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Seasonal disease risk prediction using disease epidemiological models and seasonal
forecasts has been actively sought over the last decades, as it has been believed to
be a key component in the disease early warning system for the pre-season planning
of local or national level disease control. We conducted a retrospective study using
the wheat blast outbreaks in Bangladesh, which occurred for the first time in Asia in
2016, to study a what-if scenario that if there was seasonal disease risk prediction
at that time, the epidemics could be prevented or reduced through prediction-based
interventions. Two factors govern the answer: the seasonal disease risk prediction
is accurate enough to use, and there are effective and realistic control measures to
be used upon the prediction. In this study, we focused on the former. To simulate
the wheat blast risk and wheat yield in the target region, a high-resolution climate
reanalysis product and spatiotemporally downscaled seasonal climate forecasts from
eight global climate models were used as inputs for both models. The calibrated wheat
blast model successfully simulated the spatial pattern of disease epidemics during the
2014–2018 seasons and was subsequently used to generate seasonal wheat blast risk
prediction before each winter season starts. The predictability of the resulting predictions
was evaluated against observation-based model simulations. The potential value of
utilizing the seasonal wheat blast risk prediction was examined by comparing actual
yields resulting from the risk-averse (proactive) and risk-disregarding (conservative)
decisions. Overall, our results from this retrospective study showed the feasibility of
seasonal forecast-based early warning system for the pre-season strategic interventions
of forecasted wheat blast in Bangladesh.

Keywords: disease epidemiological model, seasonal disease risk, early warning system, climate reanalysis,
global crop calendar, winter wheat

INTRODUCTION

Wheat blast, caused by Magnaporthe oryzae Triticum pathotype (MoT) (anamorph Pyricularia
oryzae), is one of the most devastating wheat diseases with near complete yield loss (Couch and
Kohn, 2002; Mottaleb et al., 2019b). Since the disease was first identified in Brazil in 1985 (Igarashi
et al., 1986), it was known to present only in South America. In February 2016, however, wheat blast
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was detected for the first time in Asia with reports of a
severe outbreak in Bangladesh. The outbreak was particularly
worrisome because wheat blast could spread further to major
wheat-producing areas in neighboring South and East Asian
countries (e.g., India, China), thus threatening food security
across the region. As a result, the wheat blast affected nearly
15,000 ha (3.5% of the total 0.43 million ha of wheat area in
Bangladesh) in eight southwestern districts, viz., Pabna, Kushtia,
Meherpur, Chuadanga, Jhenaidah, Jessore, Barisal, and Bhola
(Fig. 1 of Islam et al., 2016) with an average yield loss of 24.5%
in the affected fields, equivalent to USD 1.6 million when valuing
wheat at USD 149/ton (Mottaleb et al., 2018).

The most promising and long-term strategy for the mitigation
of wheat blast is the development of resistant varieties against
wheat blast. Although there is no proven wheat blast-resistant
commercial variety, however, promising results have been
achieved by many researchers during resistance assessment of
wheat genotypes/lines against the blast fungus, such as BARI
Gom 33 (Islam et al., 2019; Mottaleb et al., 2019a). Because
development of a resistant wheat variety through conventional
breeding program takes a long time, the application of chemical
fungicide seems to be the most feasible, cost-effective way to
apply in a short-term manner. At the moment, seed treatment
to eliminate the seed-borne infection or application on the spikes
using fungicides combining triazoles with strobilurins has been
suggested to control the disease (Kohli et al., 2011).

Weather conditions are critical factors for the development
of wheat blast disease (Farman et al., 2017). There are several
wheat blast epidemiological models that correlate the weather
condition to wheat blast epidemics to come up with the
potential epidemiological risk of wheat blast (Cardoso et al.,
2008; Fernandes et al., 2017). The models use climate data, such
as temperature, relative humidity, rainfall, and solar radiation,
and calculate risk values contributing to the development of
wheat blast [inoculum potential (IP), spore cloud (SPOR), and
infection). Such prediction based on climate data can be an
efficient way to determine times and locations for surveillance
and monitoring and to estimate the magnitude of climate-driven
disease pressure for the season.

Recent temperature increases in Bangladesh due to global
warming under climate change, especially during the winter
season, indicate its potential positive impacts on the occurrence
and development of wheat blast disease (Hossain and da Silva,
2012). Average winter temperatures in Bangladesh have gradually
increased over the last decades (Miah et al., 2014). Since this
fungal pathogen favors a temperature ranging from 20 to 30◦C,
the occurrence of wheat blast was expected to increase, leading
to increased yield loss of wheat (Cardoso et al., 2008). In South
America, severe epidemics occurred primarily in humid and
warmer regions, such as Bolivia, Paraguay, and north-eastern
Argentina (Kohli et al., 2011). Unusual humid and warm weather
in Brazil also triggered the outbreak of wheat blast disease
(Farman et al., 2017). Analysis of weather data collected from
the Bangladesh Meteorological Department showed that the
minimum temperature at night in 2016 increased by 1.8–6.5◦C
compared with 2011–2015 (Islam et al., 2019). Such warming up
coupled with frequent rainfall (up to 35 mm) in February likely

contributed to the outbreak of the epidemics in the wheat blast
affected districts.

Seasonal disease risk prediction using disease epidemiological
models and seasonal climate forecasts (SCFs) has been actively
sought over the last decades, as it has been believed to be a
key component in the disease early warning system for the pre-
season planning of local or national level disease control. In
fact, dynamic global circulation models (GCMs) have become
mainstream tools to deliver SCFs, due to their promising
predictive skills (Syktus et al., 2003; Power et al., 2007). Unlike
weather forecasts, SCFs can be predicted with a longer lead time
for an upcoming season (i.e., 3–6 months). A longer forecast
lead time enables mid- to long-term decisions in agricultural
farming, such as planting date selection, management of water
resources and infrastructure, determination of labor recruitment,
selection of crops and varieties, and determination of optimal
cultivation areas and cropping systems. However, to influence
the operational decision-making in a practical manner, it is
important that forecasts be appropriately “contextualized” before
they can positively influence decision-making (Meinke and
Stone, 2005). This is because decision makers in agriculture are
interested in the consequences of seasonal climate variability,
rather than in the climate variability itself that the SCF implicates.
One such way to contextualize forecasts is to link them with
impact models, e.g., agriculturally relevant information (such as
crop yield or crop loss), to strengthen the potential impacts of the
forecasts when presenting them to decision makers.

Here, we conducted a retrospective analysis using the wheat
blast outbreaks in Bangladesh, which occurred for the first time
in Asia in 2016, to study what-if scenarios that if there was
seasonal disease risk prediction at that time, the epidemics could
be prevented or reduced through prediction-based interventions,
and what will be the potential benefits out of adopting the SCF-
based early warning service. To prove this objective, we used a
wheat blast epidemiological model (Fernandes et al., 2017) and
a simple wheat growth model (Zhao et al., 2019) to simulate
potential wheat blast disease risk and wheat yield, separately.
SCFs were bias-corrected and downscaled to hourly and daily
scale weather data to be used as input variables for both models.
The predictability and potential value of the resulting early
warning information were evaluated against observation-based
model simulations, respectively.

MATERIALS AND METHODS

Wheat Blast Epidemiological Model and
Wheat Growth Model
We adopted a wheat blast model, developed for the wheat
blast epidemics in South America (Fernandes et al., 2017), to
simulate the wheat blast epidemics in Bangladesh. Based on
Fernandes et al. (2017), the model takes into account three major
epidemic processes: survival, dispersal, and infection. Briefly,
IP is defined by potential propagation of fungal inoculum on
alternative hosts prior or early in the season under favorable
weather conditions. As the fungal inoculum has limited lifespan
during air dispersal, a SPOR density declines rapidly over time.
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Around crop heading stage, survived fungal inoculum in a SPOR
cloud infect wheat spikes when weather conditions become
conducive. Detailed infection algorithms of the wheat blast
model related to weather input variables can be referred to the
study by Fernandes et al. (2017).

In this study, the potential disease risk for a season was
represented by the accumulated successful daily infection (INF),
conditioned to an IP >30, and a SPOR >0.4 during a day favoring
infection (DFI), which are simulated by the wheat blast model.
Since the wheat blast model was developed and evaluated for the
South American region only, we calibrated the parameters of the
wheat blast model before applying it to Bangladesh. Calibration
of the wheat blast model was conducted based on the disease
intensity reported in each district during the 2015–2016 wheat
blast outbreaks (Islam et al., 2016): 0.2% in Pabna, 2% in Kushtia,
70% in Meherpur, 44% in Chuadanga, 8% in Jhenaidah, 37%
in Jessore, 1% in Barisal, and 5% in Bhola. As input weather
data to the wheat blast model, we used the ERA5-Land hourly
data as a gridded (0.1◦

× 0.1◦, native resolution is 9 km)
weather observation proxy (Copernicus Climate Change Service
[C3S], 2019). Model parameters were adjusted by minimizing
root-mean square error (RMSE) values between the normalized
simulated disease risk scores and the normalized observed disease
intensities of the 2015–2016 seasons for all eight districts. In this
way, the calibration also reduced the potential errors originated
from the systematic bias of the ERA5-Land reanalysis products
compared with the ground truth weather data of the target area
(Kawohl, 2020). The parameters of the calibrated wheat blast
model are shown in Supplementary Table 1.

To simulate the potential wheat yield level in the study
area, we adopted a simple generic crop growth model called
SIMPLE (Zhao et al., 2019). The SIMPLE model includes basic
physiological response functions to temperature, heat stress,
drought stress, and atmospheric CO2 concentrations to simulate
biomass and yield that are similar to observations. In fact, the
SIMPLE model was already parameterized and evaluated for
wheat using observations for biomass growth, solar radiation
interception, and yield from field experiments data in the
United States and New Zealand (Zhao et al., 2019). Zhao
et al. (2019) showed that the RMSE for wheat yield using test
data was 17.8% with the SIMPLE model compared with 11–
24% RMSE across several wheat models (Asseng et al., 2015).
However, because of its very simplistic modeling approach, the
SIMPLE model has a number of limitations including the lack of
response to vernalization and photoperiod effect on phenology
and the lack of soil–crop nutrient dynamics. While the SIMPLE
model has clear limitations due to its simplicity, there is also
an advantage from its simplicity, such as its applicability to
national or regional level studies with limited ground truth
data. Another scaling issue from using extremely low-resolution
SCFs (1–2.5◦ grid) as input for the crop model also rationalizes
the use of SIMPLE over other field scale models. With the
increasing size of the area under investigation, input data tend
to become more uncertain in relation to the point data from
the experimental sites (Parker et al., 2002). Therefore, the model
applied should also embrace the uncertainty either by decreasing

the sensitivity to highly uncertain inputs or by focusing more on
physiological responses that are primarily influenced by available
inputs, such as interseasonally or interannually variable climate
conditions from SCFs.

To apply the SIMPLE model in our study, we calibrated
four cultivar specific parameters among 13 parameters, which
consist of nine crop (species)-specific and four cultivar-specific
parameters. Calibration was done using the province-level,
triennium average yield data ending 2016–2017 from the study
by Mottaleb et al. (2018): 3.207 ton/ha in Rangpur, 2.625 ton/ha
in Mymensingh, 2.253 ton/ha in Sylhet, 3.117 ton/ha in Rajshahi,
2.931 ton/ha in Khulna, 3.002 ton/ha in Dhaka, 2.931 ton/ha
in Khulna, 2.801 ton/ha in Barisahal, and 2.315 ton/ha in
Chattagram. The calibrated SIMPLE model resulted in wheat
yield simulations less than 10% deviation from the reported
yields for all provinces examined. Same as the wheat blast model,
the calibration removed the systematic bias of the ERA5-Land
reanalysis products over Bangladesh. The parameters of the
calibrated SIMPLE model are shown in Supplementary Table 2.

Seasonal Climate Forecasts and
Downscaling
Since 2007, the APEC Climate Center (APCC) has issued multi-
model ensemble (MME) SCFs for the upcoming 3- to 6-month
overlapping seasons.1 The operational APCC MME SCFs are
provided in the form of monthly anomaly compared with the
climatological period of 1983–2005. Monthly MME forecast data
from eight GCMs, in a 2.5◦

× 2.5◦ latitude/longitude grid
format, were used in the analysis. The selection of GCMs for
this study was based on the availability of the most continuous
common datasets for the period of 2014–2018. An equal weighing
approach was used to determine the contribution of each model
ensemble to the final MMEs. Descriptions of the GCMs used are
presented in Table 1.

In order to use the APCC MME SCFs as input variable in the
wheat blast and SIMPLE models, downscaled hourly and daily
weather realizations were needed, respectively. For downscaling,
the monthly forecasts from individual GCMs were first bias-
corrected using the same climatological period (1983–2005) of
ERA5-Land reanalysis data using a mean bias correction (MBC)
method. MBC searches for the mean error in the model forecasts
by comparing with corresponding observation data and adding
(or subtracting) it from each variable dataset to have zero mean
error (Marcos et al., 2018). MBC also leads to spatial downscaling
of the original model forecasts from GCMs (2.5◦

× 2.5◦)
into the high resolution of the ERA5-Land (0.1◦

× 0.1◦),
which enabled more location-specific application of SCFs in
our study. Using the bias-corrected forecasts’ monthly means
of temperature and precipitation variables, we subsequently
selected a best-fit historical observation data, in this case from
the ERA5-Land reanalysis data for 30 years of 1981–2010,
based on the Mahalanobis Distance (MD) (Cho et al., 2016).
Similar analog sampling from historical observation data has
been frequently used for the downscaling of GCM data for

1www.apcc21.org
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TABLE 1 | A description of the individual models used in the APEC Climate Center multi-model ensemble forecasts and their spatial resolution.

Model name Institution Model resolution References

CWB Central Weather Bureau (Taipei) T42L18 Liou et al., 1997

HMC Hydrometeorological Centre of
Russia (Russia)

1.125◦
× 1.40625◦ Trosnikov et al., 2005

MSC_CANCM3 Meteorological Service of Canada
(Canada)

1.41◦
× 0.94◦ Scinocca et al., 2008

MSC_CANCM4 Meteorological Service of Canada
(Canada)

1.41◦
× 0.94◦ Merryfield et al., 2013

NASA National Aeronautics and Space
Administration (United States)

288 × 181 Molod et al., 2012

NCEP Climate Prediction Center,
NCEP/NWS/NOAA (United States)

T62L64 Kanamitsu et al., 2002

PNU Pusan National University
(South Korea)

T42L18 Ahn and Kim, 2013

POAMA Centre for Australian Weather and
Climate Research/Bureau of
Meteorology (Australia)

T47L17 Lim et al., 2012

subsequent applications (Hirschi et al., 2012; Wu et al., 2012).
The best-fit observation data having minimum MD score and
its corresponding hourly and daily data are retrieved and used
to simulate the wheat blast and SIMPLE models, respectively.

Wheat Blast Risk and Wheat Yield
Simulations
The calibrated wheat blast model was used to examine whether
the model can reproduce the disease outbreaks during the
seasons of 2015–2016 and 2016–2017. Hourly weather variables
(temperature, relative humidity, and rainfall) from the ERA5-
Land reanalysis data were extracted for individual grids and used
as input variables of the wheat blast model. The resulting grid-
based wheat blast risks were aggregated to the district boundaries
of Bangladesh (DIVA-GIS2). Since the wheat blast model runs for
60 days from planting date, we determined the planting date for
winter wheat in Bangladesh based on crop calendars reported on
the literature and the FAO GIEWS Country Brief on Bangladesh
(FAO, 2008; Hossain et al., 2013; Bangladesh Bureau of Statistics
[BBS], 2018). As a result, we set the 10th of December as a fixed
planting date of winter wheat in all districts in Bangladesh.

Since the calibrated SIMPLE model requires daily scale
weather variables of maximum/minimum temperature, rainfall
amount, and solar radiation, we produced them by aggregating
the hourly ERA5-Land reanalysis data. Although the observed
wheat yields to be compared with the model simulations are
based on the unknown actual distribution of planting dates,
we assumed the actual planting dates to be around the 10th
of December for the purpose of model simulation in the
study. In this regard, we used the 10th of December as a
fixed planting date. District-specific soil characteristics, such as
fraction of plant available water-holding capacity in considered
soil bucket (AWC), runoff curve number (RCN), deep drainage
coefficients (DDC), and active main root zone depth (RZD), were
extracted from the Harmonized World Soil Database v 1.2 at

2http://www.diva-gis.org/gdata

0.05◦ spatial resolution (Wieder et al., 2014) and used to run
the SIMPLE model.

What-if Scenario Analysis Using the
SCF-Based Early Warning Service for
Wheat Blast
Evaluating what-if scenarios for possible seasonal disease
prediction-based interventions, we examined alternative planting
dates to avoid the high-risk periods of wheat blast while
maintaining comparable wheat yield level to the one with normal
planting date in the 2016–2017 seasons. This exercise was to
find optimal trade-off points between reducing wheat blast risk
and securing wheat yield. Because there is no modeling linkage
made between two models, we had to simulate both models
separately. Downscaled SCFs from eight GCMs were used to run
the wheat blast and SIMPLE models with a range of planting dates
(dekadal interval) within the planting window of Bangladesh,
which is from November to early January (FAO, 2008). To secure
a sufficient lead time, we used 6-month SCFs for November–
April, which is issued by the end of October. Eight simulated
wheat blast risk scores and yield predictions from eight GCM
SCFs were visualized as a box plot to compare with observed ones
from the ERA5-Land reanalysis data, respectively. For the what-
if scenario analysis, potential yield loss impacts were estimated
based on the reported relationships between the wheat blast
intensity and the corresponding yield loss from literature review.

Predictability and Potential Value of the
SCF-Based Early Warning Service for
Wheat Blast
The predictability of the SCF-based early warning service was
evaluated by comparing the observation (the ERA5-Land)-based
and the SCF-based wheat blast risk scores for 1983–2005 (the
common hindcast period of eight GCM SCFs). In addition, the
3-year average observation-based wheat blast risk scores for the
period from t–3 to t–1 were produced, assuming that it represents
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the anticipated wheat blast risk for the coming season. It works
as the reference when measuring the added values of the SCF-
based early warning service that considers additional sources
of information, which is the SCFs. We utilized the Pearson’s
temporal correlation coefficient (TCC) and RMSE to compare the
predictabilities of the SCF-based wheat blast risk scores and the
reference risk scores.

We also examined the potential value of the SCF-based early
warning service for wheat blast in Bangladesh by simulating
a rule-based approach toward predicted risks from the early
warning service. In this study, we define that the risk-averse
decision changes planting dates based on the SCF-based wheat
blast risk and yield simulations to minimize the predicted
risks, whereas the risk-disregarding decision refuses to change
but sticks to the conventional calendar-based planting date
irrespective of the early warning. The examination was done for
1983–2005, during which we run the wheat blast and SIMPLE
models with a range of planting dates (dekadal interval) from
November to early January. Our rule for planting date selection
is similar to the previous what-if scenario analysis. We chose
a planting date with the lowest wheat blast risk prediction, but
having a comparable yield, more than 90% of the predicted
yield from the normal planting date (the 10th of December).
Subsequently, we compared the actual yields with the changed
planting date and with the normal planting date, which are
simulated using the ERA5-Land observation data, to evaluate the
long-term benefit of the SCF-based early warning service. In this
way, we directly compared the risk-averse decision (changing
planting date) with the risk-disregarding decision (clinging to
the normal planting date irrespective of the SCF-based early
warning). Based on the previous studies (Islam et al., 2016;
Mottaleb et al., 2018), we defined the artificial crop loss ratio
to each unit of wheat blast risk score. Considering the reported
severity level and wheat growing areas per district (Islam et al.,
2016) and the reported total yield loss due to wheat blast
outbreaks in the 2015–16 seasons (Mottaleb et al., 2018), it was
derived that one unit (1) of risk score corresponds to 10.88%
yield loss. This artificial crop loss ratio was used to calculate the
estimated actual crop yield (attainable yield - crop loss due to
wheat blast) for both risk-averse and risk-disregarding decisions.
The yield loss was calculated separately for each province as the
wheat growing area per province played a role of weighing factor
when converting the risk score to the yield loss.

RESULTS

Reproducing Wheat Blast Outbreaks
Over Bangladesh Using the Wheat Blast
Model
The calibrated wheat blast model successfully simulated the
spatial pattern of disease risk probabilities in the districts of
Bangladesh from the 2014–2015 to the 2017–2018 wheat growing
seasons (Figure 1). A resulting RMSE between the normalized
disease risk simulations and the normalized observed disease
intensities of the 2015–2016 seasons for all eight districts

was 0.15, with 0.05 of minimum absolute error and 0.37
of maximum absolute error. Graphical comparison with the
observed distribution of wheat blast outbreaks across Bangladesh
revealed that the calibrated wheat blast model has reasonably
good performance (Figure 1). Relatively higher risk probabilities
were simulated on the most affected districts in the 2015–2016
and 2016–2017 seasons, whereas lower risk probabilities were
simulated in other unaffected districts. In the 2014–2015 and
2017–2018 seasons when there were no (or negligible) reported
wheat blast cases, the model simulated very low risk probabilities
not only on the affected 10 districts but also on other districts
in Bangladesh, except for multiple east districts consistently
resulting in some level of unrealized risk probabilities, primarily
due to the absence of wheat blast fungal inoculum.

Predictability of the SCF-Based Early
Warning Service for Wheat Blast
Figure 2 shows the graphical comparison between the wheat blast
model simulations using the downscaled SCFs, the reference, and
the ERA5-Land data for the period of 1983–2005. The 3-year
average observation-based wheat blast risk scores as the reference
were presented to measure the added values (i.e., predictability)
of the SCF-based early warning service in the study. Overall,
the simulated wheat blast risks gradually increased during the
period. The time series graphs demonstrated that the SCF-based
disease risk simulations showed better temporal correlations with
the ERA5-Land data, indicating relatively higher predictive skills
for the wheat blast risks (Figure 2A). Statistical analyses resulted
in smaller RMSE and larger TCC between the results from the
ERA5-Land and the downscaled SCFs, in comparison to the
ones from the ERA5-Land and the reference (Figure 2B). This
may indicate that the interannual variability of the wheat blast
risks depended strongly on the climate condition in December–
February, and the relatively good predictability of the climate
variables in the SCFs resulted in the potential predictability. The
comparison between the results from the SCFs and those of the
reference also indicated that the prediction using the SCFs may
have some benefits over using the simple reference method.

What-if Scenario Analysis With the
SCF-Based Early Warning Service for the
2016–2017 Wheat Blast Outbreaks in
Bangladesh
Here, the what-if scenario analysis applies for the 2016–2017
wheat growing seasons, where we reasonably assume that policy-
makers and farmers are already aware of the existing wheat blast
risk from the 2015–2016 outbreaks in the affected districts, and
there is a SCF-based early warning service for wheat blast that
aids the decision-making for the selection of planting dates. The
SCF-based early warning service indicated that planting wheat on
the 10th of November, 2016 resulted in the lowest wheat blast
risk score compared with other planting dates and the normal
planting date of the 10th of December, 2016 (Figure 3A), yet
maintaining more than 90% of yield compared with the normal
planting date (Figure 3B). Subsequent simulations using the
ERA5-Land observation data also confirmed that the planting
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FIGURE 1 | Simulated wheat blast risk probabilities in the districts of Bangladesh from the 2014–15 seasons to the 2017–18 seasons using the calibrated wheat
blast model developed by Fernandes et al. (2017) and calibrated in the study. Geographical distribution changes of the wheat blast outbreaks in the districts of
Bangladesh during the same period are also shown for comparison with the simulated results. On the top box, wheat production map of Bangladesh shows the
major wheat-producing districts, adapted from Sadat and Choi (2017), to be compared with the simulated and observed wheat blast maps.

on the 10th of November resulted in less risk score over the
affected districts than that on the 10th of December planting,
yet maintaining minimum yield loss (about 0.15 ton/ha less yield
simulated). It was noted that the wheat blast risk scores from the
observation showed greater variability than those from the eight
SCF-based simulations, whereas both wheat yield simulations
showed similar variability over the examined planting dates
except for the 20th of October. Yield decline during early
planting dates is primarily caused by the marginal weather
condition affecting crop performance due to early planting
(Figure 3B). Graphical comparison between the two planting
dates was made, and it clearly confirmed the significantly reduced
wheat blast risks in most districts with the changed planting
date of the 10th of November (Figure 3C). Overall, the SCF-
based simulations for wheat blast risk and yield showed similar
variations to the observation data-based simulations, indicating
relatively good performance of the SCF-based early warning.
However, different from what was expected from the SCF-based
predictions, planting on the 20th of November seemed to result

in the lowest wheat blast risk score with one of the highest wheat
yields among all planting dates. This indicates the inevitable
uncertainty in the SCF-based simulations.

Estimating from the previous studies, in which an average
yield loss of 24.5% in the affected 15,000 ha wheat growing areas
in eight districts was reported (Islam et al., 2016; Mottaleb et al.,
2018), we interpolated the possible yield loss in the 2016–2017
seasons upon the relative risk score differences between the 2015–
2016 and the 2016–2017 seasons, assuming that the simulated risk
score has a significant correlation with the resulting yield loss.
This approach has no choice but to be theoretical, as it assumes
many critical factors due to limited data available. Our results
showed that (1) without proactive intervention aided by the SCF-
based early warning service for wheat blast (with planting on
the 10th of December), about 31.1% of an average yield loss was
estimated in the 2016–2017 seasons, whereas (2) with proactive
intervention (changing planting date to the 10th of November),
about 15.7% of an average yield loss was estimated. Combining
the yield loss generated due to the marginal planting on the 10th
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FIGURE 2 | Comparison of the simulated wheat blast risk scores from the observation (ERA5-Land), the downscaled SCFs from eight GCMs, and the reference
(3-year average) for the period of 1983–2005. (A) Graphical comparison of the time series wheat blast risk scores produced by the wheat blast model using all three
input data. (B) Note the root-mean square errors and correlation coefficients between the observation and downscaled SCFs and between the observation and
reference.

of November, our final estimation indicates that the changing
planting date based on the SCF-based early warning service
could have avoided about 11% yield loss out of the 31.1% in the
2016–2017 seasons due to potential wheat blast outbreaks.

Potential Value of the SCF-Based Early
Warning Service for Wheat Blast
In the study, the potential value of the risk-averse decision
based on the SCF-based early warning service over the risk-
disregarding decision was evaluated (Table 2). Our rule for
planting date selection by the risk-averse decision led to selecting
the planting date with the lowest wheat blast risk but not
sacrificing attainable yield that was predicted using the SCFs,
whereas the risk-disregarding decision planted only on the
normal planting date (the 10th of December) irrespective of
the SCF-based early warning information. In fact, the observed
results in Table 2 showed the positive outcome of the applied
rule, where the risk-averse decision resulted in less wheat
blast risk score and thus less yield loss, while maintaining
comparable attainable yield to the risk-disregarding decision
(2.97 vs 3.05 ton/ha). In other words, many of the expected
predictions in the wheat blast risk and attainable yield based on
the SCF-based early warning service ended up being realized in
the observations. This is very promising findings when it comes
to the predictability of both SCF applied and the resulting model
outputs. More importantly, the long-term average of actual yields
(attainable yield - yield loss due to wheat blast) was higher in the
risk-averse decision than in the risk-disregarding decision, where
more years showed positive outcome for the former (14 out of

23 years). This result surely encourages the users to keep placing
their trust on the information from the SCF-based early warning
service and thus makes sure that the service is sustainable and
increases the adoption rate by more users at the end.

DISCUSSION

Potential Applicability and Benefit of the
SCF-Based Early Warning Service for
Wheat Blast
This retrospective study showed the feasibility of the SCF-based
early warning service for the pre-season strategic interventions
of forecasted crop diseases. Applicability and benefits are mostly
governed by the forecast accuracy and lead time for advanced
decision-making. Our results indicate that the SCF-based early
warning service has both predictability and added value over
conventional decision-making process not considering forecast
information as demonstrated with the 3-year average reference
(Figure 2). This is partly because the models used in the
study were fairly sensitive enough to translate the variable
climate conditions from the SCFs into respective disease risk
and yield information. Another possibility is in using the MME,
as averages of ensemble forecasts are considered more skillful
than single-model forecast averages because multiple models can
average out errors of individual models (Stockdale et al., 2010;
DelSole and Tippett, 2014).

The models used in the study require different temporal
resolution weather data (hourly data for the wheat blast model

Frontiers in Plant Science | www.frontiersin.org 7 November 2020 | Volume 11 | Article 570381

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-570381 November 19, 2020 Time: 11:12 # 8

Kim and Choi Seasonal Forecast-Disease Early Warning

FIGURE 3 | Comparison of simulated wheat blast risk scores (A) and wheat yields (B) using both the downscaled SCFs (boxplots) and the observation from the
ERA5-Land reanalysis data (black dots) over a range of different planting dates with a dekadal interval from October 20, 2016 to January 1, 2017. Note that wheat
blast risk scores were significantly reduced when the planting date was changed from December 10 to November 10 (C).
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TABLE 2 | Potential value of the risk-averse decision over the risk-disregarding decision for the SCF-based early warning service for wheat blast, based on simulations
for the period of 1983–2005.

Planting
date(s)

Wheat blast
risk score

Yield loss (%) Attainable
yield (ton/ha)

Actual yield
(ton/ha)

Number of
years with

better actual
yield

Risk-averse decision Selected date
between

November 10
and January 1

0.13 1.51 2.97 2.93 14/23 (61%)

Risk-disregarding decision December 10 0.45 5.24 3.05 2.89 9/23 (39%)

and daily data for the SIMPLE crop model). This may explain
the larger variability observed in the wheat blast risk scores
than in the wheat yield simulations over the examined planting
dates (Figures 3A,B). Sparks et al. (2011) also showed larger
variabilities in the metamodels using higher temporal resolution
weather inputs. The difference in variabilities between the wheat
blast risk scores from both the observation and the SCFs
indicates the importance of temporal downscaling of the low-
resolution SCFs in the SCF-based early warning service. Another
way to overcome the temporal discrepancy is a metamodeling
approach by adapting models to use lower resolution input data
(Sparks et al., 2011). Either downscaling or metamodeling will
result in added uncertainty in the early warning information;
therefore, it is important to properly present to users not only
the averaged warning information but also the uncertainty in a
quantitative way.

Predicted risks for the wheat blast disease from the SCF-based
early warning service can potentially be used to enable decision
makers to develop informed farm management strategies. Not
only such strategic decisions include short-to-mid-term ones
(e.g., the selection of resistant cultivars against the high-risk
predictions, the seasonal scheduling of chemical and cultural
control methods, or identifying the ideal time to plant crops
to minimize crop losses due to diseases) but also decisions
that do not directly pertain to disease management but have
many crop health consequences (e.g., choices involved in the
type of crop establishment, crop rotation, or cropping systems).
Nevertheless, few studies demonstrated the clear applicability
of the SCF-based early warning services (Meinke and Stone,
2005; Choi et al., 2015), primarily due to large uncertainties
that not only the GCM forecasts and applied agro-models but
also the input variables and operational processes, such as
downscaling or aggregation, fundamentally have. Indeed, users
often remain skeptical of the SCF-based information because
of individual negative experiences in the pasts (Changnon
et al., 1988; Hu et al., 2006). Although our study did not
dissect the uncertainties from individual sources, we successfully
showed the promising potentials of utilizing SCF-based early
warning service in the long-term as demonstrated for the
period of 1983–2005 (Table 2), which clearly showed the users
with short-term negative experiences that the long-term risk-
averse approach will lead to long-term benefit at the end.
The rationale for this approach is that consistency eventually
pays off in the long run (Crane et al., 2010). Informed

decision-making based on the reliable early warning service
is essential to cope with future wheat blast epidemics in
Bangladesh, which will possibly re-occur in the coming years
when favorable environment and susceptible wheat cultivar
are present again.

Limitations of the SCF-Based Early
Warning Service for Wheat Blast
There are some remaining areas to be re-visited for improvement.
Especially, securing more ground truth data for the disease
incidences with metadata, such as location and time, and critical
and dynamic factors consisting of abiotic and biotic stressors and
agronomic practices affecting the actual yield is among the most
urgent follow-ups. For example, the total wheat growing areas in
the eight districts were significantly decreased in the 2016–2017
growing seasons due to government guidance to avoiding wheat
and changing to other alternative crops (Islam et al., 2019), based
on which our resulting figures should be adjusted. Long-term
ground truth wheat blast and yield data per district are needed
to improve the accuracy of the wheat blast and SIMPLE models.
Extensive data also enable the development of crop-disease-
coupled models for more realistic simulations based on the given
SCFs. In this study, the model calibration was done only using 1-
year data that are reported on the literature, resulting in the lack
of robustness of the parameters of each model. To increase the
validity and applicability of the models, more ground truth data
should be used for the model refinement, which will eventually
reduce the uncertainty derived from the model performance.

Although the SIMPLE crop model is both applicable to data-
scarce areas and realistic with comparable performance to several
wheat models (Asseng et al., 2015; Zhao et al., 2019), there are a
number of limitations that should be addressed when it happens
to simulate more complex dynamics of agroecosystems. The lack
of soil–crop nutrient function will potentially cause erroneous
simulations for many low input systems that are common in
developing countries. Some effects from agronomic practices are
not included, such as planting space and depth, which could
have some impact on crop yield. More relevant to our study is
the lack of pest and disease damage functions in the SIMPLE
model. While follow-up studies should take advantage of the
simple and easily extendable features of the SIMPLE model by
adding pest and disease damage functions and any necessary
physiological response functions to overcome its limitations,
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readers need to be aware of these limitations when interpreting
the results in this study.

The value of the SCF-based early warning service depends on
a wide range of complex and interrelated factors. These include
SCF accuracy, e.g., accuracy at relevant spatial resolutions and
lead times, forecast adoption rates and the attitudes of farmers
to coping risks, and the actual seasonal conditions that are
experienced. Therefore, no matter how skilled a climate forecast
is, it is not possible for farmers to eliminate all impacts of climate
on production, and any actions that they take to mitigate the
risks will cost money, as will any decisions they make based
on incorrect forecasts. It is unlikely that SCFs will ever achieve
complete certainty in forecasting because of the many chaotic
and non-deterministic features of climate systems. In fact, due to
the anxiety of users regarding the predictability, many systems
that have been developed still only use yield estimates from
past periods, such as the 3-year average reference in our study,
rather than using actual yield estimates to support informed
decision-making.

Potential Ways Forward
Through the advances in GCM modeling, state-of-the-art
downscaling techniques, and the wide application of big-
data analyses and statistical techniques, such as the Bayesian-
based parameter estimation in the climate and agricultural
research fields (Gronewold et al., 2009; Jeong et al., 2016),
it is expected that the use of SCF and agricultural modeling
in agricultural decision-making will increase in the future. In
addition, recent increases in the availability of crop/pest/disease-
related data at national to global level would help improve
the SCF-based early warning services. Such global datasets
include the gridded historical yield time series (Iizumi and
Sakai, 2020), global-scale, quantitative, standardized information
on crop losses (Savary et al., 2019), potential sowing and

harvesting windows (Iizumi et al., 2019), and high-resolution
crop phenology (Luo et al., 2020). To develop comprehensive
developmental frameworks for the SCF-based early warning
services, it is also necessary to consider and simultaneously
achieve all three of the key prerequisites for climate services:
credibility, salience, and legitimacy (Cash et al., 2003).
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