu, 2016). Transcription
factors (TFs) are pivotal because they are involved in the
regulation of signal transduction and the transcription of many
stress-related genes, such as bZIP, MYB, WRKY, AP2/ERF, and
NAC proteins (Erpen et al., 2018; Zhu et al., 2018; Li et al., 2019;
Yang et al., 2019). NACs are one of the largest plant-specific TFs,
and have been widely isolated from various species, such as
Arabidopsis and rice (Nuruzzaman et al., 2010), potato (Singh
et al., 2013), tomato (Jin et al., 2020) and maize (Wang et al.,
2020). Typically, NACs have an N-terminal NAC domain
consisting of approximately 150 conserved amino acids
involved in DNA or protein binding, and the NAC domain
can be divided into five sub-domains (A-E). Studies have shown
that the diverse C-terminal is considered as a transcription
regulatory region that can activate or repress gene expression
(Puranik et al., 2012; Mohanta et al., 2020).

Significant progress has critically demonstrated that numerous
NAC:s in various plant species are involved in diverse biological
processes, especially in response to biotic and abiotic stress, such
as drought, salt, and cold (Puranik et al., 2012; Mathew and
Agarwal, 2018). A large number of documents showed that
transgenic plants overexpressing a NAC gene have enhanced
stress tolerance, illustrating that NACs are promising candidate
factors for genetic engineering of crops under adverse conditions
(Tran et al., 2010; Marques et al, 2017). For example, the
over accumulation of Arabidopsis ANAC019, ANACO055, and
ANACO072 resulted in improved drought tolerance and
modulated the transcription of numerous stress- and ABA-
related genes (Tran et al., 2004). Transgenic rice that
overexpressed SNACI or SNAC2 genes displayed obviously
improved tolerance to drought and salt, and the expression of
lots of stress-related genes was upregulated in SNAC2-
overexpressing plants (Hu et al., 2006; Nakashima et al., 2007).

Presently, Hou et al. (2020) find that overexpression of
CaNAC064 confers cold tolerance, while down-regulation of
CaNAC064 displays the opposite performance in transgenic
pepper (Hou et al., 2020). Furthermore, plenty of studies have
suggested that NACs respond to various abiotic stresses via the
downstream actions of hormones including ABA and ethylene.
For instance, overexpression of multiple NACs results in altered
ABA sensitivity in transgenic plants (Marques et al., 2017; He
etal,, 2019). And multiple NAC TFs function directly to the ABA
biosynthesis-related genes, such as both Arabidopsis ATAF1 and
rice OsNAC2 can directly bind to the promoter of NCED3 gene
(Jensen et al., 2013; Mao et al., 2017).

Sweet potato (Ipomoea batatas L.) is the only crop with starch
storage roots in the Convolvulaceae family (Liu, 2017; Arisha
etal., 2020), and is one of the most important food crops, ranking
seventh in the world and fourth in China (Meng et al., 2018).
Sweet potato is widely applied for human food, animal feed, and
for manufacturing starch and alcohol. Because of its ability to
adapt various agro-ecological conditions, sweet potato has
ensured food supply and safety in many developing countries,
but its yield is still reduced by many biotic and abiotic stresses
(Liu, 2017). Presently, many stress-related genes have been
identified in sweet potato. For example, IbABF4 TF confers
drought and salt tolerance in transgenic sweet potato and
Arabidopsis (Wang W. et al., 2019), and IbMYB116 TF
improves drought tolerance in transgenic Arabidopsis (Zhou
et al., 2019). Our previous study also displayed that
overexpression of a AP2/ERF gene, IbCBF3, increased the cold
and drought tolerance in transgenic sweet potato (Jin et al,
2017). However, the roles of most stress-responsive genes in
sweet potato remain largely unknown. At the same time,
although extensive reports have largely revealed the importance
of transcriptional regulations under salt stress, few studies have
studied the regulation of translation level. In this study,
transcriptome and proteome analysis were simultaneously
performed in two contrasting sweet potato cultivars Xushu 22
(salt-tolerant, abbreviated as Xu22) and Xushu 32 (salt-sensitive,
abbreviated as Xu32) we previously identified (Yu et al., 2016)
under control and salt-exposed conditions. We found that
overexpression of IbNAC? obviously enhanced the salt tolerance
of transgenic Arabidopsis. This study identified crucial genes/
proteins and pathways between the two contrasting cultivars
under salt stress, and provided fundamental insights into the
molecular mechanisms underlying sweet potato stress tolerance.

MATERIALS AND METHODS

Plant Materials and Cultural Conditions

The tuberous roots of two contrasting sweet potato cultivars Xu22
and Xu32 with different salt tolerance (Yu et al., 2016) were placed
in the greenhouse, and then the shoots with functional leaves were
cut and hydroponic culture in 1/4 Hoagland solutions in a plant
growth chamber timed for 16 h days (25°C) and 8 h nights (20°C).
Hoagland solution was replaced every three days, afterwards
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uniform seedlings of both cultivars with five to six functional
leaves and 8 to 10 cm fibrous roots were exposed to 150 mM NaCl
for 24 h, and fibrous roots before and after salt stress were
harvested for transcriptome analysis. All the samples were
immediately immersed in liquid nitrogen and stored at —70°C.

Transcriptome Analysis

The fibrous roots of Xu22 and Xu32 were harvested from six
different plants for transcriptome analysis of each set with three
biological replicates. 1 g RNA from each sample was employed
as input material, and 12 samples were transferred to Biomarker
technology Co. Ltd. (Beijing, China) for transcriptome
sequencing and assembly. Clean reads were achieved by
removing reads containing adapters, poly-N and low-quality
reads from raw reads, and then the filtered sequences were
used for downstream analysis. Hisat2 was used to map with
the sweet potato reference genome (https://ipomoea-genome.
org/). Gene expression was estimated by read counts, and genes
with adjusted P-values (false discovery rate, FDR) < 0.05 detected
by DESeq (Anders and Huber, 2010) and |log2 (fold change)| >1
were considered as DEGs. GO enrichment analysis was
implemented by GOseq (Young et al., 2010), and the statistical
enrichment of KEGG pathways were tested by KOBAS (Mao
et al., 2005).

Proteome Analysis

The iTRAQ analysis of the proteome was carried out by
Biomarker technology Co. Ltd. (Beijing, China) as described in
our previous report (Dong et al., 2019). Briefly, total proteins
were extracted from 12 samples, and their purity was detected by
10% SDS-PAGE. The peptides were dried by vacuum
centrifu(gation after trypsin digestion, and then labeled using
iTRAQ™ Reagent-8PLEX Multiplex Kit (Sigma). About 600 LLg of
the labeled peptide mix was fractionated by a C18 column on
Rigol L3000 HPLC. The obtained spectra were searched against
the sweet potato reference genome using the PD 2.2 (Thermo).
The protein quantitation was estimated by the Mann-Whitney
test, and fold change >1.2 was applied to screen the differential
proteins. GO and InterPro (IPR) analysis were carried out by the
InterProScan-5 against multiple protein databases, such as Pfam,
SMART and ProSiteProfiles, and KEGG database was employed
to analyze the protein pathways.

Construction of Overexpression Vector
and Arabidopsis Transformation

The coding region of IDNAC7 was inserted into the pBI121
binary vector driven by the CaMV 35S promoter using the
primers Ov-IbNAC7-F/R (Supplementary Table S1). The
vector was then transferred into A. tumefaciens GV3101, and
transgenic Arabidopsis thaliana (Columbia-0) were produced
and further to obtain homozygous T3 seeds according to the
methods described by Zhang et al. (2006). The expression of
IbNAC? in transgenic plants was confirmed by qRT-PCR using
the CEX96' " Real-Time System (Bio-Rad, USA) as described in
our previous report (Meng et al., 2019). The relative expression
was normalized to EFIa (Supplementary Table S1), and the

transcription was further calibrated using the transgenic line
with the lowest IDNAC7 expression.

Assays for NaCl Stress Tolerance of
Transgenic Arabidopsis

For germination greening rate assay, seeds of WT and T3
transgenic lines were sterilized with 1% NaClO for 10 min, and
then sown on 1/2 MS medium with 0 (as a control) and NaCl (100
and 150 mM). About 180 seeds per line were used in each assay,
and the germination greening rate was calculated after 10 d. For
root length assay, 4-d-old seedlings of WT and transgenic lines
were selected based on the consistency of root length, and were
vertically cultured on 1/2 MS medium with 0 (as a control) and
120 mM NaCl in a growth chamber. The length of the primary
roots was measured after 10 d. For salt stress in soil, 7 d-old
seedlings of WT and transgenic lines obtained on 1/2 MS medium
were transferred to pots in a greenhouse; two weeks later, plants
were randomly selected for salt tolerance assay. One group was
watered normally as a control, and the other group was irrigated
with 200 mM NaCl solution from the bottom of pots every 3 d.
Pictures were taken 15 d later to record the phenotype.

RNA-Seq Analysis and Salt Tolerance
Evaluation of Transgenic Arabidopsis

The 10-d-old seedlings of WT and transgenic line 8, which were
vertically cultured on 1/2 MS medium, were soaked in liquid 1/2
MS medium containing 100 mM NaCl solution for 6 h, and then
the whole plants before and after NaCl treatment were collected
and used for RNA-seq analysis as described above, except that
clean reads were mapped to the Arabidopsis reference genome
(https://www.arabidopsis.org/).

In addition, the leaves of WT and transgenic plants in the soil
under normal and salt stress for 15 d were used to determine
stress-related physiological indicators. Chlorophyll, proline and
malondialdehyde (MDA) contents, and catalase (CAT) activity
were detected using corresponding test kits (for plant) purchased
from Nanjing Jiancheng Bioengineering Institute (Nanjing,
China) according to the manufacturer’s protocols. Superoxide
radicals were histochemically detected using the nitroblue
tetrazolium (NBT) and dead cells were visualized by trypan
blue (TB) staining according to the procedures described by Lee
et al. (2012).

RNA Extraction and gRT-PCR Analysis

Total RNA was isolated from all samples using an RNA
extraction kit (TianGen, Beijing, China) according to the
manufacturer’s instructions. 2 g RNA was reverse-transcribed
using PrimeScript reverse transcriptase with gDNA Eraser
(TaKaRa, Dalian, China) using the mix of Oligo dT Primer
and Random 6 mers. qRT-PCR experiments were carried out on
a CFX96'" Real-Time System (Bio-Rad, USA) as described in
our previous report (Meng et al., 2019). The Arabidopsis EF1o
gene was selected as the internal standard. All gRT-PCR primers
are listed in Supplementary Table S1, and each gene was
performed with three independent biological replicates, and
three technical replicates for each biological replicate.

Frontiers in Plant Science | www.frontiersin.org

August 2020 | Volume 11 | Article 572540


https://ipomoea-genome.org/
https://ipomoea-genome.org/
https://www.arabidopsis.org/
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Meng et al.

Distinct Responses Between Sweet Potato

Statistical Analyses

The data were analyzed by one-way analysis of variance
(ANOVA) and means different were significant by a Dunnett’s
test at P < 0.05. Statistical analyses were conducted with SPSS
software 20 version (IBM Corp., USA).

RESULTS

Enrichment Analysis of the DEGs
(Differentially Expressed Genes) Between
Xu22 and Xu32 Under Salt Stress

Our previous studies have shown that better ion homeostasis
and nitrogen metabolism make Xu22 more salt tolerant than
Xu32 (Yu et al, 2016). To further understand the molecular
mechanism underlying the two contrasting sweet potato cultivars
with different salt tolerance, their fibrous roots from control and
salt-exposed conditions (total 12 samples) were collected for
transcriptome sequencing using the Illumina HiSeq 2500
platform. A total of 40,767,744 to 55,915,888 clean reads were
generated, of which 73.73% to 75.21% clean reads were mapped
to the sweet potato genome, and less than 3.98% of the reads
were mapped to multiple sites (Supplementary Table S2). The
RNA data in the three biological replicates showed high
expression correlation (R* > 0.897) except Xu22-CR2 (R* <
0.738, Supplementary Figure S1), thus these assembled
sequences except Xu22-CR2 are appropriately employed for
downstream analysis.

The read counts value was calculated to profile the transcription
level of genes. A total of 16,396 DEGs were identified from the
fibrous root libraries under normal and salt-treated conditions
based on the FDR < 0.05, and |log2 (fold change)| > 1
(Supplementary Figure S2, Supplementary Table S3). Among
them, 4,460 and 6,150 DEGs were from Xu22-SR vs Xu22-CR and
Xu32-SR vs Xu32-CR, respectively, 8,128 DEGs were from Xu22 vs
Xu32 without salt stress, and 8,525 DEGs were from Xu22 vs Xu32

under salt stress. Interestingly, the total number of salt-responsive
genes in Xu32 was larger than in Xu22 under salt stress (both
upregulated and downregulated genes) (Figure 1A). Venn analysis
showed that many DEGs identified were salt stress-responsive and/
or genotype-specific. Among them, 1,764 and 3,454 DEGs
were specifically expressed in Xu22 and Xu32 under salt
stress, respectively, and 2,696 DEGs were expressed in both
libraries (Figure 1B).

Functional annotations showed that a large number of salt-
responsive genes identified in the roots of Xu22 and Xu32 under
salt stress are involved in the regulation of ion accumulation,
stress signaling, redox reactions, plant hormone signal
transduction, and accumulation of secondary metabolites
(Supplementary Table S3). These pathways have been shown
to play pivotal roles in the salt tolerance of many plants (Zhang
etal,, 2019), and thus may represent the core genes related to salt
stress response, despite the differential levels of salt tolerance in
sweet potato. Especially, compared to samples from salt-sensitive
Xu32, we found that many DEGs encode stress-related proteins/
factors, such as NAC TF, zinc finger protein, F-box protein,
MAPKKK, DEAD-box RNA helicase, plasma membrane
ATPase, calmodulin-binding protein, and cytochrome P450
were uniquely expressed in salt-tolerant Xu22. Furthermore,
the expression levels of many DEGs related to WRKY TF, ERF
TF, PPR protein, F-box protein, zinc finger protein, ABA-
induced protein, potassium transporter, methyltransferase,
homeobox protein, cytochrome P450 were also significantly
upregulated in Xu22 compare to that in Xu32 under salt stress
(Supplementary Table S3).

GO annotations of the DEGs showed that over 50 functional
terms of the four sets of data were classified (Supplementary
Table S4). The first seven most enriched functional terms are
similar between Xu22 and Xu32 under salt stress. Among them,
“catalytic activity” term (ranging from 1,765 to 2,539 DEGs) in
molecular function and “metabolic process” term (ranging from
1,640 to 2,731 DEGs) in biological process were the two most
common categories in both Xu22 and Xu32 under salt stress

one library.

A 5000 | [ Upregulated DEGs
1000 [ ]Downregulated DEGs
5 3000
= 2000
a
% 1000
I
£ 1000+
“ 2000
3000
4000
5000
Xu22-SR Xu32-SR Xu22-CR Xu22-SR
vs Vs Vs
Xu22-CR Xu32-CR Xu32-CR
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Xu32-SR Xu22-SR vs Xu22-CR

Xu22-CR vs Xu32-CR

Xu32-SR vs Xu32-CR

1957
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4280
(26. 1%)
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FIGURE 1 | Overview and Venn diagram of upregulated or downregulated genes in fibrous roots of two sweet potato genotypes under normal and salt-treated
conditions at a level of |log2 (fold change)| > 1 and FDR < 0.05. (A) The total number of differentially expressed genes (DEGs) found in the fibrous roots of Xu22 and
Xu32 under control and salt-treated conditions. (B) The four-way Venn diagram in Xu22 and Xu32 suggests that the DEGs were genotype-specific and salt-
responsive. Overlapping regions indicate co-expressed DEGs among different data sets, and numbers in only one circle represent DEGs expressed in only
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(Figure 2A, Supplementary Figure S3A). The results indicated
that the response of sweet potato to salt stress involves intensive
metabolic activity and catalytic activity. Strikingly, lots of DEGs
were involved in multiple crucial GO terms which are known to
be related to plant salt tolerance, such as “antioxidant activity,”
“transcription factor activity,” and “response to stimulus.”
Moreover, GO analysis also displayed apparent genotype-
specific enrichment, suggesting that many important biological
process, cellular component and molecular function occurred

differently between Xu22 and Xu32 under salt stress
(Supplementary Table S4).

Besides, KEGG-based DEGs enrichment analysis showed that
most KEGG pathways were enriched in both genotypes under
salt stress. The most enriched categories are “phenylpropanoid
biosynthesis” in both Xu22 (106 DEGs) and Xu32 (143 DEGs)
under salt stress, and “ribosome” in Xu22 vs Xu32 under salt
stress (137 DEGs) and Xu22 vs Xu32 without salt stress (133
DEGs) (Figure 2B, Supplementary Figure S3B). Common
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FIGURE 2 | GO classifications and KEGG pathways of the DEGs in the fibrous roots of Xu22 and Xu32 under salt stress. (A) GO classifications of the annotated
DEGs. The left Y-axis indicates the percentage of DEGs identified, and the right Y-axis indicates the number of DEGs. The DEGs were categorized based on the
annotations of GO, and the numbers are displayed according to the biological process (BP), cellular component (CC), and molecular function (MF). (B) Enriched
KEGG pathways of the DEGs in Xu22 and Xu32 under salt stress. X-axis and Y-axis represent the GeneRatio and the terms of pathways, respectively. Coloring
correlates with the g-value. The lower the g-value, the more significant the enrichment. Point size correlates with the numbers of DEGs.
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categories of high enrichment also included “starch and sucrose
metabolism,” “carbon metabolism,” “plant hormone signal
transduction,” “biosynthesis of amino acids.” However, the
“ribosome” pathway in Xu22 was significantly upregulated
compared to Xu32 under salt stress (Supplementary Figure
§4). In particular, several categories were uniquely enriched in
Xu22, such as “N-Glycan biosynthesis” and “glucosinolate
biosynthesis” (Supplementary Table S5). Overall, the data
provide valuable knowledge for further understanding the
complicated molecular mechanisms of sweet potato responses
to salt stress.

Proteome Analysis and Transcriptome-
Proteome Matching Analysis

In many cases, changes in transcription level are not always
accompanied by changes in protein abundance, thus comparative
proteome analysis was conducted using the same samples as the
transcriptome by the iTRAQ. A total of 3,123 proteins were
identified in the four sets of data, while the proteome data in the
three biological replicates showed a very low expression
correlation (each < 0.69) (Supplementary Figure S5). Among
these proteins, 86.5% (2701), 70.3% (2,196) and 44.7% (1,395)
were annotated in the COG, GO, and KEGG databases,
respectively (Supplementary Table S6). The comparison
between different samples showed that a total of 727 DEPs
(differentially expressed proteins) were identified, wherein, 124
DEPs (59 upregulated and 66 downregulated) in Xu22, and 262
DEPs (119 upregulated and 143 downregulated) in Xu32 under
salt stress were identified. And 93 and 231 DEPs were uniquely
expressed in Xu22 and Xu32 under salt stress, respectively. 216
DEPs were from Xu32 vs Xu22 under salt stress, and 125 DEPs
were from Xu32 vs Xu22 without salt stress (Supplementary
Figures S6 and S7). Commonly upregulated proteins of
the two genotypes under salt stress included peroxidase,
elongation factor, phosphoglycerate kinase, glycine-rich RNA-
binding protein, plasma membrane ATPase, and NADH
dehydrogenase. Some DEPs, such as cytochrome P450,
cinnamic acid 4-hydroxylase, lipoxygenase, and DNA repair
protein, were uniquely upregulated in Xu22 under salt stress.
In addition, 104 upregulated and 112 downregulated DEPs were
identified in Xu32 compared with Xu22 under salt stress. Among
them, the expression of many proteins, such as elongation
factor, catalase, DEAD-box ATP-dependent RNA helicase,
rubisco activase, glutamate dehydrogenase, and ATP-citrate
synthase was upregulated in Xu22 vs Xu32 under salt stress
(Supplementary Table S7).

GO annotations of the DEPs displayed that there were
multiple categories such as “glutamine biosynthetic process,”
“single-organism catabolic process,” and “cellular catabolic
process” in Xu22; “photosynthesis, light reaction” and “protein
localization to vacuole” in Xu32 were remarkably enriched under
the biological process after exposure to salt stress. And
“photosynthesis,” “response to oxidative stress,” and “cellular
metabolic compound salvage” were significantly enriched
in Xu32 vs Xu22 under salt stress (Figure 3A). As for
the celelular components, multiple terms were downregulated

in Xu32 compared with Xu22 under salt stress, such
as “respiratory chain,” “late endosome membrane,” and
“membrane-enclosed lumen” (Figure 3B). It is interesting to
note that many terms in the molecular function category were
prominently enriched in Xu22, while only several terms were
enriched in Xu32 under salt stress (Figure 3C). In addition, the
enrichment analysis of DEPs based on KEGG database showed
that many categories, including “citrate cycle”; “alanine,
aspartate, and glutamate metabolism”; “microbial metabolism
in diverse environments”; and “Alzheimer’s disease” were
remarkably enriched in Xu22 under salt stress. However, only
“photosynthesis-antenna proteins” was enriched in Xu32 under
salt stress. In addition, “arginine biosynthesis” and “citrate cycle”
were significantly downregulated in Xu32 compared with Xu22
under salt stress (Figure 3D).

To obtain more information on response changes under salt
stress, the identified proteins were matched with the genes from
RNA-seq analysis. Of the 3,123 identified proteins, 1,113 had
corresponding genes in the RNA-seq data (Supplementary
Table S8). The results showed that the correlation between
gene and protein expression was very weak, only a few genes
and their corresponding proteins have consistent expression
profiles. For instance, 8 and 11 DEGs showed consistent
expression between the transcription level and translation level
in Xu22 and Xu32 under salt stress, respectively. And the
encoding products of common upregulated genes between
transcriptome and proteome analysis included aldehyde
dehydrogenase, glutamate dehydrogenase, and glutamine
synthetase in Xu22 compared with Xu32 under salt stress
(Supplementary Table S9). However, 68 and 144 proteins was
differentially expressed in Xu22 and Xu32 under salt stress,
respectively, but no changes in the expression of their
corresponding genes were detected. 126 and 77 proteins were
differentially expressed in Xu32 vs Xu22 under salt stress and
Xu32 vs Xu22 without salt stress, respectively, while no changes
in their gene expression were observed. Similarly, 20 and 30
DEGs was detected in Xu22 and Xu32 under salt stress,
respectively, while no corresponding DEPs were identified
(Supplementary Table S9).

Identification of Salt-Responsive TFs in
Sweet Potato and Overexpression of
IbNAC7 Improved Salt Tolerance in
Transgenic Arabidopsis

The identification and characterization of stress-responsive TFs
is crucial for the development of transgenic crops with improved
stress tolerance. In this study, a total of 1,618 differentially
expressed TFs were identified with FDR < 0.01 and |log2 (fold
change)| > 1 (Supplementary Table S10). Representative
differentially expressed TFs were shown in Table 1, including
various salt tolerance/stress-related bZIP, bHLH, ERF, MYB,
NAC, and WRKY TFs, and their diverse transcription profiles
suggest their pivotal regulatory roles in salt stress response.
Wherein, MYB (98 members), WRKY (95 members) and
NAC (74 members) are the three TF families with the largest
number of differential expression. Interestingly, the amount of
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upregulated expressed TFs detected in salt-tolerant Xu22 was
significantly lower than that in salt-sensitive Xu32 under salt
stress (Table 1), the specifically upregulated TFs in Xu22 may
make a positive contribution to its salt tolerance. Previously, 12
stress-responsive IbNAC genes were selected based on the
present RNA-seq data. Among them, the transcription of
IbNAC?7 (one of the 74 NACs) was remarkably upregulated by
multiple abiotic stresses and hormones, such as salt, cold, ABA,
and ACC (Meng et al., 2018), indicating that JbNAC7 may be
involved in the stress response of sweet potato.

Subsequently, eight transgenic Arabidopsis lines overexpressing
the IbNAC7 gene were obtained, and the results displayed that all
the transgenic lines showed remarkably higher transcription of
IbNAC? than that in WT plants (Supplementary Figure S8).
Three T3 homozygous lines with high expression of IbNAC7 were
selected for salt tolerance test. Firstly, the salt tolerance of transgenic
lines was examined at the germination and post-germination stages.
No obvious differences in germination greening rates on 1/2 MS
medium with 0 and 100 mM NaCl between transgenic and WT
seeds were observed. However, the germination greening rates of
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TABLE 1 | Representative salt stress-responsive TFs under salt stress in sweet potato transcriptome analysis.

Name Total No. Xu22-SR vs Xu22-CR Xu32-SR vs Xu32-CR Xu22-CR vs Xu32-CR Xu22-SR vs Xu32-SR
Upregulated Downregulated Upregulated Downregulated Upregulated Downregulated Upregulated Downregulated

ARF 22 6 4 6 3 3 10 1 5
bHLH 34 5 10 6 9 5 9 2 12
bzIP 15 2 0 5 3 3 3 2 3
ERF 32 12 4 13 2 6 8 4 14
HSF 25 7 3 16 2 4 3 0 5
MADS 16 3 1 2 3 4 6 2 7
MYB 98 34 19 35 22 14 19 5 22
NAC 74 36 1 39 4 10 13 iR 21
GRAS 17 4 1 5 3 2 5 2 6
SBP 4 0 0 1 0 0 2 1 2
TCP 9 3 3 0 2 0 3 1 1
Trihelix 6 1 0 1 0 1 2 1 3
Whirly 3 0 0 0 0 2 1 1 1
WRKY 95 43 9 44 10 9 16 20 23
zinc finger 49 3 7 7 14 10 12 5 18

CR, control fibrous roots; SR, salt-treated fibrous roots.

transgenic lines were notably higher than that of WT plants under
150 mM NaCl conditions (Figures 4A, B). And the transgenic and
WT seedlings showed similar growth on control medium, while the
transgenic lines provided remarkably longer roots than that of WT
under 120 mM NaCl stress (Figures 4C, D). The results showed
that IbNAC7 conferred salt tolerance during the germination and
post-germination stages of Arabidopsis.

Performance of Transgenic IbNAC?7 Plants
Under Salt Stress in Soil and Salt
Tolerance Evaluation

The performance of transgenic lines under NaCl stress was
further tested in soil, 20-d-old WT and transgenic lines were
irrigated with 200 mM NaCl every 3 d. Under control conditions,
normal morphological phenotypes were observed in WT and

transgenic lines. Nevertheless, transgenic lines displayed better
growth after salt stress, such as delayed leaf necrosis and
yellowing at 15 d post-treatment (Figure 5A). To characterize
the salt tolerance of the transgenic lines, several stress-related
physiological parameters were detected. No significant
differences in the physiological analysis between WT and
transgenic lines were observed under normal conditions. After
15 d of salt stress, the CAT and SOD activity and chlorophyll
content of transgenic plants were markedly higher than those of
WT. In contrast, transgenic plants accumulated less MDA than
the WT plants (Figure 5B). Besides, biochemical staining was
analyzed by NBT and TB using the detached leaves. In the
absence of salt stress, transgenic and WT plants displayed similar
basal levels of ROS and cell death. After exposure to salt stress for
15 d, transgenic lines accumulated much less ROS and dead cells

A WT OE-8 OE-9

Control

100 mM
NaCl

150 mM 8
NaCl ¢

FIGURE 4 | The germination greening rate and root length of transgenic plants overexpressing IbNAC7 were improved under salt stress. (A, B) Comparisons of
germination phenotype (A) and germination greening rate (B) between WT and transgenic seeds (n > 60 each) grown on 1/2 MS medium containing 0, 100, and
150 mM NaCl for 10 d. (C, D) Comparisons of growth phenotype (C) and root length (D) between WT and transgenic seedlings (n > 20 each) grown on 1/2 MS
medium with or without NaCl for 10 d. Data are the means + SE of three independent biological experiments. Asterisks indicate statistical significance (‘P < 0.05)

between the WT and transgenic plants.
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than that of WT plants (Figures 5C, D). These results suggested
that transgenic Arabidopsis overexpressing IbNAC7 had
significantly improved salt tolerance compared to the WT plants.

IbNAC7 Affect Multiple Groups of Biotic-
and Abiotic Stress-Related Genes Under
Salt Stress

To clarify the potential mechanism of salt tolerance modulated by
IbNAC7, RNA-seq was used to detect the gene expression
differences of transgenic plants (line 8) under NaCl stress. A
summary of the sequencing assembly is shown in Supplementary
Table S11. At least 94.31% of the genes in each library were
mapped to the Arabidopsis genome, and the RNA data displayed a
strong expression correlation (R* > 0.791). Venn diagram showed
that 2,441 and 943 DEGs were specifically expressed in transgenic
and WT plants under salt stress, respectively, and 2,484 DEGs
were expressed in both plants (Figures 6A, B). A total of 1016
DEGs, including 774 upregulated and 242 downregulated genes,
were detected in the transgenic lines compared with those in WT
plants under salt stress (Figure 6C, Supplementary Table S12).
Representative upregulated DEGs included 306 salt tolerance/
stress-related TFs, such as AP2/ERF, bHLH, MYB, NAC,
WRKY, and Zinc finger protein, indicating their vital roles
under salt stress. In addition, the upregulated genes are also
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FIGURE 5 | Comparisons of WT and transgenic plants overexpressing IbNAC7 treated with water or salt stress in soil. (A) Phenotype comparison of WT and
transgenic plants exposed to salinity stress in soil. 20-d-old plants were randomly selected for the salt tolerance assay by irrigating with 200 mM NaCl solution every
3 d from the bottom of pots. 15 plants from each line were employed for one experiment, and three independent experiments were conducted. (B) Comparisons of
CAT activity, chlorophyll, proline and MDA content between WT and transgenic plants under normal and salt stress conditions. Data are the means + SE of three
independent biological experiments. Asterisks indicate statistical significance (*P < 0.05) between the WT and transgenic plants. (C, D) Histochemical staining of TB
(C) and NBT (D) of transgenic Arabidopsis plants under under normal and salt treatment for 15 d.

associated with diverse stress response. For instance, multiple
upregulated genes encoded ABC transporter family proteins,
LEA proteins, pathogenesis-related proteins, peroxidases, and
PPR proteins (Supplementary Table S12).

When the DEGs were analysed for GO annotations, multiple
stress-related GO terms were found, such as the peroxidase activity,
antioxidant activity, defense response, and response to biotic
stimulus (Supplementary Figure S9A). And multiple terms
including response to stress, response to oxidative stress, response
to biotic stimulus were significantly upregulated in transgenic lines
compared with WT plants under salt stress (Figure 6D). Moreover,
DEG-associated KEGG pathways were also identified. The results
showed that the pathways related to ribosome, carbon metabolism,
and starch and sucrose metabolism were significantly enriched in
transgenic plants compared with those in WT plants under salt
stress (Supplementary Figure S9B). And the pathways related to
ribosome, plant-pathogen interaction, and phenylpropanoid
biosynthesis were remarkably upregulated in transgenic plants
(Figure 6E). Taken together, these results suggested that IbLNAC7
is involved in the regulation of numerous and diverse stress-related
genes in response to salt stress in Arabidopsis.

To validate the DEGs obtained from RNA-seq data, the
expression levels of eight genes were detected by qRT-PCR.
The upregulated DEGs were selected being representative of
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important genes in stress response. For instance, TF encoding
genes AtbHLHI129 (Tian et al, 2015), AtERFI (Lorenzo et al,
2003), AtERF094 (Zarei et al.,, 2011), AtWRKY51 (Yan et al,
2018) and AtWRKY63 (Ren et al, 2010), K channel protein
encoding gene AtTPK2 (Isayenkov and Maathuis, 2013), stress-
related F-box protein encoding gene AtPP2B2 (Stefanowicz,
2015) and pathogenesis-related gene AtPRI (Pecenkova et al,
2017). Our results showed that the expression of almost all the
selected genes was significantly upregulated in transgenic lines
compared to that of WT under both control and salt conditions,
which was consistent with that obtained by RNA-seq analysis,
although there were variations in fold changes among the transgenic
lines (Figure 6F). Therefore, these results demonstrated that
IbNAC7 may affect the transcription of multiple groups of stress-
related genes under salt stress.

DISCUSSION

pt?>Cultivating salt tolerant and high-yielding crop varieties is the most
effective way to reduce crop yield losses. Therefore, it is critical to
understand the salt stress response and tolerance mechanism of plants,
which will help us to improve the stress tolerance of plants through
molecular breeding and transgenic approaches. Genome-wide detection
of specific stress-responsive genes based on transcriptome analysis in
many crops with different characteristics has been increasingly conducted
under various stresses. For instance, the gene expression dynamics of two
contrasting genotypes, such as rice, sesame, cotton, and maize, under salt-
treated and normal conditions were examined, and large numbers of
diverse stress-related genes were identified (Guo et al,, 2015; Li et al, 2018;
Wang M. et al, 2019; Zhang et al, 2019). However, there is a lack of
research on sweet potato, a hexaploid heterozygous non-model crop,
responses to salt stress, and the regulations at translational levels have
been rarely studied. In addition to RNA-seq analysis, proteome analysis is
also critically necessary for understanding the change in translational
regulation during stress responses. In this study, comparative
transcriptome and proteome analysis of two contrasting sweet potato
cultivars with different salt tolerance were investigated, which will provide
a unique opportunity to gain insights into the candidate genes and
proteins involved in salt stress response in this important crop. To our
knowledge, this is the first comparison of salt stress-responsive
transcriptome and proteome in sweet potato with contrasting genotypes.

In the present study, distinct differences were detected in
transcription and translation levels between the two sweet potato
genotypes even without salt stress. A total of 16,396 DEGs and 724
DEPs were identified under normal and salt-treated conditions,
suggesting that transcription and translation regulations play a
crucial role in the response of sweet potato to salt stress. The
results showed that the correlation between gene and protein
expression of both genotypes was very weak. Similar to our
previous report (Dong et al, 2019) and multiple other studies
(Bogeat-Triboulot et al., 2007; Liu et al., 2016; Li et al., 2018), the
results showed that not all mRNA: protein ratios reflected the
corresponding changes in transcription and protein levels (Haider
and Pal, 2013). This may be due to the technical limitations of the
proteome method or the possible occurrence of posttranscriptional

regulation during salt stress response in sweet potato, making it
difficult to compare with RNA-seq data. In view of this, we mainly
focus on the discussion of transcriptome data between the two
genotypes. Transcriptome data showed that many significantly
enriched functional GO and KEGG terms of DEGs are consistent
between Xu22 and Xu32 under salt stress, indicating that the main
salt stress response pathways between the two cultivars may be
similar. However, the “ribosome” and “glutathione metabolism”
pathways in Xu22 were significantly upregulated compared to Xu32,
and “N-Glycan biosynthesis” and “glucosinolate biosynthesis” were
only enriched under salt stress in Xu22. These pathways be involved
in the regulation of the salt tolerance of Xu22. Differently, the
methionine metabolism pathway was previously shown as a
primary contributor to the salt-tolerant jute (Yang et al., 2017). In
addition, in proteome analysis, we also found that many proteins
were common upregulated in the two genotypes under salt stress,
such as peroxidase, elongation factor, phosphoglycerate kinase,
plasma membrane ATPase, and NADH dehydrogenase. However,
multiple proteins such as cytochrome P450, cinnamic acid
4-hydroxylase, and lipoxygenase were uniquely upregulated in
Xu22 under salt stress, suggesting that these specific proteins may
affect the contrasting salt tolerance between the two genotypes.
Besides, previous reports showed that the numbers of upregulated
genes of salt-tolerant varieties were higher than that of salt-sensitive
varieties under salt stress (Geng et al., 2019; Zhang et al., 2019).
However, our current RNA-seq data showed that the numbers of
upregulated and downregulated genes in salt-sensitive Xu32 were
more than that in salt-tolerant Xu22. And 1,764 and 3,454 DEGs
were specifically detected in Xu22 and Xu32 under salt stress,
respectively. Especially, many genes encoding stress-related
proteins/factors, including NAC TF, WRKY TF, ERF TF, PPR
protein, F-box protein, zinc finger protein, potassium transporter,
methyltransferase, cytochrome P450 were uniquely expressed or
significantly upregulated in salt-tolerant Xu22 under salt stress.
Therefore, these differential genes and pathways may contribute to
the difference in salt tolerance between the two contrasting
genotypes, and the salt tolerance of Xu22 could be enhanced by
high expression of some genotype-specific genes.

Salt stress has primary osmotic shock and ion-toxicity effects,
while secondary effects are complex, including reactive oxygen
species (ROS) burst, cell component damages, and metabolic
dysfunctions in plant cells (Munns and Tester, 2008; Zhu, 2016).
During the initial phase, cell expansion, cell wall and protein
biosynthesis, and photosynthetic activity of plant cells are all
inhibited, and many plants can accumulate compatible solutes
and ABA to preserve the osmotic pressure (Apel and Hirt, 2004).
At the same time, the ratios of Na*/K" and Na*/Ca®* are also
altered (Apse and Blumwald, 2007). In this context, increased
expression of many genes related to cell division, amino acid
metabolism, sucrose synthesis, photosynthetic activity, ABA
signaling as well as potassium and potassium transport were
observed in Xu22 and Xu32 under salt stress. This is consistent
with the previous observations on salt-induced accumulations of
special metabolites in multiple plants such as rice, sesame, and
sugar beet (Wang et al., 2018; Geng et al., 2019; Zhang et al., 2019).
Accordingly, KEGG enrichment analysis of the DEGs showed that
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“phenylpropanoid biosynthesis,” “starch and sucrose metabolism,”
“biosynthesis of amino acids,” “flavonoid biosynthesis,” and “plant
hormone signal transduction” categories were significantly
enriched. Similar metabolism enrichment was also enhanced in
salt-tolerant sesame (Zhang et al, 2019). Enhanced synthesis of
polyphenols, such as phenolic acids and flavonoids are detected
under multiple abiotic stresses, and they have the potential to
scavenge ROS, which can help plants respond to environmental
stimuli (Sharma et al,, 2019). Plant hormones including ABA, SA,
JA, and ethylene play critical roles in regulating plant response to
extensively biotic and abiotic stresses (Bari and Jones, 2009).
Besides, amino acids can function as compatible solutes and the
precursors of secondary metabolites can protect plants from
various stresses, suggesting that amino acid metabolisms play a
pivotal role in plant response to stress (Stepansky and Galili, 2003;
Haeusler et al., 2014). The results suggested that many functional
classifications of DEGs were similar between salt-tolerant Xu22 and
salt-sensitive Xu32. Particularly, several categories were preferably
enriched in Xu22, such as “N-Glycan biosynthesis” and
“glucosinolate biosynthesis,” indicating that these categories
might play a role in the differential salt tolerance between Xu22
and Xu32. The later phase is mainly associated with ROS, and the
imbalance between ROS production and ROS scavenging will lead
to subsequent oxidative stress (Xu et al., 2018). To maintain ROS
homeostasis under adverse stress, plants have evolved multiple
antioxidant mechanisms, including a ROS scavenging system. In
our present study, the data revealed that numerous DEGs in both
Xu22 and Xu32 were associated with antioxidant activity and
peroxisome under salt stress, implying that ROS scavenging-
related antioxidant metabolisms are vital tolerance mechanisms
for sweet potato adaptive response to salinity stress. Therefore, our
data strongly suggested that salt-induced accumulations of these
pivotal metabolites through biosynthesis or metabolism pathways
may contribute to enhancing salt tolerance of sweet potato.

TFs are critical components that regulate plant signal
transduction and gene expression in response to various biotic
and abiotic stresses (Erpen et al, 2018; Zhu et al.,, 2018; Li et al,
2019). In our transcriptome data, a total of 1,618 differentially
expressed TFs were examined, including bZIP, bHLH, ERF, MYB,
NAC, and WRKY, suggesting their important roles in regulating
the salt tolerance of sweet potato. Interestingly, the amount of
upregulated TFs detected in salt-tolerant Xu22 was lower than
that in salt-sensitive Xu32 under salt stress. Besides, the
differential expression of TFs of the same family suggests that
different members may have distinct biological functions or
regulatory mechanisms in sweet potato response to salt stress.
NACs are promising candidate factors for genetic engineering to
improve crop tolerance, which have been extensively demonstrated
by numerous stress-responsive NACs in various plant species
(Mohanta et al, 2020). A total of 74 NACs were differentially
expressed in the two phenotypes under salt stress, and the
transcription of IbNAC7 (one of the 74 NACs) was remarkably
induced by salt, cold, ABA, and ACC treatments (Meng et al., 2018),
suggesting that IbNAC7 may be involved in the response to
environmental cues. Subsequently, salt tolerance test of transgenic
Arabidopsis overexpressing IDNAC7 suggested this gene played

important roles in salt tolerance. Similarly, numerous transgenic
plants achieved by overexpression of OsNAC6 (Nakashima et al.,
2007), ONAC022 (Hong et al,, 2016), and ThNAC13 (Wang et al.,
2017b) displayed significantly improved salt tolerance. Our previous
reports also showed that SINAC4 and SINACI1 participated in the
regulation of tomato salt and drought tolerance (Zhu et al,, 2014;
Wang et al, 2017a). The transgenic Arabidopsis overexpressing
IDNAC7 not only displayed morphological advantages in
germination greening rate and root length, but also displayed
higher CAT activity, chlorophyll, and proline contents than that
of WT under salt stress. CAT is the key antioxidant enzyme
involved in ROS scavenging (Gill and Tuteja, 2010). Chlorophyll,
the main pigment of plant photosynthesis, was reported that its
content is positively correlated with salt tolerance (Zhu et al., 2018).
Proline functions as a regulator of antioxidant system to stabilize
proteins (Hong et al., 2016). In addition, the reduced MDA content
and histochemical staining suggested that ROS accumulation in
transgenic plants was less than than that in WT. Similarly, previous
reports showed that overexpression of NAC57 and OsNAC2 could
preclude excess ROS accumulations and improve salt tolerance in
Arabidopsis (Mao et al., 2018; Yao et al., 2018). These results suggest
that transgenic plants may have more robust photosynthetic
capacity and less oxidative damage than WT plants, thus helping
them to enhance tolerance to salt stress.

Besides, the improved salt tolerance of transgenic plants was
also characterized by the upregulated expression of numerous and
diverse types of downstream stress regulators compared to that in
WT plants. A total of 1016 DEGs were detected by RNA-seq in
transgenic plants compared with those in WT plants under salt
stress. GO annotations of the DEGs showed that multiple terms,
such as response to stress, response to oxidative stress, response to
biotic stimulus were significantly upregulated in transgenic lines
compared with WT plants under salt stress. qRT-PCR validation
analysis showed that the expression of multiple stress-related
genes in transgenic lines was indeed upregulated. For instance,
the TF encoding genes AtbHLHI129, AtERF1, AtERF094,
AtWRKY51, and AtWRKY63. Wherein, AtWRKY63 plays an
important role in the response of Arabidopsis to ABA and
drought stress (Ren et al., 2010) and AfERFI integrates signals
from ethylene and jasmonate pathways in plant defense (Lorenzo
et al,, 2003). In addition, pathogenesis-related AtPR1 is an
important defense protein in Arabidopsis (Pecenkova et al.,
2017) and K" channel protein AtTPK2 was reported to
complement the K* uptake deficient E. coli mutant (Isayenkov
and Maathuis, 2013), both of their expression was significantly
upregulated in transgenic plants. The enhanced expression of
these genes may lead to alterations in biochemical and
physiological pathways, which are important for Arabidopsis to
adapt to salt stress. Taken together, these results suggested that
IbNAC7 may be involved in the regulation of numerous and
diverse stress-related genes in Arabidopsis responses to salt stress.

Collectively, in this study, comparative transcriptome and
proteome analyses were simultaneously conducted to investigate
the salt tolerance mechanisms between salt-tolerant Xu22 and salt-
sensitive Xu32. We have shown that the tolerant and sensitive sweet
potato genotypes response differently to salt stress, and large
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amounts of DEGs and DEPs have been detected in the two cultivars,
suggesting that transcription and translation regulations play a
crucial role in the response of sweet potato salt stress.
Importantly, our results showed that overexpression of IbNAC7
remarkably enhanced salt tolerance in Arabidopsis mainly by
deterring the accumulation of ROS. In addition, the data also
provide numerous valuable candidate genes that may facilitate the
functional characterization of the salt-responsive genes, and many
of which can be used to breed salt-tolerant sweet potato cultivars.
Overall, these results provide a revealing insight into sweet potato
molecular response to salt stress and underlie the complex salt
tolerance mechanisms between genotypes, and IbNAC7 has been
shown as a promising candidate gene to enhance the salt tolerance
of sweet potato.
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