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Cannabis (Cannabis sativa L.) offers many industrial, agricultural, and medicinal
applications, but is commonly threatened by the gray mold disease caused by the
fungus Botrytis cinerea. With few effective control measures currently available, the use
of beneficial rhizobacteria represents a promising biocontrol avenue for cannabis. To
counter disease development, plants rely on a complex network of inducible defense
pathways, allowing them to respond locally and systemically to pathogens attacks.
In this study, we present the first attempt to control gray mold in cannabis using
beneficial rhizobacteria, and the first investigation of cannabis defense responses at the
molecular level. Four promising Pseudomonas (LBUM223 and WCS417r) and Bacillus
strains (LBUM279 and LBUM979) were applied as single or combined root treatments
to cannabis seedlings, which were subsequently infected by B. cinerea. Symptoms
were recorded and the expression of eight putative defense genes was monitored in
leaves by reverse transcription quantitative polymerase chain reaction. The rhizobacteria
did not significantly control gray mold and all infected leaves were necrotic after a
week, regardless of the treatment. Similarly, no systemic activation of putative cannabis
defense genes was reported, neither triggered by the pathogen nor by the rhizobacteria.
However, this work identified five putative defense genes (ERF1, HEL, PAL, PR1, and
PR2) that were strongly and sustainably induced locally at B. cinerea’s infection sites,
as well as two stably expressed reference genes (TIP41 and APT1) in cannabis. These
markers will be useful in future researches exploring cannabis defense pathways.

Keywords: Pseudomonas, Bacillus, plant growth promoting rhizobacteria, systemic acquired resistance, induced
systemic resistance, Cannabis sativa, gray mold, Botrytis cinerea

INTRODUCTION

The cannabis plant, Cannabis sativa L., is an annual herbaceous plant belonging to the Cannabaceae
family. Probably domesticated in Central Asia thousands of years ago, its great ecological range
and its interaction with humans have allowed it to spread throughout the world as cultivated
and wild populations (Lynch et al., 2016). The female inflorescences of cannabis are covered with
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glandular trichomes containing numerous aromatic secondary
metabolites, including terpenes and phytocannabinoids.
Among these, tetrahydrocannabinol (THC) is the main
psychoactive compound and its dry mass content is used
to discriminate between marijuana cultivars (cultivated
for psychoactive/medicinal substances) and hemp cultivars
(cultivated for fibers, seeds and oil) with an arbitrary threshold
of 0.3% (Small and Cronquist, 1976). As legislations allowing
marijuana use evolve around the world, hemp cultivation is also
drawing more attention to produce non-psychoactive medicinal
substances (Conant et al., 2017). Despite its multi-billion
dollar worth to one of the fastest growing industries in North
America, this plant remains poorly understood compared to
other economically important crops, mainly because of its legal
constraints (Vergara et al., 2016).

Close to ninety different fungal species can cause diseases
on cannabis. Among them, one of the most important is
Botrytis cinerea, causing gray mold. This air-borne necrotrophic
fungus can infect seeds, leaves, inflorescences and stalks, forming
spreading lesions covered by a gray mat of thousands of conidia
and eventually leading to a rapid decay of the plant and
polycyclic epidemics (McPartland et al., 2000). B. cinerea can
reduce outdoor hemp yield by 32% during rainy years (Van
der Werf et al., 1995) and also causes significant quality issues
and post-harvest losses in indoor facilities since contaminated
marijuana buds are unfit for consumption (Punja et al., 2019).
Moreover, aerial conidia may expose cannabis workers to
occupational health hazards such as allergic sensitization and
hypersensitivity pneumonitis, especially in outdoor production
farms where B. cinerea was reported as the most prevalent fungus
accounting for 34% of all fungi detected in air samples (Green
et al., 2018). B. cinerea also attacks over two hundred hosts
worldwide, including major vegetable crops, legumes, berries,
and ornamental plants, and is the most studied necrotrophic
pathogen with a broad host range. Its infection strategy includes
the secretion of lytic enzymes to breach the plant surface,
followed by the synthesis of phytotoxic metabolites to trigger
an oxidative burst and the induction of host programmed cell
death. Successfully killing the plant cells allows the subsequent
maceration of dead tissues to extract nutrients for fungal growth
(van Kan, 2006).

With global control measures costs exceeding one billion
euros per year in 2012, B. cinerea has earned the title of
the second most economically important pathogenic fungus
worldwide behind Magnaporthe oryzae (Dean et al., 2012). In
most crops, the primary control method against gray mold
remains the application of synthetic fungicides with various
modes of action targeting respiration, cytoskeleton assembly,
osmoregulation, sterol and amino-acid biosynthesis. However,
fungicide-mediated selection pressure has led to the problematic
emergence of fungal isolates overcoming susceptibility thanks
to their metabolic detoxification capabilities, upregulated efflux
membrane transporters or modified target sites (Fillinger and
Walker, 2016). Besides, use of fungicides on cannabis crops
is stringently regulated by law in most countries due to
health and environmental effects (Seltenrich, 2019). Another
control option relies on cultivar breeding for resistance against

B. cinerea, for example by abolishing plant programmed cell
death responses. Unfortunately, this strategy may in turn
compromise the plant’s resistance against biotrophic pathogens
(Williamson et al., 2007), like Golovinomyces spp. causing
powdery mildew, which is another prevalent fungal disease in
cannabis (Pépin et al., 2018). Finally, gray mold incidence can
be mitigated by integrating cultural practices adapted to specific
indoor/outdoor cropping systems. In controlled environments,
sanitization methods, disposal of infected plants and monitoring
of aerial conidia levels usually reduce inoculum sources,
while proper heating, ventilating and lighting impede disease
development since temperature below 25◦C, high humidity and
ultraviolet light are generally needed for conidia production
and/or germination. Under field conditions, cultural practices
such as rotating with non-host crops or reducing planting
density and nitrogen fertilization remain the primary available
tools (McPartland et al., 2000; Elad, 2016). Unfortunately,
these options are not always effective and consequently,
gray mold management on cannabis is very difficult, both
in indoor and outdoor settings. In this regard, the use of
naturally occurring beneficial microorganisms as biocontrol
agents to control gray mold represents a promising alternative
in cannabis, potentially also bringing added benefits such as
plant growth promotion and/or biochemical traits improvement
(Vujanovic et al., 2020).

In general, beneficial soil-inhabiting rhizobacteria can be
effective biocontrol agents by locally repressing soil-borne
pathogens by antibiosis or competition, and/or by eliciting
systemic plant defenses, a phenomenon known as Induced
Systemic Resistance (ISR) (Beneduzi et al., 2012). Plants can
also enhance their systemic defenses in response to an earlier
exposure to a pathogen, a phenomenon known as Systemic
Acquired Resistance (SAR). While SAR usually induces a direct
activation of defense genes expression in uninfected organs
remotely from the infection site, ISR is rather associated with
enhanced transcriptional changes that only become apparent
after a pathogen attack (priming) (Pieterse et al., 2014). SAR
is mostly effective against biotrophic pathogens susceptible to
salicylic acid (SA)-mediated defenses, whereas ISR is mostly
effective against necrotrophic pathogens susceptible to jasmonate
(JA)- and ethylene (ET)-mediated defenses (Glazebrook, 2005).
Notably, the SA- and JA/ET-pathways are often considered
mutually antagonistic, even though synergistic or neutral
interactions are also reported (Pieterse et al., 2009). This
negative cross-talk is potentially exploited by the necrotrophic
pathogen B. cinerea which deliberately triggers the SA-pathway
to circumvent the plant defensive JA/ET-pathway (El Oirdi
et al., 2011) and to benefit from SA-mediated programmed
cell death (Govrin and Levine, 2000). By reinforcing JA/ET-
mediated defenses through ISR elicitation, some beneficial
soil-inhabiting rhizobacteria are therefore perfect candidate
biocontrol agents to help protect crops against gray mold,
as supported by recent reviews of successful studies and
the development of commercial biopesticides (Haidar et al.,
2016; Nicot et al., 2016). However, to our knowledge, the
ability of beneficial bacteria to act as ISR-eliciting biocontrol
agents has never been investigated in C. sativa, nor has
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the SAR elicitation by pathogens. This is probably mainly
due to legal constraints and/or the unavailability of validated
gene targets to detect defense responses specifically and
reliably in cannabis. These research opportunities were precisely
highlighted in many recent reviews on C. sativa (Backer
et al., 2019b; Lyu et al., 2019; Taghinasab and Jabaji, 2020;
Vujanovic et al., 2020).

Among more than two dozen genera of bacteria with known
biocontrol and/or plant growth promoting traits (Rodríguez-
Díaz et al., 2008), Bacillus spp. and Pseudomonas spp. are
probably the most studied (Compant et al., 2005; Fischer
et al., 2013). Many success stories have reported their ability
to act as ISR-eliciting biocontrol agents against B. cinerea,
such as in bean (Ongena et al., 2005, 2007), tomato (Kilian
et al., 2000; Ongena et al., 2007), pepper (Jiang et al., 2018),
oilseed rape (Sarosh et al., 2009), grapevine (Trotel-Aziz et al.,
2008; Magnin-Robert et al., 2013) and Arabidopsis thaliana
(Nie et al., 2017) for Bacillus spp.; and in bean (De Meyer
and Höfte, 1997; Ongena et al., 2004; Meziane et al., 2005),
tomato (Audenaert et al., 2002; Meziane et al., 2005), grapevine
(Trotel-Aziz et al., 2008; Verhagen et al., 2010; Magnin-Robert
et al., 2013; Gruau et al., 2015) and A. thaliana (Van der
Ent et al., 2008) for Pseudomonas spp. Moreover, it has been
suggested that combining several microorganisms in consortia
can improve biocontrol effectiveness compared to using a
given microorganism alone (Sarma et al., 2015). For example,
consortia of Bacillus spp. with Pseudomonas spp. have already
been used against B. cinerea in vineyards (Magnin-Robert
et al., 2013), against Fusarium udum in pigeon pea (Dutta
et al., 2008), against F. solani in chili (Sundaramoorthy et al.,
2012), against F. oxysporum in banana (Akila et al., 2011),
against Verticillium dahliae in olive (Gómez-Lama Cabanás
et al., 2018), against Sclerotinia sclerotiorum in pea (Jain et al.,
2015), against necrosis virus in sunflower (Srinivasan and
Mathivanan, 2009), against Podosphaera fusca in melon (García-
Gutiérrez et al., 2012), against Alternaria solani in tomato
(Sundaramoorthy and Balabaskar, 2012), and to promote yield
or growth of sweet cherry (Esitken et al., 2006), sunflower
(Srinivasan and Mathivanan, 2009), strawberry (Pırlak and Köse,
2009), tomato (Sundaramoorthy and Balabaskar, 2012), chili
(Sundaramoorthy et al., 2012) and wheat (Ansari and Ahmad,
2019). In C. sativa, it has been reported that consortia of bacteria
not affiliated with Bacillus spp. or Pseudomonas spp. could
improve the yield of hemp and marijuana cultivars (Conant
et al., 2017; Pagnani et al., 2018), while one Pseudomonas strain
reduced broomrape (parasitic weed) infestation in hemp cultivars
(Gonsior et al., 2004).

In this study, we assessed the biocontrol ability of four
strains of beneficial rhizobacteria to reduce gray mold symptoms
on cannabis leaves. The two Gram-negative Pseudomonas spp.
under study were the model ISR-eliciting P. simiae WCS417r,
which controls several diseases in various plants (Berendsen
et al., 2015), and P. synxantha LBUM223, which contributes to
common scab and late blight control in potato via antibiotic
production (Arseneault et al., 2014). The two Gram-positive
Bacillus spp. under study were B. velezensis LBUM279 and
B. subtilis LBUM979, which both promote cannabis growth and

produce antibiotics. Each strain was applied to cannabis roots as a
single treatment or in consortium treatments of each Bacillus sp.
combined with each Pseudomonas sp. To further assess whether
cannabis leaves express systemic immune responses, either
triggered by B. cinerea remotely from its infection site (SAR)
or elicited by the beneficial rhizobacteria (ISR), we developed
new primers for Reverse Transcription quantitative Polymerase
Chain Reaction (RT-qPCR) assays. The expression stability of
seven C. sativa candidate reference genes (TIP41, APT1, AP2M,
EF1A, YLS8, MON1, and DRH1) was first assessed. Subsequently,
the expression of eight putative defense genes, reported to be
mediated either by the SA-pathway (PR1, PR2, PR5, and NPR1)
or the JA/ET-pathway (LOX5, ERF1, HEL, PAL), was investigated
in uninfected plants and in diseased plants, primed or not by
rhizobacteria. Sampling was implemented at 3 times, namely at
2, 4, and 7 days after B. cinerea infection.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
The beneficial rhizobacteria used in this study included four
strains. Two Bacillus spp. and one Pseudomonas sp., namely
B. velezensis LBUM279, B. subtilis LBUM979 and P. synxantha
LBUM223, were isolated from strawberry rhizosphere soil
samples collected in Bouctouche, New Brunswick, Canada
(Paulin et al., 2009). Model ISR-eliciting P. simiae WCS417r was
previously isolated from wheat rhizosphere and kindly provided
by C.M.J. Pieterse (University of Utrecht, the Netherlands). All
Pseudomonas spp. and Bacillus spp. were routinely grown in
tryptic soy broth (TSB) (BD Difco, United States) with shaking
at 120 rpm at 25◦C and 37◦C, respectively, until they reached
their exponential growth phase. The bacterial populations were
estimated by spectrophotometer readings at 600 nm and diluted
to 108 CFU/mL using standard curves.

Fungal Isolate and Growth Conditions
A pathogenic strain of B. cinerea isolated from diseased C. sativa
plants was obtained from Z.K. Punja (Simon Fraser University,
Canada) and routinely grown at 25◦C on Potato Dextrose Agar
(PDA) (BD Difco, United States). Cultures were incubated under
light to induce sporulation, then scraped with water to harvest
conidia as previously described (Gruau et al., 2016). Conidia
concentration was measured with a hemocytometer and diluted
to 103 conidia/mL in a solution of 0.067 M KH2PO4 and 0.11 M
glucose to promote infection (Van Den Heuvel, 1981).

Cannabis Growth Chamber Experiments
Cannabis seeds (C. sativa hemp cultivar Anka) obtained from
Valley Bio Limited (Cobden, Canada) were sown in a mixture
of peat-based growing medium and vermiculite (75-25% v/v)
(Premier Tech, Rivière-du-Loup, Canada) in a growth chamber
under a 18/6 h day/night photoperiod (photo flux density
of 300 µmol m−2 s−1), at 23◦C and 70% relative humidity.
After one week, 216 seedlings at a similar growth stage were
transplanted into individual 4-inch diameter pots and were
randomly assigned to receive bacteria-priming root treatments
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as follows: 24 plants received one of the four single-bacteria
treatments (totalizing 96 plants) by inoculating 10 mL of the
corresponding standardized bacterial culture and 10 mL of
tap water into the soil; 24 plants received one of the four
consortium treatments (four combinations of each Bacillus sp.
with each Pseudomonas sp., totalizing 96 plants) by inoculating
10 mL of both corresponding standardized bacterial cultures;
and 24 control plants were mock-primed by inoculating
20 mL of tap water.

One week after receiving one of the bacteria-priming root-
treatments, half the plants were kept healthy (108 uninfected
plants), while the other half were infected with B. cinerea by
depositing a 10 µL droplet of standardized conidial suspension
on each side of the central vein of a main leaflet from the
second true leaves pair (108 diseased plants). All plants were then
enclosed in clear plastic bags to keep humidity high, using the
same temperature and photoperiod as described above.

After 2, 4, and 7 days (days post infection, dpi), symptoms
were recorded and samples for gene expression analysis were
harvested (destructive harvest). There were 4 biological replicates
(4 different plants) from each group harvested at each time.
A symptoms severity class was assigned to the infected leaf of
each plant as indicated in Figure 1. For the downstream RT-qPCR
assays, one infected leaf (designated thereafter as a local leaf) and
one leaf opposite from the infection site (designated thereafter as
a systemic leaf) from each diseased plant were harvested, as well
as one leaf from each uninfected plant (designated thereafter as
an uninfected leaf). A total of 324 samples were thus collected.
About 30 mg of tissues (about 1 cm2), either from healthy tissues
or from tissues surrounding a lesion, were immediately frozen in
liquid nitrogen until RNA extraction.

To assess the ability of the bacteria to colonize the rhizosphere
and to promote cannabis growth, 35 one-week old cannabis
seedlings were grown and transplanted as described above,
then received one of the four single-bacterial treatments or the
water mock-treatment (control), totalizing 7 biological replicates
per treatment. All plants were grown for 3 weeks under the
same temperature and photoperiod as described above, then
whole plants were harvested and fully dried at 70◦C for
5 days before measuring the total dry weight of each plant
(Supplementary Figure S1).

Primers Design
Homologous mRNA sequences corresponding to eight known
defense genes (four associated with the JA/ET-pathway and
four associated with the SA-pathway) and seven reference
genes (Table 1), were retrieved from GenBank (National
Center for Biotechnology Information, United States) for
plants as closely related to cannabis as possible. Those
sequences were aligned against a C. sativa cultivar Purple
Kush transcriptome assembly (Van Bakel et al., 2011) using
BioEdit Sequence Alignment Editor version 7.0.5.3 (Hall, 1999).
Best matching fragments were translated into protein sequences
to predict functional domains using InterPro (Table 1).
A fragment encoding an important molecular function for
each gene was then used as target on which PCR primers
were designed by Primer Express v. 3.0.1 (Thermo Fisher
Scientific, United States) with the following parameters:
primer melting temperature (TM) 58◦C-60◦C, optimal
primer length 20 bp, amplicon maximum TM 85◦C, and
amplicon length 50 bp-150 bp (Table 2). Primer specificity
was first assessed using Primer-BLAST (National Center for

FIGURE 1 | Symptoms severity on cannabis leaves 2, 4, and 7 days after infection by B. cinerea. Cannabis seedlings were primed with single-bacteria root
treatments (Pseudomonas strains WCS417r and LBUM223; Bacillus strains LBUM279 and LBUM979), or consortium root treatments (LBUM279 + WCS417r,
LBUM279 + LBUM223, LBUM979 + WCS417r, LBUM979 + LBUM223), or mock-primed with water (control). After one week, plants were infected with B. cinerea
(2 droplets containing 103 conidia/mL) and kept under high humidity for 2, 4, and 7 days. Symptoms were assigned into 4 severity classes: I, no visible symptoms
(blue); II, chlorotic tissues forming a yellow halo (yellow); III, necrotic localized lesions smaller than the original droplets size (orange); IV, large spreading lesions with
tissue maceration expanding beyond the original droplets and/or sporulating (gray). Stacked barplots represent the number of leaves assigned into each class per
bacterial treatment, with 4 independent biological replicates at each harvest time (each leaf comes from a different plant). No statistically significant biocontrol
protection was reported when comparing bacteria-treated plants to control plants, at each harvest time (Kruskal-Wallis rank sum test with Dunn pairwise
comparisons and Benjamini-Hochberg correction, α = 0.05).
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TABLE 1 | Description of cannabis putative defense genes and candidate reference genes.

Symbol Gene name Gene predicted function InterPro domain Accession No. Length (bp)

Defense genes: JA/ET-pathway

LOX5 linoleate 9S-lipoxygenase 5 oxylipins biosynthesis IPR020833 XM_030648324 2898

ERF1 ethylene response factor 1 AP2/ERF transcription factor IPR001471 XM_030652454 718

HEL hevein-like protein antifungal chitin-binding protein IPR001153 XM_030650355 921

PAL phenylalanine ammonia-lyase phenylpropanoids biosynthesis IPR022313 XM_030639598 2227

Defense genes: SA-pathway

PR1 pathogenesis-related protein 1 antifungal protein IPR001283 XM_030633258 698

PR2 pathogenesis-related protein 2 basic β-1,3-glucanase PS00587 XM_030638432 1228

PR5 pathogenesis-related protein 5 thaumatin-like protein IPR017949 XM_030630229 1433

NPR1 non-expressor of pathogenesis-related genes 1 transcription co-activator of PR genes IPR021094 XM_030624173 2966

Reference genes

TIP41 TAP42 interacting protein of 41 kDa Target-of-Rapamycin (TOR) pathway IPR007303 XM_030630502 1144

APT1 adenine phosphoribosyl transferase 1 nucleobases salvage IPR000836 XM_030642128 1193

AP2M adaptor protein-2 mu-adaptin clathrin-dependent endocytosis IPR018240 XM_030645277 1898

EF1A elongation factor 1-α proteins translation IPR004161 XM_030651612 1790

YLS8 yellow leaf specific protein 8 pre-mRNA splicing IPR004123 XM_030646115 825

MON1 monensin sensitivity 1 vacuolar trafficking IPR004353 XM_030648523 2311

DRH1 DEAD box RNA helicase 1 RNA metabolism IPR000629 XM_030627008 2839

Annotations, accession numbers, and mRNA lengths were retrieved from GenBank. Predicted protein functional domains were identified by InterPro and corresponding
coding sequences were used for primers design.

TABLE 2 | qPCR primers designed in this study.

Gene Forward primer sequence (5′-3′) Reverse primer sequence (5′-3′) Amplicon size (bp) Amplicon TM (◦C) E (%) R2

Defense genes: JA/ET-pathway

LOX5 GCATGCTGTGATTGAGCCTTT GTAGATTGGGTGGAGAACACTTAGC 67 76.0 90.0 0.966

ERF1 CGGCCGAAATTAGGGATTC ATCAAATGTTCCAAGCCAAACTC 59 75.0 114.6 0.994

HEL CATGGCGCAGCAAATATGG CCCCTAGGTCCGGATGGT 55 78.5 115.1 0.996

PAL ACAACGTCACCCCATGCTTAC GTACAAGGTCACCGGATGCA 60 77.0 111.9 0.990

Defense genes: SA-pathway

PR1 GCGTAACTCGGTTCGTTTGG TGCAAGTGATGAAGGTACCCTTATT 71 77.5 103.6 0.994

PR2 TTCGTTGGAGATTGTTGTTTCG CTCAAACGACGTCGCTGTTC 67 80.5 104.5 0.996

PR5 GGTTGCACCTTCGACAATTCA TGACCGGAACCGCAGTCT 62 78.5 114.6 0.990

NPR1 AAGAGAGATGTGGAGAAATCCAATG CAGCCATCGTATGCAAAGACA 62 76.0 114.3 0.990

Reference genes

TIP41 GGCACCCAAAGAGCCTATTCT CCCCATTATCTGCAAGTTCATCT 71 73.0 106.4 0.992

APT1 TTGCAACTGGAGGAACCTTGT CATCCACTCCAACACGTTCAA 60 77.0 108.9 0.992

AP2M CAAGTTACGGGTGCTGTTGGT CACAATATCCAAAAACACCTCATTCT 75 76.0 - -

EF1A TGCTCCCACCGGTCTGA GCCTCGTGGTGCATCTCAA 54 78.5 - -

YLS8 GATGGATGAAGTTTTGGCATCA TCCACAAGGTATATCACAGCAAAGTT 66 74.0 - -

MON1 GCTAGCAGGATTTTCAGCAACA CACGATCCCCTCCATTCTCA 65 74.0 - -

DRH1 TCGAATGCTTGACATGGGTTT GCGAGTAGGCACCTCCTTCA 64 75.5 - -

Primer sequences and predicted amplicon sizes were provided by Primer Express v. 3.0.1. Amplicons melting temperature (TM), qPCR amplification efficiency (E) and
regression coefficient (R2) were calculated by Bio-Rad CFX Manager software using cannabis cDNA. Values indicated by (-) were not estimated.

Biotechnology Information, United States), then validated
by melting-curve analyses on cannabis cDNA using qPCR
(Supplementary Figure S2).

RNA Extraction and RT-qPCR Assays
Total RNA was extracted from cannabis leaf samples using the
RNeasy Plant Mini kit (Qiagen, Germany) and a TissueLyser,
following manufacturer’s instructions. The optional on-column

DNase treatment was performed and followed by two additional
DNA digestion steps using the Turbo DNA-free kit (Thermo
Fisher Scientific, United States). Satisfactory elimination of
genomic DNA was validated by confirming absence of qPCR
amplification on a set of representative samples for which the RT
step was omitted (no-RT control). RNA samples concentration
was measured with a Qubit RNA BR assay (Thermo Fisher
Scientific, United States) and diluted to a final concentration
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of 100 ng/µL prior to RT. Synthesis of 110 µL of cDNA was
performed using the TaqMan Reverse Transcription Reagent
kit with the OligodT16 primer (Thermo Fisher Scientific,
United States) at 48◦C for 30 min followed by a 5 min
inactivation at 95◦C. Resulting cDNA was used for 10 µL
qPCR reactions in a CFX96 Real Time PCR Detection System
(Bio-Rad, United States) containing 5 µL of iTaq Universal
SYBR Green Supermix (Bio-Rad, United States), 2 µL of cDNA
template, 1 µL of water, and 1 µL of each primer (5 µM).
No-template controls (NTC) were included using water instead
of cDNA. All qPCR reactions were conducted with 3 technical
replicates and the following protocol: 95◦C for 3 min, 40
cycles at 95◦C for 10 s, 60◦C for 30 s, followed by a melting
curve from 65 to 95◦C to confirm primer specificity. RT-
qPCR data were analyzed with qbaseplus version 3.2 (Biogazelle,
Belgium). Samples with an average quantification cycle (Cq)
value superior to 35 were excluded from the corresponding
target analysis to prevent bias from any residual genomic

DNA. Inter-plate variation was removed by appointing an
Inter-Run Calibrator (IRC) consisting of an identical cDNA
sample on all plates.

Reference Genes Expression Stability
Pilot Study
The expression stability of seven candidate reference genes
(TIP41, APT1, AP2M, EF1A, YLS8, MON1, and DRH1) was
assessed during a pilot study on 20 representative samples
independent from the 324 samples for the main experiment.
Samples harvest, RNA extraction, cDNA synthesis and qPCR
with 3 technical replicates were performed as described above. To
illustrate the overall variability of transcripts levels, the Cq values
distribution per gene was illustrated on boxplots (R version 3.5.2,
package ggplot2) (Figure 2A).

To confidently select a set of stable reference genes among
the seven candidates, the Cq data were analyzed by three

FIGURE 2 | Determination of the optimal set of reference genes during a pilot study. The expression stability of seven candidate genes (TIP41, APT1, AP2M, EF1A,
YLS8, MON1, and DRH1) was assessed during an independent pilot study. Samples harvest, total RNA extraction and RT-qPCR assays were performed similarly to
the defense genes expression study, with 20 biological replicates and 3 technical replicates. (A) Cq values distribution per gene are presented on boxplots with the
interquartile range as a box, the lowest and highest values as whiskers, the median as an inner line and the mean as a dot. (B) The determination of the optimal
number of reference genes is based on GeNorm pairwise variation values (Vn/n+1). As V2/3 (highlighted in orange) dropped below the commonly used 0.15 threshold
(dashed line), two reference genes should suffice. (C) Expression stability values from BestKeeper (r), GeNorm (M) and NormFinder (SV) are presented for each gene,
ranked from the most stable gene (1st, top) to the least stable (7th, bottom). Lower GeNorm and NormFinder values and higher BestKeeper value indicate more
stable expression. (D) The final determination of the most stable reference genes is based on their low cumulative stability score, which is the sum of their ranks
obtained from the three methods used (rank values inside bars, from left to right: BestKeeper, GeNorm, and NormFinder). The optimal set of reference genes (a pair
formed by TIP41 and APT1) is highlighted in orange across all panels.
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different software methods. GeNorm (Vandesompele et al., 2002)
was accessed within qbaseplus version 3.2 (Biogazelle, Belgium),
while NormFinder (Andersen et al., 2004) and BestKeeper
(Pfaffl et al., 2004) were accessed through the web-based tool
RefFinder. GeNorm generated the average pairwise expression
ratio (M) for each gene, which was negatively correlated with its
stability. Similarly, the NormFinder software provided a stability
value (SV) for each gene, which was negatively correlated with
its stability. Conversely, the BestKeeper software generated a
coefficient (r) reflecting the Pearson correlation between each
gene and an index based on the other reference genes, which was
positively correlated with the gene stability. All three methods
ranked all seven genes from 1 to 7 (from best/most stable to
worst/least stable, respectively) (Figure 2C). To integrate these
results, a cumulative stability score was established for each gene
by summing its rank within the overall ranking order established
by each software. A gene cumulative stability score was negatively
correlated with its stability (Figure 2D).

Finally, the optimal number of reference genes required for
adequate expression normalization was determined by GeNorm.
The GeNorm (Vn/n+ 1) values represented the reduction in
pairwise variation achieved by using (n + 1) reference genes
instead of (n) during the process of expression normalization.
A value below 0.15 indicated that no more genes than (n) was
required (Vandesompele et al., 2002; Figure 2B).

Defense Genes Expression Study
RNA extraction and RT-qPCR were performed as described
above with 3 qPCR technical replicates for the 324 leaf samples
harvested during the growth chamber experiment. Fold changes
of relative expression of eight putative defense genes (LOX5,
ERF1, HEL, PAL, PR1, PR2, PR5, and NPR1) were estimated
by normalizing data using the two most stable reference genes
identified during the pilot study (APT1 and TIP41) and by scaling
expression relatively to the average expression in uninfected
plants at first harvest (2 dpi) (therefore arbitrarily set to a level of
1). The amplification efficiency and regression coefficient (R2) for
each of the 10 primer pairs were determined by standard curves
generated from cDNA 2-fold dilution series (1, 1/2, 1/4, 1/8, 1/16,
1/32) and accounted for during the fold changes calculations
(Table 2). All data were log10-transformed before generating a
heatmap with the web-based tool Heatmapper (Babicki et al.,
2016; Figure 3) and performing statistical analyses.

Statistical Analyses
For disease symptoms recorded during the growth chamber
experiment, a Kruskal-Wallis rank sum test assessed whether
proportions of symptoms severity classes differed statistically
between groups of plants primed by different bacterial
treatments, at each harvest time (4 biological replicates,
α = 0.05) (Figure 1). Any significant difference was followed
by Dunn pairwise comparisons with Benjamini-Hochberg
correction to identify which groups were different from the
water-treated group.

For cannabis plant growth promotion, a Kruskal-Wallis
rank sum test followed by Dunn pairwise comparisons
with Benjamini-Hochberg correction assessed whether dry

weight from plants treated with bacteria differed from control
plants (7 biological replicates, α = 0.05) (Supplementary
Figure S1). All statistical analyses were performed in R version
3.5.2 (package FSA).

For fold changes of normalized relative expression of the
eight defense genes across 324 samples from the ISR/SAR
expression study, log10-transformed data from 3 qPCR technical
replicates were analyzed with a three-way mixed ANOVA model,
sum of squares type II and Wald F test with Kenward-Roger
approximation for degrees of freedom (4 biological replicates,
α = 0.05). The three fixed factors were the time of harvest
(3 levels: 2, 4, and 7 dpi), the pathogen treatment (3 levels:
local leaves, systemic leaves, uninfected leaves), and the bacterial
treatment (9 levels: 4 single-bacteria treatments, 4 consortium
treatments, 1 water mock-treatment), while a random factor
was added to account for pairing of systemic and local leaves
harvested from the same plant. As the interaction between all
three factors was not significant, it was removed from the model
to deal with missing values. Post hoc multiple comparisons
with Wald chi-square test and Benjamini-Hochberg correction
were used to investigate the effect of significant factors and the
effect of one factor within each level of the other factor in the
case of a significant interaction between two factors (Figure 4,
Supplementary Figures S3, S4, Supplementary Table S1). All
statistical analyses were performed in R version 3.5.2 (packages
lme4, car and phia).

RESULTS

Treatment With Beneficial Rhizobacteria
Does Not Significantly Reduce Gray
Mold Symptoms but Some Promote
Plant Growth
To assess the biocontrol ability of four beneficial rhizobacteria
against B. cinerea, young cannabis plants were sown in a
growth chamber and received different bacteria-priming root
treatments. One week later, one leaf was infected with a solution
of conidia and symptoms were recorded after 2, 4, and 7 days
using a 4-class severity scale (Figure 1). On the first day of
observation (2 dpi), no symptoms were yet visible on any
plants (severity class I). However, 4 days after infection (4 dpi),
noticeable symptoms had developed at the droplet locations
on most infected leaves, displaying yellowed chlorotic halos
(severity class II), or necrotic localized lesions (severity class III),
or spreading lesions with tissue maceration and/or secondary
sporulation (severity class IV). Overall, plants primed with
LBUM979+WCS417r or with LBUM223 were relatively exempt
of symptoms, displaying only chlorotic halos at most, while
control plants and plants primed with LBUM279 + LBUM223
displayed the strongest symptoms with most infected leaves
covered by lesions. However, perhaps in part due to the small
sample size, no statistically significant biocontrol protection
was reported between bacteria-treated plants and control plants
(Kruskal-Wallis rank sum test with Dunn pairwise comparisons
and Benjamini-Hochberg correction, α = 0.05). On the last
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FIGURE 3 | Heatmap showing the expression pattern of putative JA/ET- and SA-mediated genes in cannabis plants primed by Pseudomonas and/or Bacillus strains
and infected by B. cinerea. Cannabis seedlings were primed with one of four single-bacteria root treatments, or one of four consortium root treatments, or
mock-primed with water (control). After one week, plants were infected with B. cinerea (diseased plants) or left untreated (uninfected plants). After 2, 4, and 7 days
(2, 4, and 7 dpi), leaf tissues were sampled from uninfected plants (uninfected leaves) and from diseased plants (systemic leaves remote from infection site and local
infected leaves). Total RNA was extracted and the expression level of eight putative defense genes was analyzed by RT-qPCR accounting for primer amplification
efficiency. Data were normalized with the reference genes TIP41 and APT1. Fold changes of expression were scaled per gene relatively to the average expression in
uninfected leaves at 2 dpi (set as black on color scale). The heatmap represents the log10-transformed mean expression from 4 independent biological replicates
and 3 technical replicates; blue indicates lower gene expression than the average expression in uninfected leaves at 2 dpi (downregulation) while yellow indicates
higher gene expression (upregulation). Missing values are grayed out.
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FIGURE 4 | Effects of B. cinerea treatment on the expression of putative JA/ET- and SA-mediated genes at different harvest times in cannabis leaves.
Fourteen-day-old cannabis plants were infected with B. cinerea (diseased plants) or left untreated (uninfected plants). Leaf tissues were sampled after (A) 2 days, (B)
4 days, and (C) 7 days. Total RNA was extracted and the expression level of eight putative defense genes was analyzed by RT-qPCR in uninfected plants (uninfected
leaves, white) and diseased plants (systemic leaves remote from infection site, light gray, and local infected leaves, dark gray). Fold changes of expression were
scaled per gene relatively to the average expression in uninfected leaves at 2 days after infection (expression level of 1). Means and standard errors of 36
independent biological replicates and 3 technical replicates are displayed on a log10 scale. Treatments sharing the same letter are not significantly different according
to Wald chi-square test with Benjamini-Hochberg correction, α = 0.05.

day of observation (7 dpi), all infected leaves were equally
covered by spreading and/or sporulating lesions (severity class
IV), regardless of the bacterial treatment. This latter result
clearly suggests that priming cannabis plants with the bacteria

did not significantly improve long-term resistance to gray mold
in the conditions tested. However, under the same conditions,
inoculating cannabis seedlings with the bacteria resulted in an
increased dry weight for most plants compared to control,
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after 3 weeks of growth (Supplementary Figure S1). The
plant growth promoting effect was more pronounced with the
Bacillus strains than with the Pseudomonas strains and was
statistically significant with LBUM979 (Kruskal-Wallis rank sum
test with Dunn pairwise comparisons and Benjamini-Hochberg
correction, α = 0.05).

Primer Specificity and qPCR
Amplification Efficiency
To investigate potential defense responses in cannabis leaves
at the molecular level, new RT-qPCR primers were designed
to monitor the expression of eight putative defense genes and
seven candidate reference genes (Table 1). Newly designed
primers are listed in Table 2 with relevant information.
A single PCR amplicon was produced by each primer pair
with a single TM peak on the melting curve (Supplementary
Figure S2), confirming the specific amplification of each gene.
The amplification efficiencies, estimated for all eight defense
genes and the two selected reference genes, ranged from 103.6%
to 115.1%, apart from LOX5 at 90.0%. The correlation coefficients
were all superior or equal to 0.99, supporting standard curves
reliability (Table 2).

TIP41 and APT1 Are the Most
Appropriate Reference Genes
To normalize defense genes expression data from the RT-
qPCR assays, a set of appropriate reference genes had to
be selected first. Therefore, the expression stability of seven
C. sativa candidate reference genes (TIP41, APT1, AP2M, EF1A,
YLS8, MON1, and DRH1) was assessed during a pilot study
(Table 1). Transcripts levels of the seven candidates exhibited
a broad range of Cq values across the 20 samples (Figure 2A).
Based on their mean Cq, APT1 (Cq 24.94) and MON1 (Cq
30.96) were the highest and lowest expressed genes respectively,
with APT1 being almost sixty-five times more expressed than
MON1 (Figure 2A).

The stability ranking of the seven candidates during the pilot
study was established by BestKeeper, GeNorm, and NormFinder
analyses (Figure 2C). According to BestKeeper, TIP41 (r 0.997)
and APT1 (r 0.994) were ranked the most stable genes, while
DRH1 (r 0.984) and MON1 (r 0.984) were tied as the least stable
genes. According to GeNorm, APT1 (M 0.398) and TIP41 (M
0.405) were again ranked the most stable genes, while MON1 (M
0.627) and DRH1 (M 0.678) were the least stable genes. According
to NormFinder, AP2M (SV 0.355) and TIP41 (SV 0.410) were
ranked the most stable genes, while YLS8 (SV 0.535) and DRH1
(SV 0.686) were the least stable genes.

The cumulative stability score integrated the results from
the three above methods, by summing the ranks obtained for
each gene. The genes with the smallest cumulative scores were
considered the most stable. The final recommendations are listed
in Figure 2D. TIP41 (cumulative score 5) was ranked as the
most stably expressed gene, followed by APT1 and AP2M tied
for second and third places (cumulative score 7), while MON1
(cumulative score 17) and DRH1 (cumulative score 20) were the
least stably expressed genes.

Finally, the pairwise variation values (Vn/n+ 1) provided by
GeNorm were used to determine the optimal number of reference
genes suitable for expression normalization (Figure 2B). As the
first pairwise variation value dropped below the 0.15 threshold
(V2/3 0.138), it indicated that two reference genes should suffice.
Moreover, a visual interpretation of the pairwise variations trend
suggested that adding a third reference gene would not greatly
reduce the pairwise variation (V3/4 0.130).

Based on the ranking from the three software methods, the
cumulative stability scores, and the GeNorm V values, it was
concluded that TIP41 and APT1 constituted an optimal set of
reference genes to properly normalize subsequent RT-qPCR data.

Defense Genes Expression Study
To investigate whether cannabis defenses were triggered locally
and/or systemically by the pathogen B. cinerea and/or the
beneficial rhizobacteria, the expression of eight putative defense
genes, predicted to be mediated either by the SA-pathway (PR1,
PR2, PR5, NPR1) or the JA/ET-pathway (LOX5, ERF1, HEL,
PAL) (Table 1), was monitored over time by RT-qPCR in young
cannabis plants primed by the bacteria and infected one week
later by the pathogen. The log10-transformed fold changes results
are summarized on a heatmap to overview the general pattern
of genes relative expression (Figure 3). Expression of most genes
clearly appeared to be upregulated in local leaves compared to
uninfected leaves and systemic leaves (away from the infection
site), regardless of the pathway the genes presumably belonged
to. Statistical analyses, using a three-way mixed ANOVA model,
are detailed below to further examine the effect of harvest
time (Supplementary Figure S3, Supplementary Table S1),
pathogen treatment (Figure 4, Supplementary Table S1), and
bacteria-priming treatment (Supplementary Figure S4) on
genes expression.

Infection by B. cinerea Strongly
Upregulates the Expression of ERF1,
HEL, PAL, PR1 and PR2 Locally
First, RT-qPCR analyses revealed that the expression of most
genes varied depending on the harvest time (Supplementary
Figure S3, Supplementary Table S1). However, since similar
trends occurred similarly in all types of leaves, including the
uninfected ones, these variations are likely due to basal plant
growth and maturation over time rather than induced by the
pathogen attack. Next, the genes expression level in local leaves
was compared to their expression level in uninfected leaves
at corresponding harvest time to reveal the local response to
B. cinerea infection (Figure 4, Supplementary Table S1). The
expression of ERF1, HEL, PAL, PR1, and PR2 was found to be
significantly upregulated locally by the pathogen attack and this
effect was sustained during the whole week following infection.
The net fold change variations (ratios of expression in local leaves
to uninfected leaves, for each corresponding harvest time) ranged
from 9.0- to 17.1-fold for ERF1, 11.2- to 41.1-fold for HEL, 25.3-
to 30.2-fold for PAL, 286.7- to 394.2-fold for PR1, 4.6- to 15.5-fold
for PR2. The expression of the other genes, namely LOX5, PR5
and NPR1, remained stable or was significantly downregulated
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in local leaves, with net fold change variations ranging from
0.1 to 0.9-fold (Supplementary Table S1). Altogether, these
results indicate that a strong response to B. cinerea infection
occurred locally.

Infection by B. cinerea Does Not
Systemically Induce Putative Defense
Genes Expression
In the case of the systemic leaves, the expression of all
genes remained stable or was significantly downregulated
compared to uninfected leaves for LOX5, ERF1, HEL, PR5,
and NPR1 (Figure 4). The net fold change variations (ratios
of expression in systemic leaves to uninfected leaves, for each
corresponding harvest time) were no lower than 0.5-fold,
indicating a downregulation by half at most (Supplementary
Table S1). Since downregulations of only small amplitude and
no significant upregulation were observed, these results suggest
a lack of systemic defenses induction at the transcriptomic
level in cannabis leaves following B. cinerea infection, in the
conditions tested.

Treatment With Beneficial Rhizobacteria
Does Not Enhance Putative Defense
Genes Expression
Finally, regarding the ability of the bacterial treatments to
enhance the expression of cannabis putative defense genes, no
statistically significant differences were found between bacteria-
treated plants and water-treated plants (control), for any of
the eight genes examined and regardless of the pathogen
treatment (Supplementary Figure S4). Overall, all the bacteria-
priming root-treatments failed to upregulate the expression of the
putative defense genes in cannabis leaves, even in the presence
of the pathogen.

DISCUSSION

Efficient Primers Design and Stable
Reference Genes in Cannabis
Gene expression analyses are widely used to elucidate the
transcriptional reprogramming underlying numerous molecular
mechanisms in living organisms, and plant defense pathways
are no exception. The RT-qPCR has become a common
technique to monitor gene expression profiles thanks to its
accuracy, high-throughput potential and sensitivity (Huggett
et al., 2005). However, specific primers must be designed for
newly studied organisms, like C. sativa. In this study, 15
new PCR primer pairs were designed using the transcriptome
of C. sativa cultivar Purple Kush (Van Bakel et al., 2011)
and successfully amplified cDNA from another cultivar, Anka,
with good efficiency and specificity (Table 2, Supplementary
Figure S2). This success opens the door to new exciting research
opportunities in cannabis.

Another crucial step to ensure RT-qPCR reliability is
to properly normalize data to stably expressed reference
genes, also commonly referred to as housekeeping genes

(Huggett et al., 2005). To date, several studies have reported
stable reference genes in C. sativa, such as actin, glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) and 18S ribosomal RNA
(Mangeot-Peter et al., 2016; Booth et al., 2017; Guo et al.,
2018). However, these genes were found to be commonly
regulated and unstable under a wide range of experimental
conditions (Huggett et al., 2005). Other studies have appointed
cannabis reference genes for RT-qPCR assays but without
validating beforehand their expression stability (Marks et al.,
2009; Cascini et al., 2013; Docimo et al., 2014). Besides, none
of these studies were conducted in cannabis plants under
biotic stress conditions, whereas infection by a pathogen may
affect which reference genes are selected, as illustrated by a
study in hop infected by the fungus Verticillium albo-atrum
(Štajner et al., 2013). In a pilot experiment, we selected seven
orthologous reference genes from the last aforementioned study
(Table 1), since hop is a Cannabaceae plant closely related to
cannabis. Among these seven candidates, TIP41 and APT1 were
found to be the most stably expressed under our experimental
conditions (Figure 2), indicating that a combination of TIP41
and APT1 is suitable for normalizing RT-qPCR assays in
cannabis leaves infected by B. cinerea. This result is supported
by previous studies that determined that TIP41 and/or APT1
were the optimal reference genes for lettuce and tomato under
abiotic or biotic stress conditions (Alfenas-Zerbini et al., 2009;
Borowski et al., 2014; Lacerda et al., 2015). Our findings could
serve as guidelines for future work on cannabis, but should
not be blindly transposed since the optimal combination of
reference genes may change under different experimental settings
(Huggett et al., 2005).

Local Elicitation of Putative Cannabis
Defenses by B. cinerea
Plants are sessile organisms that rely on a complex innate
immune system to cope with incessant stresses in their
environment. Upon perception of a pathogen attack, plant
inducible defenses can be activated to limit disease progression
and are finely regulated by transcription factors and major
phytohormones such as JA, ET and SA, creating a sophisticated
signaling network of local and systemic responses (Pieterse
et al., 2014). With little knowledge on C. sativa defensive
mechanisms against pests and diseases, identifying genes
differentially expressed during its interaction with pathogens
could play an important role in improving crop management.
Consequently, in this study, we chose eight defense-related
genes (LOX5, ERF1, HEL, PAL, PR1, PR2, PR5, NPR1) that
are well described markers of the JA/ET- and the SA-
pathways in other plants, and monitored the expression of
their homologous counterparts in cannabis leaves during gray
mold disease onset (Figure 3). The expression of ERF1,
HEL, PAL, PR1 and PR2 was strongly upregulated locally
following infection (Figure 4, Supplementary Table S1), even
though these responses were not sufficient to suppress lesions
development. This effect was sustained over time, starting
before symptoms appearance, and lasting after necrotic lesions
complete development. This confirms that major transcriptome
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changes can occur during the critical phase during which
the fungus begins to establish itself within plant tissues
(Windram et al., 2012).

JA/ET-mediated Putative Defenses
Defenses mediated by the JA/ET-pathway are usually effective
against necrotrophic pathogens such as B. cinerea (Thomma
et al., 2001). The ERF1 gene was among the three putative JA/ET-
mediated markers to be upregulated in cannabis local leaves
infected by B. cinerea. ERF1 is a transcription factor in the
Apetala2/Ethylene Response Factor (AP2/ERF) superfamily, one
of the most important families of stress-responsive transcription
factors in plants (Lu et al., 2013). In A. thaliana, ERF1 integrates
signaling from the JA- and the ET-pathways in order to activate
the transcription of many antifungal defense genes (Lorenzo
et al., 2003). ERF1 expression itself is upregulated during gray
mold infection in A. thaliana (Berrocal-Lobo et al., 2002;
AbuQamar et al., 2006), in lettuce (De Cremer et al., 2013),
and in grapevine (Gruau et al., 2015), supporting the results
obtained in cannabis.

A second putative JA/ET-mediated gene, predicted to encode
an hevein-like HEL protein, was also highly upregulated in
cannabis local leaves infected by B. cinerea. Comparative
sequence analyses have shown previously that HEL proteins
contain a barwin domain and share similarities with the
antifungal protein hevein in rubber tree, the wound-induced
WIN1 and WIN2 proteins in potato, and the PR4 protein in
tobacco (Potter et al., 1993). A chitin-binding activity is suggested
to confer its role in antifungal plant defensive mechanisms
(Bertini et al., 2012). HEL expression is also greatly induced
by B. cinerea infection in A. thaliana (AbuQamar et al., 2006),
supporting the results obtained in cannabis.

Finally, the third significantly upregulated putative JA/ET-
mediated marker in cannabis infected local leaves, PAL, likely
encodes a phenylalanine ammonia-lyase which catalyzes the first
step in the biosynthesis of phenylpropanoids. Phenylpropanoids
are precursors to complex secondary metabolites such as
flavonoid pigments, antimicrobial phytoalexins and lignin that
reinforces cell walls. PAL has been one of the first identified plant
defense genes and is induced by fungal elicitors and/or fungal
pathogens in bean, parsley, pea, potato, A. thaliana (Wanner
et al., 1995), and more recently by B. cinerea in grapevine (Bézier
et al., 2002; Gruau et al., 2015) and lettuce (De Cremer et al.,
2013), supporting the results obtained in cannabis.

Surprisingly, the LOX5 gene, predicted to encode a 9S-
lipoxygenase (9S-LOX), was the only putative marker from
the JA/ET-pathway to be downregulated following B. cinerea
infection. LOX are iron-containing enzymes that catalyze the
dioxygenation of polyunsaturated fatty acids to produce a variety
of metabolites, collectively called oxylipins (Vellosillo et al.,
2007). Oxylipins yielded by 9S-LOX are distinct from those
yielded by 13S-LOX and even though their physiological roles are
not completely elucidated, some have been demonstrated to act as
inducible plant defensive mechanisms against (hemi)biotrophic
pathogens in potato (Weber et al., 1999; Kolomiets et al., 2000),
tobacco (Fammartino et al., 2007), and A. thaliana (Vellosillo
et al., 2007). More recently, the expression of genes encoding

9S-LOX was found upregulated following B. cinerea infection
in grapevine (Gruau et al., 2015), and in A. thaliana (Windram
et al., 2012), contrasting with the results obtained for LOX5 in
cannabis. Since lipid oxidation mediated by 9S-LOX has been
demonstrated to damage plant cell membrane and prompt cell
death (Rustérucci et al., 1999), which protects against biotrophic
pathogens but promotes necrotrophic pathogens (Govrin and
Levine, 2000), we freely postulate that an activation of 9S-LOX
might be part of B. cinerea attack strategy and that the slight
downregulation of LOX5 observed in cannabis may actually
confer an advantage, yet insufficient, against the disease.

SA-mediated Putative Defenses
Defenses mediated by the SA-pathway are usually effective
against biotrophic pathogens and might in contrast strengthen
the growth of necrotrophic pathogens that benefit from plant
cell death (Thomma et al., 2001). However, the exact role of
SA signaling in resistance against the necrotrophic pathogen
B. cinerea is still unclear and may depend on the plant
species (AbuQamar et al., 2017). Therefore, four putative
SA-mediated markers were included in this study, encoding
cannabis homologous counterparts to three pathogenesis-related
(PR) proteins (PR1, PR2, PR5) and one transcriptional co-
activator (NPR1).

PR genes have been described in many plant families and
encode a large variety of pathogen-induced proteins, often with
antimicrobial properties. They are usually classified in seventeen
groups based on their biochemical and/or biological properties
(van Loon et al., 2006). The most abundant PR protein, PR1,
is commonly associated with antifungal resistance even though
its mode of action is still undetermined. The expression of PR1
genes often serves as an indicator of plant defense activation
(Buchel and Linthorst, 1999). Also commonly used, PR2 proteins
are β-1,3-glucanases with several possible structural isoforms
and variable hydrolytic activity against β-glucans, which are
main components of fungal cell walls. In tomato and tobacco,
only class I vacuolar isoforms, presumably like the one in this
study, can effectively inhibit fungal pathogens growth in vitro.
These class I PR2 enzymes act directly by degrading fungal
cell wall components, and indirectly by eliciting plant defenses
through the release of materials derived from fungal cell walls
(Leubner-Metzger and Meins, 1999). Finally, PR5 are cysteine-
rich proteins called thaumatins that exhibit broad antifungal
effects thanks to a selective membrane-permeabilizing mode of
action (Velazhahan et al., 1999).

Our results demonstrated a strong expression upregulation
in cannabis infected local leaves for PR1 and PR2, but not for
PR5. PR1 expression upregulation following B. cinerea infection
was notably the strongest of all markers under study, and is
also observed in A. thaliana (Govrin and Levine, 2002; Ferrari
et al., 2003; Nie et al., 2017), lettuce (De Cremer et al., 2013),
pepper (Jiang et al., 2018), and tobacco (Frías et al., 2013),
but not in grapevine (Gruau et al., 2015). Since PR1 genes are
found in every plant species investigated so far, it is assumed
that their function is important enough to be strongly conserved
during evolution (van Loon et al., 2006). Our findings bring
evidence that PR1 likely plays indeed an important role in the
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cannabis-Botrytis interaction. Similarly, the upregulation of PR2
expression in cannabis infected local leaves corroborates results
observed during infection of B. cinerea in A. thaliana (Nie et al.,
2017) and grapevine (Gruau et al., 2015), while lack thereof for
PR5 is unexpected (Govrin and Levine, 2002; El Oirdi et al., 2010;
Gruau et al., 2015; Nie et al., 2017). Since thaumatins can have a
plethora of functions (Velazhahan et al., 1999), it is possible that
the cannabis PR5 reported here is simply not involved in defenses
against pathogens.

Finally, the last putative SA-mediated marker in this study
was the NPR1 gene, predicted to encode the regulatory protein
Non-expressor of pathogenesis-related genes 1, and its expression
was not upregulated in cannabis infected local leaves. In
A. thaliana, NPR1 acts as a transcription co-activator of a
large set of PR genes and a key regulator of the plant
defense signaling network. In absence of stress, NPR1 oligomers
are sequestered in the cytoplasm. Upon pathogen challenge,
SA-induced conformational changes and cellular redox state
shift lead to NPR1 disassembly. Monomers of NPR1 are
then translocated into the nucleus where they recruit TGA
transcription factors that bind to promoters of SA-inducible
PR genes, resulting in their activation (Backer et al., 2019a).
Besides these post-translational mechanisms intensively studied
in A. thaliana, regulation of NPR1 at the transcriptional level
has also been observed in tomato and pepper during infection
by B. cinerea (El Oirdi et al., 2011; Jiang et al., 2018). Indeed,
in tomato, NPR1 expression is upregulated by B. cinerea to
manipulate the antagonism between the JA- and SA- pathways
and strategically promote disease (El Oirdi et al., 2011). As
such, and similarly to LOX5 above, we speculate that the slight
downregulation of NPR1 in cannabis might be an attempt, yet
unsuccessful, to counter gray mold development.

Lack of Systemic Elicitation of Putative
Cannabis Defense Genes Expression
The immunity acquired by some plants against reinfection after
an earlier pathogen attack has now been studied for almost a
hundred years (Chester, 1933). About six decades later, it was
demonstrated that beneficial rhizobacteria can also stimulate
plant immunity against pathogens (Van Peer et al., 1991).
However, the elicitation of such systemic defenses has never
been studied in C. sativa. Therefore, using the newly developed
defense markers presented above, we investigated the potential
SAR and ISR elicitation in cannabis, triggered respectively by
B. cinerea (Figure 4, Supplementary Table S1) and the beneficial
rhizobacteria (Supplementary Figure S4). As a lack of substantial
elicitation was observed in both cases, the following sections
mainly discuss likely reasons and future work directions.

Lack of SAR-mediated Elicitation of
Defense Genes Expression by B. cinerea
SAR is defined as an enhanced defensive capacity of the entire
plant against a broad range of pathogens that occurs following
an earlier localized exposure to a pathogen (Pieterse et al.,
2014). This resistance response is usually associated with systemic
SA accumulation along with direct transcription activation of

defense genes in systemic organs. Consequently, genes encoding
SA-inducible PR proteins, such as PR1, PR2 and PR5, are often
used as hallmarks of SAR elicitation (Thomma et al., 2001),
with PR1 ranking among the best characterized markers (Pieterse
et al., 2014). Surprisingly, few researches have focused on SAR
responses to gray mold. Three previous studies concluded that
B. cinerea does not elicit SAR in A. thaliana (Govrin and Levine,
2002), nor in lettuce (De Cremer et al., 2013), although it does
so in tobacco (Frías et al., 2013). Indeed, a lack of systemic
induction was observed for PR1 and a defensin gene in the first
host (Govrin and Levine, 2002), and for 24 genes, including
PR1, PAL, LOX, and ERF1, in the second host (De Cremer
et al., 2013), while systemic induction ranged from about 10-
fold to above 100-fold, respectively for PR5 and PR1, in the
last host (Frías et al., 2013). Systemic induction of PR5, as
well as a gene encoding a glutathione transferase, was also
shown in A. thaliana (Govrin and Levine, 2002), but did not
provide protection against subsequent infections, like it did in
tobacco (Frías et al., 2013). The time frame for observations
in these studies was set from 2 dpi to 8 dpi, and highlighted
the importance of allowing sufficient time for SAR initiation
in distant organs (De Cremer et al., 2013) and to take into
account temporal variations in disease progression (Frías et al.,
2013). In cannabis, none of the putative defense genes under
study showed a significant expression upregulation in systemic
leaves, although the markers did indeed include homologous
counterparts to the three SAR hallmark genes presented above
and samples were collected at likely appropriate times. On the
contrary, downregulations of LOX5, ERF1, HEL, PR5, and NPR1
were observed. Even though it cannot be excluded that these
observations are biologically relevant, variations of such small
amplitude are unlikely to constitute a substantial SAR-mediated
response, especially with the definitive absence of upregulation
of ERF1, HEL, PAL, PR1 and PR2 that are otherwise strongly
activated locally. However, while SAR-mediated responses to
gray mold could not be demonstrated in cannabis under the
tested conditions, it does not mean that the plant is definitely
unable to elicit SAR since the outcome of a secondary infection
was not evaluated. Indeed, a subsequent conidia inoculation
on the systemic leaves could have potentially resulted in
fewer symptoms than the first inoculation, and/or have led to
greater gene expression variations that remained undetectable
without a second pathogen challenge (priming). Moreover, as
only transcriptional responses were experimentally assessed,
future work should investigate the potential accumulation of
phytohormones that was not explored here. Alternatively, we
can also speculate that some plant species and/or cultivars differ
in their capacity to activate SAR against B. cinerea, or that
some fungal isolates differ in their ability to suppress SAR.
Indeed, not all cannabis cultivars might be able to activate
SAR, in the same way that resistance to gray mold can be
cultivar-specific in tobacco (El Oirdi et al., 2010). Inversely, the
intraspecific diversity of pathogens also matters when interacting
with plants, even for necrotrophic pathogens with a broad
host range (Rowe and Kliebenstein, 2010). Since the fungal
isolate used in this study was obtained from cannabis plants, it
might be interesting to test if isolates from other plants would
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elicit SAR in cannabis. A similar hypothesis was confirmed in
rose (Pie and Brouwer, 1993) and grapevine (Derckel et al.,
1999) where B. cinerea isolates were more virulent on the plant
species that they originated from than isolates obtained from
other plant species.

Lack of ISR-mediated Elicitation of
Defense Genes Expression by the
Bacteria and Lack of Significant
Biocontrol Protection
The gray mold disease caused by B. cinerea can negatively
impact the yield and quality of cannabis crops and is therefore
of major concern for this emerging industry in Canada and
in other countries. A few commercial biopesticides, based
on beneficial fungi such as Gliocladium catenulatum and
Trichoderma harzianum, are registered in Canada against gray
mold in cannabis (Punja, 2018). However, their persistence
on above-ground parts of the plant could potentially increase
microbial contaminants (Punja, 2018) or mycotoxins (Vujanovic
et al., 2020) in the final product. To circumvent this issue,
biocontrol agents could be dispensed in the growing medium
rather than by foliar sprays, but this option relies on the
identification of microorganisms that can elicit systemic defenses
in the whole plant (Backer et al., 2019b; Lyu et al., 2019).
Consequently, beneficial rhizobacteria, such as widely prevalent
Bacillus and Pseudomonas strains, are expected to potentially
offer the combined benefits of ISR-mediated disease control,
plant growth promotion, and cannabinoid yield enhancement
in cannabis production (Lyu et al., 2019). In this study, we
examined the application of two plant growth promoting Bacillus
strains and two Pseudomonas strains as root treatments to
control gray mold and to elicit ISR in cannabis plants. Our
results suggested that the biocontrol protection was rather
inefficient in the conditions tested. None of the bacteria-treated
plants ultimately differed from the water-treated plants as all
infected leaves were necrotic after a week, regardless of the
treatment (Figure 1). This conclusion was also supported by
the lack of putative defense genes expression induction or
priming by the rhizobacteria (Supplementary Figure S4), even
if some promoted plant growth (Supplementary Figure S1).
These findings are not entirely unexpected since the ability
of a plant to develop ISR in response to certain rhizobacteria
depends on the specificity of their mutual interactions (Beneduzi
et al., 2012), even though bacteria isolated from one plant
species can notoriously promote growth and induce systemic
resistance in other crop species (Backer et al., 2019b).
For instance, P. simiae WCS417r was isolated from the
wheat rhizosphere and elicits ISR in A. thaliana, grapevine,
radish, banana, bean, carnation, and tomato, but not in
eucalyptus or tobacco (Berendsen et al., 2015). The same
bacterium proved here unable to reduce gray mold symptoms
(Figure 1) or to elicit ISR-enhanced genes expression in
cannabis (Supplementary Figure S4). The other Pseudomonas
strain tested here was P. synxantha LBUM223, a phenazine
antibiotic producer (Arseneault et al., 2014). Antibiotics from
Pseudomonas spp. have been reported to trigger ISR in

A. thaliana against Hyaloperonospora arabidopsidis (formerly
Peronospora parasitica) (Iavicoli et al., 2003) and in tomato
against B. cinerea (Audenaert et al., 2002), but such effects were
not observed in cannabis. Finally, the two Bacillus strains under
study were B. velezensis LBUM279 and B. subtilis LBUM979,
which produce several antibiotics and promote cannabis growth
(Supplementary Figure S1). These bacteria were chosen since
ISR-eliciting Bacillus strains typically also promote plant growth
(Kloepper et al., 2004). However, this association of traits could
not be corroborated here.

As this is the first documented attempt to control any
disease on cannabis plants by ISR with beneficial rhizobacteria,
many avenues remain yet to be explored. Besides relying on
plant-specific interactions, the efficiency of biocontrol agents
against gray mold is known to be influenced by several
other factors, including environmental conditions, inoculum
stability, concentration and quality, timing of application,
and susceptibility of B. cinerea isolates (Nicot et al., 2016).
Here, the rhizobacteria were inoculated one week before
pathogen challenge on the basis that ISR is typically triggered
in A. thaliana during the first 7 days and lasts at least
21 days following root treatment by P. simiae WCS417r (Van
Wees et al., 1999). However, considering how B. cinerea
is difficult to control, any single management measure is
unlikely to succeed (Williamson et al., 2007). In an attempt
to improve the efficiency of the bacterial treatments used
in this study, combined applications of each Bacillus sp.
with each Pseudomonas sp. were also tried, since bacterial
consortia can potentially benefit from complementary ecological
requirements and modes of action (Sarma et al., 2015).
Unfortunately, none of the four consortium treatments differed
significantly from the single-bacteria treatments, suggesting a
lack of synergism under the tested conditions. So far, the
most investigated consortium of Pseudomonas spp. is with
Bacillus spp. and many studies conducted on these combinations
have reported a synergistic biocontrol effect (Hol et al., 2013).
However, conflicting results have also been reported, supporting
either positive or negative interactions, for example regarding
biofilm formation (Powers et al., 2015; Ansari and Ahmad,
2019). Altogether, these results confirm that the outcome of
combinations of Pseudomonas spp. with Bacillus spp. likely
depends on their compatibility at the species and/or strain
level. Our work highlights the importance of gaining a
better understanding of complex interactions in integrated
pathological systems to be able to identify robust biocontrol
agents for new crops.

CONCLUSION AND PERSPECTIVES

To conclude, our results demonstrate that five out of eight
putative defense genes, namely ERF1, HEL, PAL, PR1, and PR2,
are strongly upregulated locally in cannabis leaves infected by
gray mold. These results validate that our model is useful to
detect cannabis responses to a pathogen attack at the molecular
level, a research area yet to be explored. Therefore, we propose
that ERF1, HEL, PAL, PR1, and PR2 can be used as reliable
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markers of cannabis inducible defenses and/or stress responses
pathways. Further functional studies with these markers could
pave the way to rapid assessment of suitable control methods and
improvement of assisted cultivars breeding.
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