
Frontiers in Plant Science | www.frontiersin

Edited by:
Montserrat Arista,

Sevilla University, Spain

Reviewed by:
Klaus Lunau,

Heinrich Heine University of
Düsseldorf, Germany

Sarah Gerten,
Heinrich Heine University Düsseldorf,

Germany

*Correspondence:
Gabriel Coimbra

g.coimbra.rocha@gmail.com

Specialty section:
This article was submitted to

Plant Development and EvoDevo,
a section of the journal

Frontiers in Plant Science

Received: 03 May 2020
Accepted: 02 September 2020
Published: 24 September 2020

Citation:
Coimbra G, Araujo C, Bergamo PJ,
Freitas L and Rodrı́guez-Gironés MA
(2020) Flower Conspicuousness to
Bees Across Pollination Systems: A

Generalized Test of the Bee-
Avoidance Hypothesis.

Front. Plant Sci. 11:558684.
doi: 10.3389/fpls.2020.558684

ORIGINAL RESEARCH
published: 24 September 2020
doi: 10.3389/fpls.2020.558684
Flower Conspicuousness to Bees
Across Pollination Systems: A
Generalized Test of the Bee-
Avoidance Hypothesis
Gabriel Coimbra1*, Carina Araujo1, Pedro J. Bergamo1, Leandro Freitas1 and
Miguel A. Rodrı́guez-Gironés2

1 Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil, 2 Estación Experimental de Zonas Áridas, Almerı́a, Spain

Flower signals of bee- and bird-pollinated plants have converged via pollinator-mediated
evolution, driven by the visual system of their respective pollinators. For bird flowers,
sensory exclusion of less effective bees is also important and such exclusion is also
mediated by floral morphological filters. Likewise, other systems based on pollination by
red-sensitive insects are also associated with red flowers displaying lower short-
wavelength secondary peaks of reflectance, which decreases detectability to animals
that are less sensitive to red, such as bees. These flowers often also present long tubes.
Here, we tested a generalization of the bee-avoidance hypothesis in order to assess if it
holds only for bird flowers or for other non-bee pollination systems as well. For this, we
compared flower contrasts and spectral purity in bee visual systems as proxies for
conspicuousness among four kinds of pollination systems: bee-visited flowers, insect-
visited flowers (including bees and other insects), non-bee insect flowers (flowers visited
by red-sensitive insects such as flies, butterflies and beetles, but not bees), and bird-
visited flowers. We also assessed the association between conspicuousness to bees and
flower depth, used as a proxy for morphological exclusion of bees. Overall, flower
conspicuousness to bees differed only between insect (all three groups) and bird
flowers, due to lower visual signals for the latter. This suggests that bee sensory
exclusion via color signals is exclusive to bird flowers, while non-bee insect flowers
might use other sensory channels to exclude bees, such as olfactory signals. Visual bee
avoidance might be a mechanism exclusive to plants pollinated by specific guilds of red-
sensitive insects not well represented in our sample. We also found a negative association
between flower conspicuousness to bees and flower depth, suggesting an interplay of
morphological and spectral traits in discouraging bee visits. Our results support the bee-
avoidance hypothesis exclusively for bird flowers and an overall association between
lower visual signals to bees and long tubes.

Keywords: pollination, bee avoidance, flower color, plant-animal communication, antagonism, flower depth,
contrast, purity
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INTRODUCTION

Pollinator-mediated evolution of flower traits has been shown to be
a major factor shaping angiosperm diversity [e.g., Schemske and
Bradshaw (1999); Schiestl and Johnson (2013)]. Each pollinator
group (e.g., bees, flies, and butterflies) responds to signals according
to its, innate or not, preferences and sensorial skills, driving
convergent flower evolution (Schiestl and Johnson, 2013). Floral
color signals are expected to converge when sharing a specific guild
of pollinators, such as UV-reflection gradients in bee flowers
(Papiorek et al., 2016) and red reflection in bird flowers (Burd
et al., 2014). Moreover, floral colors have often evolved in multiple-
receiver contexts (Renoult et al., 2014). Nevertheless, consideration
of the distinct pressures driven by multiple receivers, including less
effective floral visitors, has been overlooked. Therefore, the
contribution of pollinator preferences driving floral signal
evolution may be overestimated in relation to selective pressures
exerted by other visitors. Broad-scale comparisons of floral color
considering less effective floral visitors may reveal unnoticed
signaling patterns, with implications to the understanding of
flower trait evolution.

Most bee flowers present inflection points (parts of rapidly
changing reflectance that are optimally detected by visual
systems in general) at regions of the spectrum of maximum
discrimination for Hymenopteran vision [Chittka (1992); Dyer
et al. (2012)], indicating a loose signal-receptor match that
enhances detectability by bees. The same match has been
found for bird-flower signals and bird vision (Shrestha et al.,
2013). In the case of plants pollinated by hummingbirds, bee
vision seems to have played a critical role as well, likely due to
negative consequences of bee visitors in bird flowers (Bergamo
et al., 2019). Bee pollination is known to precede vertebrate
pollination in evolutionary history (Rosas-Guerrero et al., 2014),
and bee-bird pollinator shifts may have occurred because of the
differential associations these vectors have with pollen: while bees
use it as a resource to feed their larvae, birds mostly ignore it
(Thomson and Wilson, 2008). Moreover, vertebrate pollinators
like birds require more energy and have the potential to transfer
pollen at longer distances than bees (Ashworth et al., 2015)
presumably because of their increased mobility, size and energy
requirements (Rosas-Guerrero et al., 2014). Thus, selective
pressures on bird flowers to deter bees from using pollen and
depleting the costly, copious nectar required by this new type of
pollen vector are expected (Thomson and Wilson, 2008).

The negative effects of bees on bird flowers lays the foundation
for the bee-avoidance hypothesis (Raven, 1972), which attempts to
explain an apparently unreasonable number of red bird flowers.
Reddish colors are less detectable by bees, since these insects exhibit
low red-wavelength sensitivity (Lunau et al., 2011). As a result, birds
would visit more frequently red flowers in order to avoid
competition with bees (Rodrıǵuez-Gironés and Santamarıá, 2004),
the most abundant anthophilous animals (Michener, 2000). Bird
flowers, in their turn, were selected to display colors less
discriminable by bees, like red, imposing enough additional
foraging costs for discouraging bee visits [Raven (1972); Lunau
et al. (2011)], even though bees are not completely blind to red light
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(Chittka and Waser, 1997). In this case, pollinator preference is
unlikely because birds visit flowers of other colors (Papiorek et al.,
2016) and present no innate preference for red (Lunau et al., 2011).
Bird flowers also lack known olfactory signals and present long
tubes that may act as filters against bees since foraging costs for
these insects increase with flower depth (Harder and Cruzan, 1990).
However, it is unclear if flower depth is negatively associated with
conspicuousness to bees across the angiosperms. All these traits
seem to work synergistically, creating not just filters but a private
channel of communication between birds and bee-avoiding,
odorless, long-wavelength-reflecting and long-tubed bird flowers
[Castellanos et al. (2004); Willmer (2011); Gegear et al. (2017)]. The
bee-avoidance hypothesis for bird-pollinated plants has been
hitherto supported by case studies [e.g., Bergamo et al. (2016);
Gegear et al. (2017)] and broader comparisons between bee and bird
flowers [e.g., Lunau et al. (2011); Camargo et al. (2019)].

Bees are the most diverse and abundant group offloral visitors
in most ecosystems (Michener, 2000). Therefore, bees could have
influenced the evolution of any animal-pollinated system. Little
is known about pollinator shifts between insect groups, like bee-
fly shifts, or how non-bee insect systems have evolved in the
presence of bees. In other words, it is uncertain if visual bee-
avoidance mechanisms have evolved in other non-bee systems.
For Australian orchids, flower color was found to differ between
bee- and fly-pollinated species, the latter having most of their
inflection points beyond 500 nm (Shrestha et al., 2019), as found
for bee-avoiding bird flowers (Lunau et al., 2011), which is
roughly the limit of bee chromatic vision. The same difference
was found between flowers of a community with a dipteran-
exclusive pollinator fauna in Macquarie Island and their inland
bee-pollinated relatives (Shrestha et al., 2016). In both cases, fly
flowers seem to be more constrained in bee visual color space and
less spectrally diverse than bee-flower color, which seems to be a
general feature of these flowers Willmer (2011). Nevertheless, if
non-bee insect flowers are less conspicuous to bee vision remains
to be tested. Furthermore, red flowers are sometimes associated
with other insect pollination systems such as butterfly- [e.g.,
Johnson and Bond (1994); Willmer (2011)] and beetle-
pollinated species (Dafni et al., 1990). These differ from bees in
their visual systems presenting a higher red sensitivity, which was
demonstrated for some species [e.g., flies: Lunau (2014); beetles,
butterflies: Briscoe and Chittka (2001)].

Red flowers pollinated by insects with red receptors have been
shown to present lower reflectance intensity of secondary peaks
at shorter wavelengths (Chen et al., 2020), which might result in
lower contrasts to animals lacking red receptors like bees. Thus,
we hypothesize that bee vision might be a factor acting on flower
color selection in non-bee insect-pollinated systems, resulting in
lower contrasts that might act synergistically with long tubes also
found for butterfly- Willmer (2011) and some fly-pollinated
(Goldblatt and Manning, 2000) species.

We tested a generalization of the bee-avoidance hypothesis in
a broad-scale set of species, using plants spread on the phylogeny
of angiosperms, which have evolved in diverse geographical and
ecological backgrounds. Using flower reflectance data, we
computed three metrics for conspicuousness in the bee visual
September 2020 | Volume 11 | Article 558684
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systems. We then compared the conspicuousness of species
visited by bees to those of species visited by other groups to
test whether all non-bee-pollinated systems have evolved bee-
avoidance mechanisms. We expected lower conspicuousness for
species visited by other groups in comparison to species visited
by bees (i.e., a general bee-avoidance pattern). We also looked for
an association between flower depth and conspicuousness
regardless of pollination system, to test if long tubes and low
conspicuousness to bees are key traits that act synergistically in
long-tubed flowers.
MATERIAL AND METHODS

Species Sample and Study Area
Data for 233 out of the total 389 species (see Table S1 for the
complete species list and Table S2 for data sources) in our sample
were downloaded from the Floral Reflectance Database [hereafter
“FReD”, Arnold et al. (2008); accessed in August 2019]. We
included all species for which reflectance, flower depth and flower
visitors’ identity were available. Additionally for these species, leaf
reflectance was also downloaded when available. The remaining 156
species were sampled at the Botanical Garden of Rio de Janeiro,
Brazil (hereafter “JBRJ”). Flowers were sampled from February 2017
to August 2019 at the arboretum, a live collection house to roughly
nine-thousand species in its 54 ha (http://rb.jbrj.gov.br/arboreto/
arboretoleaflet.php). For all animal-pollinated species in bloom, at
least three samples of the most dominant attractive structure in the
display of a given species (see Spectral Reflectance) and three leaves
were collected according to availability. Following literature research
on visitors’ data for each plant species sampled at JBRJ, two final
datasets were created. The first one, used for comparisons between
pollination systems, comprised 285 species (233 from FReD and 52
from JBRJ). This group of species had available information on
flower visitors which fell in the pollination system categories
established, thus we excluded species visited by underrepresented
groups (see Pollination Systems).We also excluded species for which
we found evidence of sexual deceit and sapromyophily, since these
flower colors evolved in different contexts from those where bee-
avoidancemechanisms would be expected. The second dataset, used
for assessing the association between bee contrast and flower depth,
included all species but those with dish-shaped flowers (see Flower
DepthMeasurements), totaling 286 species (135 from FReD and 151
from JBRJ).

Spectral Reflectance
Reflectance measurements of each structure (five on average) of
species sampled at the Botanical Garden of Rio de Janeiro were
taken using a portable spectrometer (USB 4000; Ocean Optics) at an
angle of 45°. Barium sulfate (BaSo4) was used as white standard and
a black chamber as black standard [Lunau et al. (2011); Bergamo
et al., 2016)]. Only the predominant color in the display of a given
species was considered (see Table S2 for a list of structures). We
decided to include structures such as bracts and calyces because
bracts were found to play a more important role in bee avoidance
than petals in bracted species (Bergamo et al., 2019). We hereafter
Frontiers in Plant Science | www.frontiersin.org 3
refer to all structures generally as “flowers”. We restricted the
analyses to the 300–700 nm wavelength range, which falls under
the spectral sensitivity of animal pollinators.

Flower Color Categories
We classified flower reflectance spectra of each species into color
categories based on their average reflectances in the UV, blue,
green, and red wavebands, following Camargo et al. (2019) and
Chittka et al. (1994) but modifying the thresholds between
absorbance and reflectance according to the distribution of our
data (Figure 1, see Table S2 for mean intensity values in each
band and Figure S1 for the mean reflectance curve of the whole
dataset). In order to discriminate absorbance (−) from
reflectance (+) in a given waveband, we used as thresholds
10% for the UV, 30% for the blue, 40% for the green, and 60%
for the red bands. Additionally, we classified flowers reflecting in
the green band with a difference ≥ 50% in relation to the mean
reflection in the blue/red bands as green-absorbing [adapted
from Camargo et al. (2019), see Figure S2 for the mean
reflectance curves of each color category].

Flower Depth Measurements
The total flower depth of on average five (but at least three)
flowers of the species sampled at the Botanical Garden of Rio de
Janeiro was measured with a digital caliper. For all other species,
data were extracted directly from FReD [Arnold et al. (2008);
accessed in August 2019]. We included in our dataset for flower
depth analysis species for which flower visitors were unknown.
When flower visitors’ identity was available, however, we
excluded species whose visitors did not fall into the categories
established for comparisons across pollination systems (see
Pollination Systems). Since we aimed at investigating the
interplay between two bee-avoiding traits, namely long flower
tubes and low conspicuousness, we excluded dish-shaped flowers
from this analysis, in practice considering only species with
flower depth ≥ 1 mm. We then applied log scale for
normalization of flower depth data.

Pollination Systems
Data for floral visitors of each species sampled at JBRJ were
obtained from the literature using as key words “pollinat* +
[name of the species]”. Since these sources followed different
methodologies, we considered these data at the visitor level as
potential pollinators. We did not take into account any
morphological features (i.e., pollination syndromes). We
acknowledge the limitations of using visitors’ data rather than
pollination effectiveness for defining groups. However, since our
main focus was on the role of antagonists in trait selection, we
believe this is unlikely to affect our results. Thus, four groups of
species were designated according to their visitors’ identity as
distinct pollination systems (Figure 2, see Table S3): bee flowers
(137 species visited solely by bees), bee+insect flowers (90 species
visited by bees and other insects), non-bee insect flowers (26
species visited by potentially red-sensitive insects, especially flies
but also beetles and butterflies or any combination between
them; see Figure 2) and bird flowers (32 species visited solely by
birds). Thus, we have included both functionally specialized
September 2020 | Volume 11 | Article 558684
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FIGURE 1 | Composition of the four groups of pollination systems designated according to flower visitor identity of each species. Groups are: “Bee” (species visited
solely by bees, N = 137), “bee+insect” (species visited by both bees and other insects, N = 90), “insect” (non-bee insect flowers, i.e., species visited by potentially
red-sensitive insects, but not by bees; N = 26) and “bird” (species visited solely by birds, N = 32).
FIGURE 2 | Frequency of flower color categories for each pollination system considered in the analyses. Groups are: “Bee” (species visited solely by bees, N =
137), “bee+insect” (species visited by both bees and other insects, N = 90), “insect” (non-bee insect flowers, i.e., species visited by potentially red-sensitive insects,
but not by bees; N = 26) and “bird” (species visited solely by birds, N = 32). Flower color categorization was done by averaging reflectance intensity across four
bands of the spectrum: UV (from 201 to 300 nm), blue (301–400 nm), green (401–500 nm), and red (501–600 nm) and then assigning either “absorbing” (−) or
“reflecting” (+) for each band according to thresholds selected based on the distribution of the data. See Flower Color Categories and Table S2 for details.
Frontiers in Plant Science | www.frontiersin.org September 2020 | Volume 11 | Article 5586844
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(pollinated solely by one animal group) and generalized
pollination systems [sensu Ollerton et al. (2007)].

Color Conspicuousness to Bee Vision
Using the mean reflectance curves of each species, three
parameters of color conspicuousness to bees were calculated:
achromatic contrast against the background (ACB hereafter),
chromatic contrast against the background (CCB) and spectral
purity (SP). These were computed according to photoreceptor
spectral sensitivities available for the model bee species Apis
mellifera L. and Bombus terrestris L. (Peitsch et al., 1992). We
chose those species because honeybees and bumblebees are
important pollinators in several ecosystems (Michener, 2000).

We defined CCB as the distance between the loci of the flower
and the background (Rohde et al., 2013) in the color hexagon of
Chittka (1992) and ACB (or “green contrast”) as the contrast
produced by the green photoreceptor between the stimulus and
the background (Rohde et al., 2013). Both of these metrics are of
importance because bees use chromatic cues at shorter distances
and achromatic cues at longer ones, depending on visual angle
(Spaethe et al., 2001). Finally, SP refers to the saturation of a
given color and is relevant because bees have been shown to
prefer colors of high spectral purity when foraging [Lunau et al.
(1996); Rohde et al. (2013)]. We used the mean reflectance of all
leaves in our sample as the standard leaf background for all
species [following Renoult et al. (2015), see Figure S1 for the
mean leaf reflectance used and Table S4 for all contrast values]
and a standard daylight function (D65 irradiance function) as
illuminant in the vision models. Using an alternative forest-
shade illuminance function did not qualitatively affect our results
because we used von Kries correction, which assumes that bee
receptors adapt to these changes in illuminant. Even though we
recognize the limitations of our standardized approach for
species that evolved in diverse illuminants backgrounds, we
note that common parameters are necessary for broad-scale
comparisons since no specific background and illuminance
reflectances were available for each plant species in our dataset.
All visual modeling was done with the “pavo” package (Maia
et al., 2019) in R software (R Core Team, 2013).
Statistical Analyses
In order to assess the sensorial exclusion of bees in non-bee
flowers, we compared mean contrasts (ACB and CCB) of bee
flowers to those of flowers visited by other vectors, i.e., different
pollination systems (bee+insect; non-bee insect, and bird
flowers). We ran separate ANOVA tests each using a contrast
measurement as the response variable and pollination systems as
the explanatory one (four models in total: ACB and CCB for both
Apis and Bombus visual systems). Then, we computed post-hoc
Tukey HSD tests to identify the pairs of significant differences
between the four kinds of pollination system.

For the analysis of association between flower depth and bee
contrast, we fitted four separate linear regressions using flower
depth as the explanatory variable and each of the contrast
measurements as response variables (Bergamo et al., 2019).
Log scale was applied to flower depth for normalization.
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To verify if bee contrasts against the background (ACB and
CCB) would be meaningful even against a background of high
purity, we verified their relationship with spectral purity (SP) in a
linear regression, which showed a positive association
(Figure S3).

In order to account for phylogenetic signal in our sample, we
built a phylogenetic hypothesis using the PhytoPhylo
megaphylogeny [Qian and Jin (2016) modified from Zanne
et al. (2014)] in R for the full dataset (comprising all 389
species). Three different trees for different scenarios were
generated, according to choices as to how to insert the
branches not found in the megaphylogeny [see Qian and Jin
(2016) for details]. The phylogenetic signal of all contrast
variables and of flower depth were calculated as Blomberg’s K
(Blomberg et al., 2003) using the phylosig() function of the
“phytools” R-package (Revell, 2012). Values of K < 1 indicate
that there is no or little phylogenetic signal for that trait
(Blomberg et al., 2003). None of the contrasts nor flower depth
showed evidence for phylogenetic signal (K close to 0 in all cases,
range 0.01–0.09; see Table S5).
RESULTS

Visual modeling of spectral reflectance data yielded ACB values
ranging from 0.01 to 0.43 for Apis (0.26 ± 0.11; mean ± SD
hereafter) and from 0.01 to 0.42 for Bombus models (0.25 ± 0.11);
and CCB values ranging from 0.01 to 0.25 in the Apismodel (0.14 ±
0.06) and from 0.01 to 0.34 in the Bombus model (0.18 ± 0.08).
Flower depth values ranged from 0.00 mm to 89.37 mm (12.49 ±
16.71 mm; see Table S4).

Conspicuousness Across Pollination
Systems
We found a significant effect of pollination system (p < 0.01 in all
models, see Table S6) for both visual models in the achromatic
(ACBApis: F = 12.25; ACBBombus: F = 12.44), chromatic channels
(CCBApis: F = 23.83; CCBBombus: F = 21.62) and spectral purity
(SPApis: F = 19.95; SPBombus: F = 17.75).

Overall, only the bird-flower group differed from the others in
mean contrast against the background (Figure 3, see Table S7).
Insect-flower groups (bee, non-bee insect, and bee+insect
flowers) did not differ between them in most models, except in
CCB Apis between bee and bee+insect flowers (Figure 3, third
panel). We found significantly lower ACB, CCB, and SP for bird
flowers in relation to all groups of insect flowers in both visual
models (p < 0.01 for all models).

Conspicuousness Comparisons Across
Flower Color Categories
UV-absorbing red flowers presented the lowest contrast and
purity values, while UV-absorbing white flowers were the most
conspicuous ones in the eyes of bees (Figure 4; see Table S8).
UV-reflecting and UV-absorbing yellow flowers did not differ in
bee contrast in any of the models (but differed in one model for
spectral purity), and presented lower contrasts and purity than
September 2020 | Volume 11 | Article 558684
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FIGURE 3 | Mean achromatic (ACB) and chromatic (CCB) contrast against the background and spectral purity (SP) comparisons between flowers of 285 species
belonging to four distinct pollination systems in the visual models for Apis mellifera and Bombus terrestris. Groups are: “Be” (species visited solely by bees, N = 137),
“be+in” (species visited by both bees and other insects, N = 90), “in” (non-bee insect flowers, i.e., species visited by potentially red-sensitive insects, but not by
bees; N = 26) and “bi” (species visited solely by birds, N = 32). Box-plots show the distribution of contrast and purity values for each pollination system: the thick
horizontal line indicates the median; lower and upper hinges correspond to the first and third quartiles; whiskers extend from the hinge to the smallest/largest value at
most 1.5 * IQR of the hinge and individual dots indicate outliers. Different letters represent significant differences between means after ANOVA and post-hoc Tukey’s
HSD tests.
FIGURE 4 | Mean achromatic (ACB) and chromatic (CCB) contrast against the background and spectral purity (SP) comparisons between the most frequent flower
color categories. Color categories are UV-absorbing white (N = 9 7 species), UV-absorbing yellow (N = 63), UV-reflecting yellow (N = 37), UV-absorbing pink (N =
31), and UV-absorbing red (N = 55). Only colors with N > 30 were considered (totaling 288 species). Flower contrasts and spectral purity were computed for Apis
mellifera and Bombus terrestris. Box-plots show the distribution of contrast and purity values for each pollination system: the thick horizontal line indicates the
median; lower and upper hinges correspond to the first and third quartiles; whiskers extend from the hinge to the smallest/largest value at most 1.5 * IQR of the
hinge and individual dots indicate outliers. Different letters represent significant differences between means after ANOVA and post-hoc Tukey’s HSD tests.
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UV-absorbing white flowers in most models, but higher ones than
UV-absorbing red flowers as did UV-absorbing pink flowers. Not
surprisingly, UV-absorbing red flowers were the most frequent in
the bird pollination system, whereas most bee and non-bee insect
flowers were UV-absorbing white (Figure 4).

Association Between Conspicuousness
and Flower Depth
We found a negative relationship between conspicuousness to
bees and flower depth (p < 0.01) for all models (Figure 5, see
Table S9), indicating that flower contrasts against the
background decrease with flower depth in both achromatic
(ACBApis and ACBBombus: R

2 = 0.09) and chromatic channels
(CCBApis: R

2 = 0.15; CCBBombus: R
2 = 0.09), as does spectral purity

(SPApis: R
2 = 0.12; SPBombus: R

2 = 0.07).
DISCUSSION

Overall, the three pollination systems composed by insect visitors
here studied seem to be hardly distinguishable in detectability
properties to bee vision, for all three conspicuousness metrics
used (i.e., ACB, CCB, and SP). This suggests that insect flowers
use similar strategies in their intensity of visual signals detectable
Frontiers in Plant Science | www.frontiersin.org 7
by bees. Two processes could account for these results. First, in
spite of notable red-sensitive exceptions, an overall conservative
visual system in flower-visiting insects with similar points of
optimal discriminability in the spectrum [i.e., overall similar
visual systems; Chittka (1996)], selecting similar patterns of
reflectance. Second, bee visits could have positive effects (or at
least not incur in costs) in insect flowers in general (Sampson
et al., 2004). In any case, our results did not support the bee-
avoidance hypothesis (Raven, 1972) through color signals for
non-bee insect-pollinated species. Thus, if some kind of bee
avoidance does occur in insect flowers, it may happen either only
for specific systems with red flowers and based on specific guilds
that were underrepresented in our sample, or in other sensory
channels rather than the visual one. Unlike birds, insects use a
great number of olfactory cues when foraging for floral resources,
not relying solely on spectral signals (Andersson et al., 2015).
Hence, plants that specialize in different insect pollinator groups
dispose of a large spectrum of olfactory and even tactile, heat and
electric signals, besides visual ones, which may be combined to
create exclusive channels with their most effective pollinators
[Wedzony and Filek (1998); Schiestl and Dötterl (2012); Telles
et al. (2017)]. In this way, visual bee avoidance does not seem to
be such a widespread phenomenon in insect-pollinated flowers
as it is for bird-pollinated ones.
FIGURE 5 | Linear regression analyses of bee contrasts against the background (achromatic, ACB; chromatic, CCB) and spectral purity (SP) with flower depth
(mm), for Apis mellifera (upper panels) and Bombus terrestris (lower panels). Left panels: negative associations between flower depth and ACB (R2 = 0.09 and p <
0.01 for both Apis and Bombus models); central panels: negative associations between flower depth and CCB for the Apis model (upper panel; R2 = 0.15 and p <
0.01) and for the Bombus model (lower panel; R2 = 0.08 and p < 0.01); right panels: negative associations between flower depth and SP for the Apis model (upper
panel; R2 = 0.12 and p < 0.01) and for the Bombus model (lower panel; R2 = 0.07 and p < 0.01). Only flowers with flower depth ≥ 1 mm were considered (N = 286
species), regardless of pollination system. We applied log scale to flower depth for normalization and horizontal jittering in order to prevent overplotting.
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Nevertheless, bird flowers differed from bee flowers in our
database with significantly lower mean contrasts and spectral
purity, which gives additional support to the bee-avoidance
hypothesis [Bergamo et al. (2019); Camargo et al. (2019)]. This
is probably due to two factors. First, the high frequency of UV-
absorbing red flowers, the least conspicuous ones, in the bird
group, which was to be expected since most bird-specialized
flowers are red [Grant (1966); Wilson et al. (2006)]. Moreover,
the predominance of UV-absorbing white flowers in the bee
group, which were the most conspicuous ones in our models.
These results reinforce the role of reddish flowers and bracts in
bee-avoiding bird-specialized species as a general pattern rather
than a phenomenon restricted to specific communities.

We found a negative relationship between conspicuousness to
bees and flower depth, similarly to the results of CCB in
hummingbird flowers by Bergamo et al. (2019) and of ACB in
insect flowers by Binkenstein et al. (2017). Our results indicate
that the low conspicuousness of long-tubed flowers to bees might
not be a phenomenon exclusive to bird-pollinated systems.
Moreover, long-tubed flowers in our study presented low
conspicuousness in both achromatic and chromatic channels,
expanding previous results found for the chromatic channel in
hummingbird flowers of the Brazilian Atlantic forest (Bergamo
et al., 2019). Thereby, our results support that flower depth and
detectability to bees are two of a set of key traits mediating bee
avoidance in flowers (Gegear et al., 2017). These two traits might
be under similar selective pressures, since long flower tubes are
associated with increased nectar robbing by bees [Navarro and
Medel (2009); Rojas-Nossa et al. (2016)], and bee nectar robbers
have a strong negative effect on the reproductive success of
hummingbird-pollinated flowers [Irwin et al. (2001); Bergamo
and Sazima (2018)]. On the other hand, for long-tubed bee-
pollinated flowers, lower contrasts and purity might signal nectar
inaccessibility to short-tongued bees (and even to other insects
with short mouthparts), decreasing foraging energy losses for the
potential visitors and enhancing reproductive success for the
plant through reduced interference of these with legitimate
pollinators (Binkenstein et al., 2017). Moreover, total flower
depth might be regarded as a proxy for area of attraction, since
it is one way of determining overall flower size (Wolf et al., 1976).
In theory, a species under selection for increased floral area of
attraction may have smaller investment in pigments, which
might cause a decrease in its contrast (Blarer et al., 2002). Such
a trade-off might be at play in tubular flowers, yielding a negative
association between flower size and bee contrast regardless of
pollination system.
CONCLUSION

Our results corroborate the bee-avoidance hypothesis for bird
flowers. However, for insect flowers, all groups of flowers
presented a similar intensity of color signals to bees, giving no
support to visual bee avoidance. Therefore, our results suggest that
sensory exclusion of bees via color signals is a mechanism exclusive
Frontiers in Plant Science | www.frontiersin.org 8
to bird-pollinated species. We also found a negative association
between flower depth and conspicuousness in the visual models,
regardless of pollination system, suggesting a general correlation
between two bee-avoiding traits that may act synergistically. Further
studies could enlighten the role of long corolla tubes in insect-bird
pollinator shifts, investigating whether long-tubed species are more
likely to shift to bird pollination. The possibility of visual bee-
avoidance mechanisms should also be investigated for pollination
systems based on specific non-bee insect guilds, especially those
with long tubes, in communities where bees are also present.
Overall, our results reinforce the importance of spectral signaling
in bird-pollinated systems and its interplay with flower depth.
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