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Grassland-based ruminant livestock production provides a sustainable alternative to
intensive production systems relying on concentrated feeds. However, grassland-based
roughage often lacks the energy content required to meet the productivity potential
of modern livestock breeds. Forage legumes, such as red clover, with increased
starch content could partly replace maize and cereal supplements. However, breeding
for increased starch content requires efficient phenotyping methods. This study is
unique in evaluating a non-destructive hyperspectral imaging approach to estimate
leaf starch content in red clover for enabling efficient development of high starch
red clover genotypes. We assessed prediction performance of partial least square
regression models (PLSR) using cross-validation, and validated model performance with
an independent test set under controlled conditions. Starch content of the training
set ranged from 0.1 to 120.3 mg g−1 DW. The best cross-validated PLSR model
explained 56% of the measured variation and yielded a root mean square error (RMSE)
of 17 mg g−1 DW. Model performance decreased when applying the trained model
on the independent test set (RMSE = 29 mg g−1 DW, R2 = 0.36). Different variable
selection methods did not increase model performance. Once validated in the field,
the non-destructive spectral method presented here has the potential to detect large
differences in leaf starch content of red clover genotypes. Breeding material could be
sampled and selected according to their starch content without destroying the plant.

Keywords: red clover, starch content, hyperspectral imaging, partial least square regression, forage quality,
grassland

INTRODUCTION

Temporary and permanent grassland account for roughly 70% of agricultural land and play a
significant role in sustainable agriculture worldwide by providing roughage for ruminant livestock
production. Pasture and grassland-based agroecosystems maintain carbon balances, nutrient cycles,
biodiversity and water quality (Steinfeld et al., 2006). However, they were gradually replaced by

Abbreviations: DW, dry weight; ED, at the end of the day; EN, at the end of the night; MLR, multiple linear regression; PCC,
top 50 starch correlated wavelengths; PLSR, partial least square regression; VIP, variable importance in the projection.

Frontiers in Plant Science | www.frontiersin.org 1 October 2020 | Volume 11 | Article 569948

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.569948
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2020.569948
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.569948&domain=pdf&date_stamp=2020-10-15
https://www.frontiersin.org/articles/10.3389/fpls.2020.569948/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-569948 October 10, 2020 Time: 17:26 # 2

Frey et al. Non-destructive Starch Detection in Red Clover

intensified production systems, where the high feed energy
content required by today’s livestock breeds is largely covered
through starch from cereals and maize. Starch is an important
form of assimilated carbohydrates in plants, which diurnally
accumulates in the leaf and is nocturnally mobilized to support
growth (Geiger and Servaites, 1994; Stitt et al., 2007; Stettler et al.,
2009). The accumulation of starch and its linear degradation
at night is thought to be crucial for stable growth and to be
directly correlated to plant biomass (Graf et al., 2010; Mugford
et al., 2014). However, plant biomass and leaf starch content
are not always negatively correlated in species such as birdsfoot
trefoil (Lotus japonicus L.) or red clover (Trifolium pratense L.;
Vriet et al., 2010; Ruckle et al., 2017). Starch accumulation and
degradation varies not only among plant species, but also among
genotypes, seasons, and management regimes (Griggs et al., 2007;
Pelletier et al., 2010; Moraes et al., 2013; Liu et al., 2018).

Red clover is one of the most important forage legumes
in temperate climates (Taylor, 2008). Its high yield potential,
high crude protein content and high digestibility make it an
excellent feed, not only for cattle but also for other livestock and
poultry (Broderick, 1995; Halling et al., 2001). Red clover has the
potential to accumulate up to one third of its leaf dry mass as
starch, and some genotypes degrade less than 50% of their starch
during the night (Ruckle et al., 2017). Thus, selecting for red
clover plants with high starch content and low degradation rates
is likely to result in high starch cultivars. These could provide
an alternative, high-energy feed source, which would significantly
improve sustainability of ruminant livestock production.

Developing a high starch red clover requires a better
understanding of the starch metabolism in red clover and an
efficient method to quantify starch in leaf tissue. Starch is
commonly quantified with an enzymatic method, where leaf
samples are flash frozen, ground and weighted before extraction
is performed (Hostettler et al., 2011). This procedure is laborious,
expensive and involves destructive sampling. A non-destructive
method to measure leaf starch content would enable detailed
studies of starch turnover in red clover plants, and dynamic
changes during plant development could be traced on the
same plant throughout the entire season. Specifically, different
genotypes could be investigated under different management
regimes and across different environments over an extended
period of time. Furthermore, this method could be applied in
breeding to develop high starch red clover cultivars.

Hyperspectral imaging and near infrared spectroscopy (NIRS)
are routinely used to estimate biochemical compounds such as
lignin, cellulose, starch, sugars and proteins in numerous crops
(Goetz et al., 1990; Hattey et al., 1994; Yoder and Pettigrew-
Crosby, 1995). These two methods have largely replaced wet
chemistry as the standard analytical procedure for detection
and quantification of plant biochemical compounds in the food
industry (Card et al., 1988; Barton, 1991). Infrared spectra result
from the fundamental vibrational absorptions of photons in the
mid-infrared region (500–4000 cm−1, 350–25000 nm) by bonds
within specific functional groups of molecules. These absorptions
are mirrored to the NIR region (Card et al., 1988). Multivariate
statistics, chemometrics, or machine learning methods are then
used to quantify and classify specific compounds or properties

(Kumar et al., 2001). NIRS or other spectral techniques are most
accurate when using dried and homogenized (i.e., milled) plant
material. For example, starch has been accurately quantified on
dried cotton leaves or dry forage maize using NIRS (R2 > 0.9;
Hattey et al., 1994; Hetta et al., 2017; Lu et al., 2017). Estimating
chemical compounds with spectral measurements on fresh leaf
tissue is often less reliable due to masking effects of light
absorption by the cuticle or the leaf water content (Curran et al.,
1992; Fourty and Baret, 1998). For successful spectroscopy-based
diagnostics using fresh leaf tissue, spectral pre-processing and
statistical modeling are essential to at least partially correct for
confounding effects (Curran et al., 1992).

The following study aimed at developing a non-destructive
spectroscopic method to estimate leaf starch content in fresh leaf
tissue of red clover. Although developed in the greenhouse under
controlled conditions, such a method could, once validated in the
field, enable to monitor starch turnover on the same genotype
over a longer period, under different management regimes, and
under various environmental conditions.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Leaf starch was determined in two independent sets (i.e., a
training set and a test set) of plants grown in two separate
experiments. Plants from the two experiments were grown
in a completely randomized design. The plants of the test
and the training set were grown in spring and autumn 2018,
respectively. All plants were clonally propagated using cuts that
contained only one shoot and one root meristem to ensure
comparable physiological states of all plants. These clonally
propagated plants were grown in a climate chamber for 90 days
before harvesting (pot size ø 16 cm, height 13 cm; 3:2:1 soil:
peat: perlite substrate; photoperiod of 14:10-hour L:D; day
temperature 20 ± 2◦C, night temperature 15 ± 2◦C; relative
humidity, 60 ± 10%; fluorescent light bulbs T7 (Phillips, DE),
and Grolux R© fluorescent lamps (Sylvania, DE) at a ratio of 3:1;
total light intensity 200 µmol m−2 s−1). Samples were taken
at the end of the night (EN; before lights were turned on),
and at the end of the day (ED; before lights were turned off).
Single plants were selected from cultivars from Europe and
from breeding germplasm. In addition, nine plants from an
advanced breeding population previously shown to have a high
variation for leaf starch content, were selected (Ruckle et al.,
2017; Supplementary Table S1). Wet laboratory measurements
were taken on exactly the same material as used for the
spectral measurements.

The training set included 18 genotypes, six thereof clonally
duplicated (Supplementary Table S1). Starch was measured on
15 leaf cuts per plant, taken on the three leaflets of each leaf.
The youngest, fully emerged leaf (y), the oldest leaf (o) and
three mature leaves (m) were sampled (Figure 1), resulting in
360 measurements. The test set included six genotypes; three
genotypes were harvested at ED and the same three genotypes
at EN (Supplementary Table S1). Ten leaf cuts were taken per
plant on mature leaves, resulting in 60 measurements.
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FIGURE 1 | Sampling on red clover plants was performed on the youngest
leaf, where three leaflets were fully emerged (y), on the three leaflets of the
oldest leaf (o), and on three different mature leaves, in total nine leaflets (m).

Leaf Spectroscopy
Leaflets were cut using a round, sharpened tube with a diameter
of 12 mm to standardize leaf area (Supplementary Figure S1).
These leaf cuts were placed on the matt black surface of the
FieldSpec 4 pro device (Analytical Spectral Devices, Boulder, CO,
United States; Ely et al., 2019). The device is not influenced by
external light sources, potentially enabling the application in field
experiments. Radiance between 350 and 2500 nm was measured.
The spectrometer’s contact probe was fixed on a clamp, and the
sample was placed so that no light escaped through the sides.
Leaf samples were referenced to a spectralon white reference
every fifth recording and the radiance measurements where
transformed to reflectance. Immediately after taking spectral
measurements, leaf cuts were flash frozen in liquid nitrogen and
freeze-dried for 48 h.

After taking spectral measurements, whole plants from the
training set were cut 2 cm above ground, flash-frozen and freeze-
dried for starch quantification.

Wet Lab Analysis for Starch
Quantification
Starch in leaf cuts and whole plants was quantified using a
protocol of Hostettler et al. (2011), which was modified and
described by Ruckle et al. (2017). Two additional clones of one
genotype, not included in the correlation model, were iodine
stained to visualize the starch pattern within a plant. Plants were
harvested either at ED or at EN, washed with tap water and
placed in 80% (v/v) boiling ethanol. After 2 h, when plants were
transparent, they were removed and placed in Lugol’s solution.
After 10 min, the Lugol’s solution was rinsed off to destain the

non-target areas. The plants were photographed on a light-table
(Hostettler et al., 2011).

Statistical Analyses
Statistical analyses were performed using the R statistical software
version 3.6.0 (R Core Team, 2019). As assumptions of normality
of residuals were not met, an exact Wilcoxon rank sum test
was chosen to detect differences between harvest times, and a
Kruskal-Wallis test for multiple pairwise comparison at α = 5%.

Pre-processing of Spectral Data
Spectral analysis was realized using the R package simplerspec
(Baumann, 2019). The mean reflectance values of 10
measurements per sample were used. Leaf spectra were
pre-processed prior to modeling. Gaps between the different
detector arrays at λ = 1000 and at λ = 1800 nm were splice
corrected. Spectra were smoothed with the Savitzky-Golay first
derivative filter using a 3rd-order polynomial at a 21-point
window (21 nm at a resampled spectrum interval of 1 nm; R
package prospectr (Stevens and Ramirez-Lopez, 2020). Spectral
pre-processing is crucial to reduce significant noise and baseline
drift resulting from light scatter before establishing a correlation
model. After smoothing the spectra with Savitzky-Golay, the
spectral variables were centered and scaled prior to relating them
to leaf starch using partial least squares regression (PLSR), in
order to consider variables equally independent of their variation
in absolute values. PLS regression is a substantial chemometric
method, which can cope with multicollinearity in spectra and
delivers robust calibration models with many predictors and few
observations (Zhao et al., 2015). To further reduce collinearity
in processed spectra, only every forth wavelength was kept for
modeling, resulting in 533 spectral predictor variables.

Model Development
Leaf reflectance data from the training set was modeled by PLSR
with the orthogonal scores algorithm (also NIPALS; Wold et al.,
1983), using the pls R package (Mevik et al., 2020). Separate
models were developed with raw or pre-processed spectra as
predictors. A 5-times repeated 10-fold cross-validation scheme
was used to fit the models, to determine the best number of
components (ncomp), and to estimate model performance of the
final model. A constant random seed was set for resampling,
yielding identical hold out data across all models. Model
reliability was assessed by the coefficient of determination (R2)
and the slope (b) of a linear regression with intercept, by the
root mean square error (RMSE, Eq. 1), by the bias or mean error
(Eq. 2), and by the ratio of performance to deviation (RPD, Eq. 3).
The evaluation metrics were calculated by aggregating all holdout
predictions from the repeated 10-fold cross-validation (yi) and
corresponding observed values (yi) grouped by ncomp.

RMSE =

√∑n
i=1
(
yi − ŷi)

2

n
(1)

Bias =
∑n

i=1(yi − ŷi)
n

(2)
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RPD =
sd(yi)
RMSE

(3)

Variable influence on projection scores (VIP) is a measure of
variable importance tailored to PLS regression (Wold et al., 1993;
Chong and Jun, 2005). VIP scores were calculated from the
PLS regression parameters taking multicollinearity into account,
which is likely to occur because of the nature of spectroscopic
data. VIP scores are considered as a robust measure to identify
relevant predictors, here important wavelengths. A variable with
VIP above 1 contributes more than the average variable to the
model prediction. The VIP value vj was calculated for each
wavelength variable j as

vj =

√
p
∑A

a=1

[
SSa

(
waj/ ‖ waj ‖

)2√∑A
a=1 (SSa)

(4)

where waj are the PLS regression weights for the ath component
for each of the wavelength variables and SSa is the sum of squares
explained by the ath component (Eq. 4). The sum of squares SSa
for the ath component was calculated from the score qa of the
predicted variable y and the ta scores of the spectral matrix X
(Eq. 5):

SSa = q2
at

T
a t

a (5)

Variable influence on projection scores scores were also used to
filter important predictors with a threshold of VIP > 1 within the
training set, and the identified predictors were used to re-calibrate
the test set and assess performance. This separation in the VIP
filtering by independent tests was needed to avoid overfitting and
over-optimistic assessment that typically occur when identifying
subsets of features on the modeling data.

In addition to the VIP based filtering, two other procedures
were applied for wavelength selection. First, the 50 most relevant
wavelengths to estimate starch according to Pearson’s correlation
coefficient (r) were taken to re-perform PLS regression. Second,
four wavelengths that were assigned to starch in previous
literature were taken and normalized with the reflection at the
wavelength that had the smallest standard deviation across the
entire wavelength range, prior to performing a multiple linear
regression (MLR; Kumar et al., 2001).

Model Evaluation Using the Test Set
The best training model tuned by cross-validation and refitted
on all training data, and the training models with three different
wavelength selection (filtering) methods were tested on the
independent test data set (60 samples). The predictive ability
of these final models was again evaluated using R2 and RMSE
on the test set. Besides these test set predictions, a PLSR model
was re-calibrated using only the test data. This re-calibration
allowed to determine whether the test set possibly contained
different or differently weighted spectral features relevant for
starch prediction, so that PLSR training relationships did not
generalize to this independent test experiment.

RESULTS

Wet Lab Analysis for Starch
Quantification
Starch concentration of samples of the training set harvested
at ED ranged from 2.0 to 120.3 mg starch per g dry weight
(DW), with a median of 46.3 mg g−1 DW. For the samples
harvested at the end of the night (EN), starch concentrations
ranged from 0.1 to 47.8 mg g−1 DW, with a median of 9.6 mg
g−1 DW. Starch concentrations for the test set ranged from 26.41
to 125.44 mg g−1 DW for ED harvested samples, with a median
of 66.18 mg g−1 DW. Plants harvested at EN had lower starch
concentrations, ranging from 3.66 to 79.51 mg g−1 DW, with
a median of 23.28 mg g−1 DW. Differences between samples
harvested at ED and EN were statistically significant (p < 0.5)
for both sets (Figure 2). In order to test the reproducibility of
the enzymatic method, three technical replicates of the 24 plants
of the training set were analyzed, resulting in a standard error
(SE) of 0.096 mg g−1 DW (data not shown). Also, there was
no substantial difference in dry matter content (dry weight/fresh
weight) observed between samples from different plants or
sampled at different time points, indicating that water content
per se was not responsible for the differences in starch content
observed by spectral analysis (data not shown).

The iodine stained leaves displayed analogous patterns.
Plants harvested at ED showed higher starch accumulation
than plants harvested at EN, indicated by a dark coloration
of the leaves (Figures 3A,B). Differences in coloration were
not only visible between diurnal time points, but also across
and within leaves (Figures 3B,C). Dark coloration indicated
that old leaves accumulated more starch than young ones.
Coloration varied within a plant, showing a clear pattern
with young leaves accumulating less starch compared to old
leaves. While starch accumulation varied within one leaf, no

FIGURE 2 | Starch content in mg g−1 DW in red clover plants of the training
(n = 449) and the test set (n = 60) at the end of the day (ED) and at the end of
the night (EN). Medians within the two sets with no letter in common are
significantly different (Wilcoxon signed-rank test; α = 5%).

Frontiers in Plant Science | www.frontiersin.org 4 October 2020 | Volume 11 | Article 569948

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-569948 October 10, 2020 Time: 17:26 # 5

Frey et al. Non-destructive Starch Detection in Red Clover

FIGURE 3 | Iodine stained red clover plants (clones from the same genotype)
visualizing starch distribution (dark coloration). There are clear differences in
starch accumulation between harvest times (A) the end of the night (EN), (B)
the end of the day (ED). Differences in starch accumulation are also visible
within one plant (B), and within one leaf (C).

clear pattern was distinguishable based on iodine visualization
when observing starch accumulation within individual leaflets
(Figure 3C). Observations in the iodine staining were confirmed
by starch quantification in different leaf types. Young leaves
had a significantly lower (p < 0.05) starch concentration when
compared to mature leaves, old leaves or entire plants (Figure 4).
Some differences between genotypes of the training set harvested
at ED were statistically significant (p < 0.05), but a high variation
within genotypes was observed (Figure 5).

Spectral Measurements and Modeling
The average reflectance spectra of the training set revealed similar
patterns for both harvest time points ED and EN (Figure 6A).
VNIR/SWIR (350–2500 nm) spectra had three main absorption
regions, around the absorption bands of 700, 1400, and 1900 nm.
Savitzky-Golay smoothed spectra showed very similar patterns
across the entire wavelength range for samples harvested at ED
and those harvested at EN (Figure 6B).

The best PLSR training model with pre-processed spectra
resulted in an accurate starch prediction for the training set
(R2 = 0.72, RMSE = 13 mg g−1 DW, bias = −0.0), using seven
PLS components (Figure 7A). Five times repeated 10-fold cross
validation performed on the same data set revealed a moderate
correlation coefficient (R2

CV) of 0.56, a RMSE CV of 17 mg g−1,
and a residual bias of−0.2 (Figure 7B).

Partial least square regression models modeling using pre-
processed spectra performed better than modeling using raw
spectra as predictors (Supplementary Figure S2). Separating
cross-validated predictions by ED and EN resulted in lower
correlation coefficients of R2

CV = 0.39 and R2
CV = 0.25 for

ED and EN, respectively (Supplementary Figure S3). The
starch estimates per individual plant had a wide range of R2

CV
between 0 and 0.87 (Supplementary Figure S4). Including only
the most relevant wavelengths for estimating starch content
based on filtering training variable importance in the projection
(VIP > 1) did not significantly improve prediction performance
(Table 1). Prediction performance decreased compared to the full
spectral model including only the best 50 with starch correlated

FIGURE 4 | Starch concentrations in different leaf fractions [young (n = 35),
mature (n = 108), old (n = 36)] and whole plants (n = 48) of red clover
genotypes harvested at the end of the day (ED). Horizontal bars represent
medians. Medians with no letter in common are significantly different
(Kruskal-Wallis; α = 5%).

wavelengths (PCC), and when using MLR with selected starch-
assigned wavelengths (scaled), respectively (Table 1).

Model Evaluation With an Independent
Test Set
Independent test set predictions (n = 57) using the best training
PLSR model calibrated with pre-processed spectra (n = 337;
ncomp = 7, all wavelengths) yielded a substantially lower R2 of
0.36 and larger RMSE of 29 mg g−1 DW (Figure 8). The three
training models calibrated with variable selection (VIP > 1, top
50 correlations, and MLR with normalized assigned starch bands)
resulted in inferior accuracy when applied to the test set (Table 1).

Model development using different filtering methods such as
variable importance in the projection (VIP), the top 50 starch
correlated wavelengths (PCC), multiple linear regression (MLR)
before performing partial least square regression (PLSR). Best
model performance of each filtering method determined by five
time’s repeated 10-fold-cross validation was used to estimate leaf
starch content of an independent test set.

DISCUSSION

Hyperspectral imaging on dry homogenized material is a widely
used and well established technique, but applying this method
on fresh plant material is not yet a standard analytical procedure
(Card et al., 1988; Barton, 1991). Consequently, the correlation
of hyperspectral measurements and wet lab results for starch
reported in this study were clearly lower, when compared to
NIRS measurements on dried plant material, where coefficients of
determination (R2) reached 0.99 for nitrogen and starch contend
of cotton leaves (Hattey et al., 1994). One challenge using fresh
leaf material is the water in the fresh leaves. Liquid water is
a strong absorber of the infrared radiation and predominant
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FIGURE 5 | Starch content in mg g−1 DW for the red clover genotypes of the training set harvested at the end of the day (ED; n = 226). Medians with no letter in
common are significantly different (Kruskal-Wallis, α = 5%).

FIGURE 6 | Raw (A) and Savitzky-Golay pre-processed reflectance spectra (B) of red clover samples of the training set (n = 338) harvested at the end of day (ED;
red) or end of night (EN; blue).

bands are in the regions near 1200, 1450, and 1950 nm (Fourty
and Baret, 1998), where important wavelengths were present
in this study (Supplementary Figure S5). It is therefore likely,
that water absorption masked the absorption bands of starch
molecules, impairing prediction of starch content to some extent
(Kumar et al., 2001). Not only water absorption can obscure
the starch absorption characteristics, but also the cell structure
of fresh plants scattering light as it passes through multiple air
and water boundaries. Furthermore, the distribution of starch in
fresh leaves is not uniform with respect to the organization of

cells and organelles (Kumar et al., 2001). The problems associated
with the prediction of starch content in fresh leaves might be
reduced, if spectral data is pre-processed (Wold et al., 1993).
Indeed, pre-processing of the spectra considerably improved
predictive accuracy compared to unprocessed reflectance spectra
(Supplementary Figure S2), by removing systematic variation in
spectra such as light scattering and thereby increasing the signal
to noise ratio (Kuhn and Johnson, 2013).

Total starch concentration of the plant material in the training
set was between 0.2 and 12% for plants harvested at ED and

Frontiers in Plant Science | www.frontiersin.org 6 October 2020 | Volume 11 | Article 569948

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-569948 October 10, 2020 Time: 17:26 # 7

Frey et al. Non-destructive Starch Detection in Red Clover

FIGURE 7 | PLS regression of the training set (A) and best model performance of the cross-validation on the same set (B; ncomp = 9; n = 337) Different colors and
shapes indicate the age of the leaves, m for matures leaves, o for the oldest leaf, and y for the youngest fully emerged leaf. Regression line (dashed line), 1:1 line
(solid black line) and summary statistics are shown.

ranged from 0.01 up to 5% for the plant material harvested at
EN. The starch concentrations of the training set were slightly
lower than the concentrations of the test set. The total starch
concentration was substantially lower than the ones published by
Ruckle et al. (2017), where leaf starch concentration ranged from
6 up to 35% for ED harvested plants. This difference occurred
most likely due to different growing conditions, since light and
temperature have a high impact on starch accumulation.

FIGURE 8 | Best performing model from the training set was used to predict
leaf starch content in an independent test set (n = 57).

Starch content in plant leaves typically varies in a diurnal
pattern (Holt and Hilst, 1969). Starch is an important form
of assimilated carbohydrates in forage legumes, which is
accumulated in the leaf during the day and mobilized during
the night to support growth (Stitt et al., 2007). Many studies
have shown that starch contents highly depend not only on the
diurnal cycle, but also on weather conditions, cutting time, plant
fraction, and genotypic variation (Holt and Hilst, 1969; Geiger
and Servaites, 1994; Graf et al., 2010; Claessens et al., 2016).
In our study, an over 3-fold difference in starch content was
observed between ED harvested plants and plants harvested at
EN (Figure 2).

Mean genotypic differences for the training set ranged from
31.6 to 59.7 mg g−1 DW for the ED harvested plants (Figure 5)
and from 2.2 to 37.6 mg g−1 DW for the EN harvested
plants (data not shown), respectively, showing high variation
within genotypes. The best PLSR training model explained 56%
(R2 = 0.56) of the measured starch variation with an RMSE of
17 mg g−1 DW. The ratio of performance to deviation (RPD)
followed the trend indicated by R2 values (Figures 7, 8 and
Supplementary Figure S2, S3). The cross-validated overall bias
was almost zero for the training set, while predictions on the test
set had a bias of−10.7 mg g−1 DW.

These results imply that the developed vis–NIR PLSR
model can predict differences between harvest time points
and differences between extreme genotypes (Supplementary
Figure S4). Nevertheless, 56% of starch variation explained by
our model is lower than the proportions reported by Shorten
et al. (2019). They used hyperspectral imaging systems (550–
1700 nm) to estimate more than ten different quality compounds
in perennial ryegrass (Lolium perenne L.). Low and high weight
sugars were estimated separately and best model prediction for
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TABLE 1 | Model performance using different filtering methods.

Model strategy Training set Test set Description

R2 RSME R2 RSME

VIP > 1 0.58 16.6 0.37 38.0 Filtering based on importance of the training variable in the projection (VIP)

PCC 0.53 18.5 0.37 32.0 Filtering based on the top 50 with starch correlated wavelengths

MLR 0.26 21.8 0.18 38.0 Reflectance at 556, 702, 1300, and 1960 nm divided by reflectance at 670 nm (minimum standard deviation)

Model development using different filtering methods such as variable importance in the projection (VIP), the top 50 starch correlated wavelengths (PCC), multiple
linear regression (MLR) before performing partial least square regression (PLSR). Best model performance of each filtering method determined by five time’s repeated
10-fold-cross validation was used to estimate leaf starch content of an independent test set.

the high weight sugars using PLS regression resulted in an R2

of 0.68 and a RMSE of 19.9 mg g−1. Assigning two-third of the
data to calibration and using the remaining data for validation
resulted in a slightly lower model performance [R2 = 0.63 and
RMSE of 21.6 mg g−1 (Shorten et al., 2019)]. Filtering spectral
variables by a variable importance in the projection threshold
(VIP > 1) did not considerably improve model performance
(Table 1). This is in contrast to comparable studies where
selecting important wavelengths improved model accuracy and
reduced the redundancy effects of wavelengths, which had low
weight in the model (Wold et al., 1993; Chong and Jun, 2005).
Our results indicate that restricting PLSR with a subset of
important spectral variables is not sufficient to estimate starch
with equal effectiveness compared to the full-range vis—NIR
data, confirming that many spectral features are important for
starch prediction. For example, the wavelengths near 550, 770,
850, 1440, 1920 nm, from 1650 nm to 1850 and 2160 nm had a
relatively high model contribution for estimating starch content
in the training set (VIP analysis, Supplementary Figure S5).
The red-edge region around 700 nm, where a local maximum
of the first derivative is located and which is typically indicative
for chlorophyll, had relatively low model importance. However,
adjacent wavelengths to the red-edge were moderately important.
The highest VIP in the training set was around 550 nm. This
region was shown to be the second most important region in the
vis—NIR for the spectral estimation of total carbon, nitrogen,
leaf mass per unit area, protein and nitrate from wet leaves
of 8 crop species (Ely et al., 2019). Starch absorbance in fresh
leaves was further associated with wavelengths in the regions
of 556, 702, 1300, and 1960 nm (Curran et al., 1992). These
absorptions partly corresponded with the VIP patterns across
wavelengths for the data of the present study. In addition,
performing explanatory inference for spectra-model-compound
linking is hampered by spectral overlaps due to dominant water
bands and signals of other compounds related to starch. In fact,
plant leaves contain many biochemical compounds with vis—
NIR absorption regions that overlap with starch absorptions, or
whose concentration directly or indirectly correlate to starch,
such as cellulose, water or lignin, all having signals from O-H
vibrations in the regions around 1450 and 1940 nm. Curran
et al. (2001) performed both a correlative and stepwise regression
analysis between 12 abundant structural, productive and storage
compounds, and vis—NIR first derivative spectra of ground
and dried slash pine needles. Among the components tested,
starch exhibited the lowest coefficient of determination with first

derivative spectra, and selected starch wavelengths were 1208,
1418, and 2172 nm, whereas 978 and 1208 nm were linked
to starch absorption features. Native plant starch consists of a
variable ratio of amylose and amylopectin. Amylose content in
various mixtures was accurately discriminated with vis—NIR
reflectance, showing major spectral feature differences between
1700 and 1800 nm in the pure form (Fertig et al., 2004). We
found two VIP peaks with moderate importance (around 1.2),
that might be linked to amylose and amylopectin signals. PLSR
and the variable importance analysis were thus able to explain a
significant proportion of the starch variability.

A model built from a single set of training observations is
often not adequate to predict an independent data set (Naes and
Martens, 1985; Kuhn and Johnson, 2013). If a model is tested
on the same data that was used to fit the model, performance
is often overestimated (Kuhn and Johnson, 2013). Our study
showed that the cross-validated PLSR model underestimated
high starch contents (Figure 7). The independent dataset from
the second experiment (test set) allowed us to further validate
model performance, in addition to cross-validation during
training. As expected, the test prediction resulted in a 1.7-fold
increase in RMSE (Figure 8). Moreover, models including only
a subset of wavelengths were validated on the test set, resulting
in a lower predictability (Table 1). The VIP analysis of the
two independent sets (training and test) indicated that some
important wavelengths regions occurred in both sets, but with
different VIP magnitudes (Supplementary Figures S5, S6). For
example, the absorption feature near 1450 nm was less important
for the test set model fitting, compared to the model developed
for the training set. Further, the training model had important
features between 500 and 750 nm, whereas the re-calibrated
test model had important wavelengths below 500 nm. These
differences in VIP magnitudes and the additional regions relevant
for prediction partly explain the poorer prediction performance
of the test set when applying the training model. Despite the fact
that two of the three genotypes from the test set were included
in the training set, the spectra and models had only limited
generalization capacity for starch contents.

Recalibration using only test data led to a slight decrease
in RMSE compared to test prediction, but this substantially
reduced bias. Thus, a new calibration may be needed for each
independent trial or the current red clover starch spectral library
needs to be augmented with more measurements from different
independent trials with both genotypic and phenotypic variance
in starch. Various environmental growth conditions influence
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starch accumulation and can thereby mask genotypic effects
(Holt and Hilst, 1969). Based on the our results, we suggest
follow up research that combines statistical methods to optimize
knowledge transfer from such plant spectral libraries to new trials
under substantial genotype x environment interaction. Thereby,
the focus should be to find a trade-off between accuracy and the
amount of new reference measurements needed, depending on
the breeding application context. This library could be enlarged
with data from new clover trials, so that it is continuously
augmented with more genotypic and phenotypic variance in
starch. We suggest to test methods from transfer learning
research, which exploit different mechanisms to extract and
transfer relevant information of collections of training data to
new and partly related prediction tasks or application domains
(Pan and Yang, 2010). For example, memory-based learning
that constrains models based spectral similarity (Ramirez-Lopez
et al., 2013), or data-driven search algorithms which filter
relevant observations from spectral libraries that yield good
performance on new local target samples (Lobsey et al., 2017) are
candidate approaches that may be worth testing. We conducted
all measurements under controlled conditions and leaves were
completely removed from the plants. As a next step, it is crucial
to evaluate the method under field condition.

Despite the relatively low prediction accuracy, performance of
the best PLSR training model was sufficient to detect differences
between red clover genotypes with very high or very low levels
of starch content. Therefore, once validated in the field, the
method may be valuable for in large-scale QTL studies in bi-
parental populations based on strongly contrasting parental
starch phenotypes. Furthermore, it has the potential to directly
assist phenotypic selection in the breeding of high-energy red
clover cultivars.

The success of breeding forage crops with increased energy
content was previously demonstrated by breeding perennial
ryegrass cultivars with high levels of water-soluble carbohydrates
(WSC). These WSC cultivars can substantially increase animal
performance and nitrogen use efficiency in pasture-based animal
production systems (Rasmussen et al., 2009). Red clover and
ryegrasses are often cultivated in mixtures, not only due to their
attractive diet composition, but also due to the transfer of N
between species. In addition, grass-clover mixtures require fewer
pesticide and herbicide applications, and protect soils against
erosion (Dhamala et al., 2016; McKenna et al., 2018). Therefore,
high starch red clover cultivars in mixtures with high WSC
ryegrasses appear a particularly promising option, which brings
us one-step closer toward an environmental sustainable feed
production meeting the high energy requirements of modern
livestock production.

CONCLUSION

This study is unique in developing and testing a non-destructive
method to predict leaf starch content in red clover plants. The
described method is suitable to differentiate between high and
low starch content in red clover genotypes. Unfortunately, model
performance is not sufficient to trace small changes in starch

accumulation. Therefore, the method is only partially suited to
monitor starch metabolism in detail or to investigate the effect of
environmental influences or management regimes throughout an
entire season on the same plant. We suggest follow up studies to
enlarge the current red clover starch spectral library by means
of additional measurements from different independent trials,
covering both genotypic and phenotypic variation in starch and
to validate the method under field conditions. Currently, the
level of resolution is sufficient for the method to differentiate
high variance in starch and thus, can be integrated into existing
breeding programs to get a rough estimate on starch levels of
different red clover cultivars under controlled conditions.
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