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Excess nickel (Ni) concentration in the growing medium severely hampers the plant
growth by disturbing oxidative metabolism and nutrient status. The present study was
carried out to investigate the individual and interactive effects of Ni toxicity (0.25 mM
NiSO4.6H2O) and nutrient deprivation (no-N, no-P, or no-K) on growth, oxidative
metabolism, and nutrient uptake in primed and non-primed rice seedlings. Rice seed
was primed with distilled water (hydropriming), selenium (5 mg L-1), or salicylic acid (100
mg L-1). The Ni toxicity and deprivation of N, P, or K posed negative effects on the
establishment of rice seedlings. The shoot length and fresh biomass were severely
reduced by Ni toxicity and nutrient stresses; the minimum shoot growth was recorded
for rice seedlings grown under Ni toxicity and no-N stress. The Ni toxicity reduced the root
fresh biomass but did not significantly affect the root length of N-deprived seedlings. The
rice seedlings with no-P or no-K recorded similar root fresh biomass compared with those
grown with sufficient nutrient supply. The Ni toxicity alone or in combination with nutrient
stresses triggered the production of reactive oxygen species (ROS) and caused lipid
peroxidation in rice seedlings. Among antioxidants, only glutathione reductase and vitamin
E were significantly increased by Ni toxicity under different nutrient stress treatments. The
Ni toxicity also reduced the concentrations of N particularly in shoot of rice seedlings. The
N-deprived (no-N) seedlings recorded maximum Ni concentration in shoot, while K-
deprived (no-K) seedlings showed higher Ni concentrations in root. Seed priming with
selenium or salicylic acid was effective to alleviate the detrimental effects of Ni toxicity and/
or nutrient stresses on rice seedlings. The better growth and greater stress tolerance of
primed seedlings was coordinately attributed to lower ROS production, higher membrane
stability, strong antioxidative defense system, and maintenance of mineral nutrient status.
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INTRODUCTION

Nickel (Ni) toxicity in plants is emerging as a worldwide problem
threatening the agricultural sustainability. Generally, Ni is added
into the environment by human activities like fossil fuel burning,
metal mining, smelting, vehicle emissions, wastes disposal, and
crop fertilization (Salt et al., 2000; Hussain et al., 2020a).
Extremely high Ni concentrations in soil make the cultivatable
land unfit for the cultivation of crops (Duarte et al., 2008).
Higher range of Ni in the growing medium causes various
changes in the different physiological and metabolic processes
of plants, and leads to assorted toxicity indications (Kumar et al.,
2007; Gajewska et al., 2009; Gajewska et al., 2013). Gajewska et al.
(2013) found severe reductions in shoot and root growth of
wheat under Ni stress, which were attributed restriction of cell
division and elongation (Gajewska et al., 2009). Nickel stress may
also reduce dry matter accumulation in different plant parts thus
reduces the total plant biomass (Rao and Sresty, 2000; Pandey
and Sharma, 2002; Rizwan et al., 2019).

Increasing evidences have suggested that the Ni toxicity in plants
is also associated with the oxidative stress through increase in the
production of reactive oxygen species (ROS) like hydrogen peroxide
(H2O2), hydroxyl ion (OH-), and super and nitric oxides anions
(Galan et al., 2001; Gajewska et al., 2006; Hao et al., 2006; Gajewska
and Sklodowska, 2007). These ROS may damage plant cell
membrane, proteins, DNA and lipids, and cause lipid per
oxidation (Bal and Kasprzak, 2002; Khaliq et al., 2015; Chen et al.,
2016; Hussain et al., 2020b). Rao and Sresty (2000) observed
increased production of a lipid peroxidation [malondialdehyde
content (MDA)] in Ni exposed pigeon pea plants. Maize exposure
to Ni stress significantly increased H2O2 production and
antioxidants activity in the leaves (Kumar et al., 2007). Nickel
cannot directly induce the production of ROS because it is not a
redox-active metal, but indirectly it may play vital role in activation
of antioxidant enzymes (Pandey and Sharma, 2002; Gajewska and
Sklodowska, 2005) like superoxide dismutase (SOD), peroxidase
(POD), catalase (CAT), glutathione peroxidase (GPX), and
glutathione reductase (GR) (Gajewska and Sklodowska, 2005).
Conversely, Zhao et al. (2008) and Gajewska and Sklodowska
(2007) observed that Ni stress decreased the activities of several
antioxidant enzymes and triggered the ROS accumulation and
oxidative stress.

Imbalanced nutrient uptake is also a major response of plants
in Ni toxic conditions (Pandey and Sharma, 2002; Ouzounidou
et al., 2006; Hussain et al., 2020a). Gajewska et al. (2013) found
the decrease in the concentration of nutrients in Ni exposed
wheat, as Ni toxicity restricts nutrient uptake and causes nutrient
deficiency (Chen et al., 2009) ultimately leading to disturbed
physiological and biochemical processes in plant (Gajewska
et al., 2006; Rizwan et al., 2019).

Seed priming is a method that manages the level of hydration
within seeds and regulates the metabolic events in seed required
for germination. Earlier researches have demonstrated that
germination, seedling vigor, and survival of rice seedlings were
enhanced by seed priming under normal and adverse soil and
climatic conditions (Jisha et al., 2013; Hussain et al., 2016a;
Hussain et al., 2016b; Hussain et al., 2016c; Zheng et al., 2016).
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Selenium (Se) is an important element, reported for the
detoxification of toxic heavy metals in plants (Hasanuzzaman
et al., 2010; Zembala et al., 2010), while salicylic acid (SA) is a
phenolic compound and considered as an important growth
regulator in the plants (Hayat et al., 2010). The positive effects of
both Se and SA in plants under different abiotic stresses have
been well reported (Sun et al., 2010; Hayat et al., 2010;
Hasanuzzaman et al., 2010; Cui et al., 2012; Kumar et al., 2012;
Gajewska et al., 2013). In our recent investigations, we found that
Se and SA priming enhanced the rice tolerance against different
stress factors including chilling, submergence, nutrient
deprivation, and lead toxicity (Hussain et al., 2016a; Hussain
et al., 2016b; Hussain et al., 2016c; Khan et al., 2018). However,
little work has been done on the role of seed priming in
enhancing the plant tolerance against combined Ni toxicity
and nutrient deprivation. It was hypothesized that the toxic
effects of Ni will be different with the supply of N, P, or K, and
that the behavior of primed and non-primed rice seedlings
regarding growth and oxidative metabolism will be variable
under these stress factors. The present study was carried out to
investigate the individual and interactive effects of Ni toxicity
and N, P, or K-deprivation on growth, ROS production,
antioxidant defense system, and nutrient homeostasis in
primed and non-primed rice seedlings grown in hydroponic
culture experiment.
MATERIAL AND METHODS

Growth Conditions, Treatments, and
Experimental Set Up
Inbred rice cultivar “Huanghuazhan” seedlings were cultivated in
plastic pots containing nutrient solution (pH: 6.6 ± 0.2) in a
controlled growth chamber. The conditions of the growth
chamber during the course of study were set as; temperature
(day/night): 30/25°C, light intensity: 25,000 Lx, light period: 12 h;
and humidity: 60%. Seed was treated with distilled water
(hydropriming; HP), selenium (Se: 5 mg L-1), and salicylic acid
(SA: 100 mg L-1) following standard procedure (Hussain et al.,
2015; Hussain et al., 2016a; Hussain et al., 2016b). The Ni stress
was applied through 0.25 mM NiSO4.6H2O from the start of
experiment. The nutrient treatments were divided into four
different groups as, sufficient nutrient supply (All nutrient), no-
N (N deprivation), no-P (P deprivation), and no-K (K
deprivation). The Hoagland’s nutrient solution was used
according to the recommendation of International Rice Research
Institute (Yoshida et al., 1976), with some modifications as per
treatment, as mentioned in our previous investigations (Hussain
et al., 2016b; Khan et al., 2018). All the nutrients were refreshed
after every alternate day. Plastic pots with 4 L of solution and a
floating board with four separated sections (for different priming
treatments) were used, and twenty seeds of each treatment were
separately sown on the net attached with the floating board. All the
treatments were arranged in completely randomized design
(CRD) with three replications.
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Observations
Eighteen days old rice seedlings were harvested andmorphological
growth attributes viz., shoot length, root length and their fresh
weights were recorded using at least five seedlings randomly
selected from each replicate. The maximum shoot and root
lengths of the rice seedlings were recording using measuring
tape, while digital electric balance was used for recording fresh
weight. Fresh leaf samples were stored in -80°C refrigerator for
analysis of different biochemical attributes.

The H2O2 and MDA contents (µM g-1 fresh weight) in the
leaves were determined by the procedure of Patterson et al. (1984)
and Bailly et al. (1996), respectively. Whereas, commercial O2•−
assay kit-A052, OH− assay kit-A018, XOD assay kit-A034, and
MAO assay kit-A002 were used for determination of superoxide
anion radical (O2•− as U g-1 protein) content, hydroxyl ion (OH−
as U mg-1 protein) content, xanthine oxidase (XOD as U g-1

protein) activity, and monoamine oxidase (MAO as U mg-1

protein) activity in the rice leaves, respectively.
The antioxidant activities/levels of SOD (Umg-1 protein), CAT

(Umg-1 protein), POD (Umg-1 protein), GR (U g-1 protein), GPX
(U mg-1 protein), GSH (reduced glutathione; mM g-1 protein), Vc
(vitamin C; mg mg-1 protein), and Ve (vitamin E; mg g-1 tissue fresh
weight in rice were recorded using commercial kits A001, A007-2,
A084-3, A062, A005, A006, A009, and A008, respectively
(Hussain et al., 2016a; Hussain et al., 2016b; Khan et al., 2018;
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Hussain et al., 2020b). All the kits used in the present study were
purchased from Nanjing Jiancheng Bioengineering Institute,
China (www.njjcbio.com), and were strictly used as per
manufacturer’s instructions. For determination of N, P, and K
in shoots and roots, rice dry seedlings were digested with sulfuric
acid. The N and P concentrations in the plant tissues were
recorded by a continuous-flow injection analyzer, while K
concentrations were analyzed using a flame photometer. For Ni
determination, roots and shoots were digested in HNO3:HClO4 at
5:1 (v/v), and samples were analyzed using ICP-MS (Inductively
coupled plasma mass spectrometry) technique.

Statistical Analysis
The replicated data were analyzed using analysis of variance
(ANOVA) through Statistix 8.1 software. The treatment means
were compared according to Tukey’s HSD (P ≤ 0.05) test.
RESULTS

Seedling Growth
Data regarding rice seedling growth as affected by Ni toxicity,
seed priming and different nutrient stress treatments are shown
in Figure 1. Compared with sufficient nutrient supply, shoot
length, and shoot fresh weight were significantly (p < 0.05)
A B

DC

FIGURE 1 | Shoot length (A), root length (B), shoot fresh weight (C), and root fresh weight (D) of primed and non-primed rice seedlings as influenced by different
nutrient stress treatments and Ni toxicity. Vertical bars above mean indicate standard error of three replicates. Small alphabetical letters (a, b, c…) above mean bars
show the differences among treatments within a specific nutrient stress treatment, while the capital alphabetical letter (A, B, C…) show the difference among nutrient
stress treatments. NP+Cn, no priming and no Ni toxicity; NP+Ni, no priming with Ni toxicity; HP+Ni, hydropriming and Ni toxicity; Se+Ni, selenium priming and Ni
toxicity; SA+Ni, salicylic acid priming and Ni toxicity; No-N, no nitrogen; No-P, no phosphorus; No-K, no potassium.
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reduced in no-N, no-P, and no-K treatments; the minimum
shoot growth was noted in no-N treatment. Root length was
considerably increased in no-P or no-N treatments, but no-K did
not significantly (p > 0.05) affect the root length. Rice seedlings
with no-N recorded significantly (p < 0.05) higher root fresh
weight compared with all other nutrient stress treatments.
Exposure of Ni toxicity in non-primed seedlings (NP + Ni)
recorded significantly (p < 0.05) lower shoot length and shoot
fresh weight, compared with NP+Cn under all the nutrient stress
treatments. The Ni induced reductions in shoot growth were
more apparent in no-N treatment. The Ni toxicity did not
significantly (p > 0.05) affect the root length of rice in no-N or
no-P treatments, but root length was significantly (p < 0.05)
reduced by Ni toxicity in rice seedlings with sufficient nutrient
supply. Root fresh weight was significantly (p < 0.05) reduced by
Ni toxicity in all nutrient stress treatments. Seed priming was
found to alleviate the detrimental effects of Ni toxicity
particularly on shoot growth, therefore, Se+Ni, and SA+Ni
treatments recorded significantly (p < 0.05) higher shoot
length and shoot fresh weight under no-N, no-P, and no-K
treatments, compared with NP+Ni. Seed priming didn’t
significantly (p > 0.05) affect the root length; however,
root fresh weight of rice in Se+Ni and SA+Ni under no-N, and
Se+Ni under no-K was significantly (p < 0.05) higher with
respect to NP+Ni (Figure 1).
Frontiers in Plant Science | www.frontiersin.org 4
Accumulation of ROS and Lipid
Peroxidation Rate
Pronounced variations in the accumulation of ROS and lipid
peroxidation rate in non-primed and primed rice seedlings were
recorded under the influence of Ni toxicity and different nutrient
stress treatments (Figure 2). The rate of lipid peroxidation (MDA
contents) and the accumulation of O2•−, OH–, and H2O2 were
significantly (p < 0.05) increased under no-N, no-P, and no-K
treatments compared with sufficient nutrient supply (Figure 2).
Nickel toxicity also significantly (p < 0.05) enhanced the
accumulation of ROS and MDA contents in rice leaves
regardless of the nutrient stress treatment. Seed priming
was effective in decreasing ROS accumulation as well as lipid
peroxidation in rice leaves under Ni toxicity and different nutrient
stress treatments (Figure 2). Therefore, the accumulations
of ROS and MDA were significantly (p < 0.05) lower in HP+Ni,
Se+Ni, SA+Ni compared with NP+Ni under all nutrient stress
treatments (Figure 2).
Activities of Xanthine Oxidase and
Monoamine Oxidase
The activities of XOD and MAO in leaves of non-primed and
primed rice seedlings significantly (p < 0.05) varied in response to
Ni toxicity and nutrient stresses (Figure 3). Compared with
A B

DC

FIGURE 2 | The accumulation of reactive oxygen species and lipid peroxidation rate in the leaves of primed and non-primed rice seedlings as influenced by different nutrient
stress treatments and Ni toxicity. (A) Malondialdehyde (MDA) content, (B) hydrogen peroxide (H2O2) content, (C) superoxide anion radical (O2

•−) content, (D) hydroxyl ion
(OH−) content. Details on statistical analysis and treatments are given in Figure 1. “The 1 U of OH- was the amount required to reduce 1 M of H2O2 in the reaction mixture per
minute at 37°C”, while “1 U of O−

2 was equivalent of the value required to inhibit superoxide anion by 1 mg of Vc for 40 min at 37°C”.
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sufficient nutrient supply, MAO activities were significantly (p <
0.05) enhanced in no-N and no-P treatments, while XOD
activities were increased significantly (p < 0.05) under the
deprivation of N, P, or K (Figure 3). Among different nutrient
stress treatments, the highest MAO and XOD activities were
observed in rice seedlings grown in no-N. Effects of Ni toxicity
were apparent in enhancing the MAO and XOD activities; NP+Ni
recorded significantly higher activities of both these enzymes
compared with NP+Cn under different nutrient stress
treatments (Figure 3). The Ni-induced increases in MAO and
XOD activities were more in no-P or no-N treatments. The
activities of XOD and MAO in rice seedling were significantly
(p < 0.05) decreased by seed priming. Compared to NP+Ni, all
seed priming treatments significantly decreased the MAO and
XOD activities in leaves under different nutrient stress treatments;
however, Se+Ni and SA+Ni treatments were statistically (p > 0.05)
similar, and were more effective than HP+Ni (Figure 3).

Enzymatic Antioxidants
Data on the activities of enzymatic antioxidants in non-primed
and primed rice seedlings in response to Ni toxicity and nutrient
stresses are presented in Figure 4. Compared with sufficient
nutrient supply, SOD activities remained unaffected in no-N, but
significantly (p < 0.05) decreased in no-P or no-K treatments.
The activities of CAT were significantly (p < 0.05) higher in no-P,
but remained unchanged in no-N or no-K, compared with
sufficient nutrient supply. The GPX and POD activities were
significantly (p < 0.05) decreased in no-K, but remained
unchanged in no-N with respect to sufficient nutrient supply.
The activities of GR were significantly (p < 0.05) decreased in no-
N or no-P treatments. The Ni toxicity considerably affected
the activities of enzymatic antioxidants, however, such effect
varied with enzyme and nutrient stress. The SOD activity
was unaffected, while GR activity was significantly (p < 0.05)
increased in NP+Ni than NP+Cn, under all nutrient stress
treatments. The CAT activity was significantly (p < 0.05)
Frontiers in Plant Science | www.frontiersin.org 5
higher in NP+Ni under no-K or sufficient nutrient supply,
while remained statistically similar (p > 0.05) to NP+Cn under
no-N or no-P. Conversely, the NP+Ni significantly (p < 0.05)
decreased the activity of POD under no-N or no-P, but it did not
affect POD under no-K or sufficient nutrient supply compared to
NP+Cn. The GPX activity was increased in NP+Ni under no-P,
decreased under no-K, while did not change under no-N or
sufficient nutrient supply, compared to NP+Cn (Figure 4). Seed
priming (Se+Ni and SA+Ni) significantly (p < 0.05) increased the
CAT and GR activities under different nutrient stress, compared
with NP+Ni. The SOD, POD, and GPX activities were also
significantly (p < 0.05) higher in both Se+Ni and SA+Ni
treatments under no-N or no-P, compared with NP+Ni. Under
no-K, Se+Ni recorded higher activities of GPX and POD
compared with NP+Ni (Figure 4).

Non-Enzymatic Antioxidants
Compared with sufficient nutrient supply, the GSH, Vc, and Ve
contents in rice seedlings were significantly (p < 0.05) reduced in
no-N (Figure 5). The no-P didn’t significantly (p > 0.05) affect
GSH and Ve, but significantly (p < 0.05) declined the Vc
concentration in rice leaves. The no-K significantly (p < 0.05)
decreased the GSH content, but did not affect (p > 0.05) Vc and
Ve content compared with sufficient nutrient supply (Figure 5).
The Ni toxicity did not significantly (p > 0.05) alter the levels of
GSH and Vc in all the nutrient stress treatments expect for GSH
content in no-N. The Ve content was significantly (p < 0.05)
increased by Ni stress (NP+Ni) under the deprivation of N, P, or
K. Seed priming enhanced or at least maintained the levels of
non-enzymatic antioxidants in the leaves of rice seedlings. All the
seed priming treatments significantly (p < 0.05) enhanced
the GSH content in no-P treatment, and Ve content in no-N
and no-K treatments. Seed priming also significantly (p < 0.05)
increased the Vc under sufficient nutrient supply, but
did not change it under no-P, compared to NP+Ni.
Significantly higher Vc contents in HP+Ni and Se+Ni under
A B

FIGURE 3 | Activities of monoamine oxidase (MAO) (A) and xanthine oxidase (XOD) (B) in the leaves of primed and non-primed rice seedlings as influenced by
different nutrient stress treatments and Ni toxicity. Details on statistical analysis and treatments are given in Figure 1. “For MAO, 1 U was defined as the amount of
enzyme that increased the absorbance by 0.01 at 37°C in 1 hour; while “for XOD, it was defined as 1 g of protein required to transform 1 mM of hypoxanthine to
xanthine in 1 min at 37°C”.
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no-N, and in SA+Ni under no-K were also observed compared
with NP+Ni (Figure 5).

Macro-Nutrient Concentrations in Root
and Shoot Tissues
The N concentrations in root and shoot of rice were significantly
(p < 0.05) declined in no-N, but increased in no-K, compared
with sufficient nutrient supply (Figure 6). The P-deprivation did
not significantly (p > 0.05) affect the shoot N concentrations, but
significantly (p < 0.05) increased the root N concentrations
compared with sufficient nutrient supply. The P concentrations
of both shoot and root in rice seedling were significantly (p <
0.05) decreased in no-P and no-K treatments, the shoot P
concentrations were also significantly (p < 0.05) decreased in
no-N with respect to sufficient nutrient supply. The shoot K
concentration was significantly (p < 0.05) increased in no-N, but
Frontiers in Plant Science | www.frontiersin.org 6
it was reduced in no-P or no-K treatments. The root K
concentration was increased in no-N or no-P treatment, but
significantly reduced in no-K compared with sufficient nutrient
supply (Figure 6). The Ni toxicity significantly reduced both root
and shoot N concentrations under all nutrient stress treatments,
except for shoot N concentration in no-K treatment, compared
with NP+Cn. The shoot and root P concentrations were
significantly reduced by Ni toxicity in no-K and sufficient
nutrients treatment. The Ni toxicity (NP+Ni) significantly
decreased the shoot K concentrations in no-N or no-P
treatments, while significantly increased root K concentrations
in no-P or no-K treatments, compared with NP+Cn (Figure 6).
Seed priming had positive effect on the uptake of primary macro-
nutrients under different stress treatments. Compared with NP
+Ni, seed priming treatments (NP+Ni, Se+Ni, SA+Ni) recorded
statistically similar or higher concentration of N, P, and K in root
A B

D

E

C

FIGURE 4 | Activities of various enzymatic antioxidants in the leaves of primed and non-primed rice seedlings as influenced by different nutrient stress treatments
and Ni toxicity. (A) Superoxide dismutase (SOD), (B) catalase (CAT), (C) glutathione peroxidase (GPX), (D) peroxidase (POD), and (E) glutathione reductase (GR).
Details on statistical analysis and treatments are given in Figure 1. One unit for different antioxidant enzymes was defined as follows; “I U of SOD activity was the
amount of enzyme required to decrease the reference rate to 50% of maximum inhibition; 1 U of POD activity was defined as the amount of enzyme necessary for
the decomposition of 1 mg substrate in 1 min at 37°C; 1 U of CAT activity was defined as the amount of enzyme required to decompose the 1 mM H2O2 in 1 second
at 37°C; I U of GPX activity was the amount of enzyme required to oxidize 1 mM GSH in 1 minute at 37°C; 1 U of GR activity was defined as the amount of enzyme
depleting 1 mM NADPH in 1 min”.
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and shoot tissues of rice, under different nutrient stress
treatments (Figure 6).

Nickel (Ni) Concentrations in Root and
Shoot Tissues
Among different nutrient stress treatments, the Ni shoot
concentrations were maximum in no-N treatment followed by
no-P, while Ni root concentrations were maximum in rice
seedlings with sufficient nutrient supply (Figure 7). The Ni
concentration of shoot and root were significantly increased
with application of Ni under all nutrient stress treatments.
Seed priming (Se+Ni and SA+Ni) were effective to significantly
decrease shoot Ni concentrations compared to NP+Ni under
all nutrient stress treatments except no-P. The root Ni
concentrations remained statistically similar in both primed
and unprimed seedlings; only SA+Ni and HP+Ni recorded
significantly lower root Ni concentrations in no-P and no-K
treatments, respectively compared to NP+Ni (Figure 7).
DISCUSSION

Under natural conditions, multiple abiotic stresses often occur at
a same time, and alter the growth of plants (Walter et al., 2012;
Hussain et al., 2016b), however, the responses of plants to
individual and combined stresses might be variable at
physiological, biochemical, and molecular levels (Hussain et al.,
2016b; Hussain et al., 2020b). The present study investigated the
Frontiers in Plant Science | www.frontiersin.org 7
effects of different seed priming treatments on the growth,
oxidative metabolism, and nutrient uptake in rice seedlings
under individual and combined exposure of Ni toxicity and N,
P, or K deprivation.

Ni Toxicity as Well N, P, or K Deprivation
Triggered the Oxidative Damage in Rice
Seedlings
The Ni toxicity as well as different nutrient stresses disrupted the
oxidative metabolism in rice seedlings, and thus enhanced the
production of ROS in rice leaves (Figure 3). The higher
production of ROS also triggered the accumulation of MDA
content and oxidative damage in rice leaves (Figure 3A) and
ultimately reduced the growth. Although, the interactive
influence of Ni and nutrient deprivation on oxidative
metabolism in plants is rarely known previously, nevertheless,
several studies have documented that individual application of
Ni toxicity or N, P, K deficiency caused severe oxidative damage
in various plants. For instance, Shin et al. (2005) documented
that N, P, or K deprivation increased the accumulation of ROS in
arabidopsis roots. Gajewska et al. (2006) reported that Ni toxicity
in plants caused oxidative stress in wheat. In pigeon pea, Ni
toxicity from 0.5 to 1.5 mM promoted the accumulation of O2•−,
OH–, H2O2 and MDA content in both shoot and root (Rao and
Sresty, 2000). Many enzymatic sources like XOD, MAO, and
NADPH oxidase have also been reported to control the
production of ROS under stress (Hussain et al., 2016b), in
addition to non-enzymatic sources of ROS production
(limitation of CO2 fixation, photorespiration etc.). Hao et al.
A B

C

FIGURE 5 | The levels of various non-enzymatic antioxidants in the leaves of primed and non- primed rice seedlings as influenced by different nutrient stress
treatments and Ni toxicity. (A) Reduced glutathione (GSH), (B) vitamin C (Vc), (C) vitamin E (Ve). Details on statistical analysis and treatments are given in Figure 1.
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A B

D

E F

C

FIGURE 6 | Shoot and root concentrations of nitrogen (A, B), phosphorus (C, D), and potassium (E, F) in primed and non-primed rice seedlings as influenced by
different nutrient stress treatments and Ni toxicity. Details on statistical analysis and treatments are given in Figure 1.
A B

FIGURE 7 | Shoot (A) and root (B) concentrations of nickel in primed and non-primed rice seedlings as influenced by different nutrient stress treatments and Ni
toxicity. Details on statistical analysis and treatments are given in Figure 1.
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(2006) described that the Ni stress regulated the NADPH oxidase
activity, which induced ROS production in the roots of 5-day-old
wheat seedlings. In the present study, the activities of XOD and
MAO in rice leaves were enhanced under Ni toxicity and
different nutrient stresses, and activities of both these enzymes
were concomitant with ROS accumulation (Figures 2 and 3),
which indicated that XOD and MAO also contributed in the
production of ROS under stress conditions. Plants overcome the
excessive production of ROS through coordinated action of
different enzymatic (such as SOD, CAT, POD, GPX, GR, and
GST) and non-enzymatic antioxidant (such as GSH, Vc, and Ve)
(Gill and Tuteja, 2010; Hasanuzzaman and Fujita, 2011; Chen
et al., 2016; Hussain et al., 2016a; Hussain et al., 2016b; Hussain
et al., 2020b). In the present study, the responses of different
antioxidants varied with the enzyme and stress conditions. For
instance, compared with NP+Cn, the SOD activity in NP+Ni was
generally unaffected, the CAT activity was triggered under no-K,
while the POD activity in NP+Ni was decreased under no-N or
no-P. The lower activities of CAT and POD enzymes in NP+Ni
under P or N-deprivation were well linked with higher
oxidative damage in these treatments (Figures 2 and 4).
Previously, differential responses of these antioxidant enzymes
were observed under Ni toxicity by different researchers. For
example, Gajewska and Sklodowska (2007) found that SOD and
CAT activities were markedly reduced in wheat in response to 100
µM Ni treatment. Likewise, Pandey and Sharma (2002) reported
that exposure of cabbage to 0.5 mM Ni for 8 days reduced the
CAT and POD activities. Papadopoulos et al. (2007) found that
exposure of Hydrocharis dubia to 0.5, 1, 2, 3, 4 mM Ni for 3 days
caused reductions in the activities of SOD, POD, and CAT in
leaves. In disparity, Rao and Sresty (2000) stated that activities of
SOD and POD were increased at 0.5 mM Ni concentration while
CAT activity was declined in 6-day-old pigeon pea seedlings. In
the present study, GR activity was considerably enhanced by Ni
toxicity under different nutrient stress treatments, suggesting that
this enzyme was more responsive to Ni stress. Similar results
regarding GR activity were also found by Rao and Sresty (2000) in
pigeon pea.

Along with enzymatic antioxidants, the significant role of
GSH, Vc, and Ve in the tolerance of plants to abiotic stresses has
been well proven (Foyer and Noctor, 2005; Gill and Tuteja, 2010;
Hussain et al., 2016a; Hussain et al., 2016b; Hussain et al.,
2020b). In this study, variable response of Ve, GSH and Vc in
rice leaves were detected under Ni toxicity and nutrient
deprivation (Figure 5). Among different nutrient stresses, the
accumulations of all these non-enzymatic antioxidants were
significantly decreased in no-N treatments, indicating that N
availability is critical for synthesis and accumulation of these
molecules. Exposure of Ni stress generally triggered the Ve
content, but did not alter the Vc and GSH content under all
the nutrient treatments except GSH under N-deprivation
(Figure 5). Although GR was considerably increased by
Ni toxicity, minimal effect of Ni on GSH content suggests
that biosynthesis of GSH might have been limited by Ni stress.
Several researchers have observed that the Ni toxicity decreased
the Vc and GSH concentrations, which may cause higher
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oxidative stress in plants (Kukkola et al., 2000; Rao and
Sresty, 2000).

Seed Priming Triggered the Antioxidant
Defense System and Alleviated the Stress-
Evoked Adversities in Rice Seedlings
Seed priming significantly decreased the accumulation of ROS
and rate of lipid peroxidation (Figure 2), which indicated that
oxidative stress and seedling damage, induced by Ni toxicity and/
or nutrient deprivation, were effectively assuaged by seed
priming. Various researches on different abiotic stresses
have reported the similar priming-induced effects on ROS
accumulation and MDA content (Jisha et al., 2013; Hussain
et al., 2016a; Hussain et al., 2016b; Zheng et al., 2016; Hussain
et al., 2018; Hussain et al., 2020b). The activities of ROS
producing enzymes such as, XOD and MAO were also
restricted by seed priming (Figure 3). The SA and Se priming
recorded higher activities/levels of SOD, CAT, POD, GR, GSH,
Vc, and Ve under Ni toxicity and nutrient deprived conditions
over no priming (Figures 4 and 5). The significantly higher
activities/contents of these antioxidants in primed rice seedlings
were associated with the lower buildup of ROS in rice leaves. All
the antioxidants triggered by seed priming were effective in
controlling the ROS, which are very important for inducing
tolerance to abiotic stresses (Gill and Tuteja, 2010; Miller et al.,
2010). Previously, many studies revealed that seed priming
enhanced antioxidant levels in seed which help to cope with
stress induced adversities after germination (Bailly et al., 2008;
Khaliq et al., 2015; Hussain et al., 2016a; Hussain et al., 2016b).

Ni Toxicity Disrupted the Mineral Nutrient
Status of Non-Primed Rice Seedlings
Under Different Nutrient Stress
Treatments
The Ni toxicity is well known to inhibit the nutrient (such as N, P,
and K) uptake in plants (Pandey and Sharma, 2002; Ouzounidou
et al., 2006). In the present study, Ni toxicity caused macro-
nutrients deficiency in rice seedlings; however, the effects varied
with plant parts and nutrient stress treatments (Figure 6). The Ni
induced reductions in N, P, and K concentrations were more for
shoot compared with root particularly under no-N, indicating
that Ni stress mainly limited the translocation of these elements.
These findings are in agreement to Brune and Deitz (1995) who
also observed that Ni toxicity caused P and K deficiency in leaves
and roots. Athar and Ahmad (2002) reported that Ni toxicity
reduced root and shoots N content in mungbean and chickpea
plants, and P content in Helianthus annus and Hyptis suaveolens,
and these effects were attributed to increased activity of acid
phosphatase and ATPase under Ni toxicity (Pillay et al., 1996).
Heavy metals including Ni alter the functions and structure of
membrane (Gajewska et al., 2006), which decrease the nutrient
uptake and translocation to root and shoot. Seed priming was
found to improve the uptake of N, P, and K under Ni toxicity. The
growth of primed rice seedlings was significantly higher than
non-primed rice seedlings (Figure 1), while the nutrient
September 2020 | Volume 11 | Article 565647
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concentrations were generally similar or higher in primed rice
seedlings (Figure 6). When considering the overall nutrient
content per seedlings, primed rice seedlings were able to
accumulate higher quantity of nutrients in its plant parts.
Previously, several researchers (Gunes et al., 2007; Shah et al.,
2012; Shah et al., 2013; Ahmad et al., 2015; Khan et al., 2018) have
concluded that seed priming improved uptake and translocation
of mineral nutrients in plants. Ahmad et al. (2015) noted
improved root and shoot concentrations of N, P, and K by seed
priming with ascorbic acid and hydrogen peroxide, and attributed
it to vigorous and well developed root system.

Ni Accumulation in Rice Seedlings Varied
With Nutrient Stress Treatment and Seed
Priming
Exposure of Ni toxicity triggered its concentrations in both plant
parts of rice seedlings, nevertheless, the Ni concentrations varied
greatly with N, P, or K deprivation and seed priming (Figure 7).
Differences were also apparent between plant parts, as more Ni
was accumulated in the root, which is the common tolerance
mechanism of different plant species including rice to heavy
metals. Interestingly, the shoot Ni concentrations were higher in
no-N or no-P treatments, while root Ni concentrations were
higher in treatments with no-K or sufficient nutrient supply. It
might be suspected that the better seedling performance and
higher tolerance in treatments with no-K or sufficient nutrient
supply might also be due to the lower Ni translocation. In the
present study, the total shoot and root Ni concentrations were
recorded, therefore, it is not known whether N, P, or K- deprivation
altered the Ni distribution between vacuolar compartments and the
other parts of the cell. In the future studies, determining the effect of
nutrient deprivation/deficiency on Ni concentration in different
cellular compartments will provide a better understanding. The
seed priming treatments generally recorded similar root
concentrations, but lower shoot concentrations than non-primed
treatment. Overall, the lower Ni accumulations in primed rice
seedlings were reflected in the maintenance of growth
characteristics and nutrient’s status on the level close to the
control (Figures 1, 6, and 7). The seed priming with Se and SA
was found to be more effective against Ni toxicity than
hydropriming. By now, a number of evidences have revealed the
effectiveness of Se (Hasanuzzaman et al., 2010; Sun et al., 2010;
Frontiers in Plant Science | www.frontiersin.org 10
Zembala et al., 2010; Kumar et al., 2012; Gajewska et al., 2013) and
SA (Hayat et al., 2010; Cui et al., 2012) for controlling heavy metal
stress in different plants.
CONCLUSIONS

Conclusively, Ni toxicity and deprivation of N, P, or K enhanced
the production of ROS and caused lipid peroxidation thus,
restricted the rice growth and mineral nutrient uptake. The
negative effects of Ni toxicity were more with the interaction of
N- or P- deprivation. However, seed priming of rice counteracted
the Ni induced stress adversities in rice seedlings. The better
growth and greater stress tolerance of primed rice seedlings was
coordinately attributed to lower ROS production and
accumulation, higher membrane stability, strong antioxidative
defense system, and maintenance of mineral nutrient status.
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