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Lysine (Lys) is indispensable nutritionally, and its levels in plants are modulated by both 
transcriptional and post-transcriptional control during plant ontogeny. Animal glutamate 
receptor homologs have been detected in plants, which may participate in several plant 
processes through the Lys catabolic products. Interestingly, a connection between Lys 
and serotonin metabolism has been established recently in rice. 2-Aminoadipate, a 
catabolic product of Lys appears to play a critical role between serotonin accumulation 
and the color of rice endosperm/grain. It has also been shown that expression of some 
lysine-methylated proteins and genes encoding lysine-methyltransferases (KMTs) are 
regulated by cadmium even as it is known that Lys biosynthesis and its degradation are 
modulated by novel mechanisms. Three complex pathways co-exist in plants for serine 
(Ser) biosynthesis, and the relative preponderance of each pathway in relation to plant 
development or abiotic stress tolerance are being unfolded slowly. But the phosphorylated 
pathway of L-Ser biosynthesis (PPSB) appears to play critical roles and is essential in 
plant metabolism and development. Ser, which participates indirectly in purine and 
pyrimidine biosynthesis and plays a pivotal role in plant metabolism and signaling. Also, 
L-Ser has been implicated in plant responses to both biotic and abiotic stresses. A large 
body of information implicates Lys-rich and serine/arginine-rich (SR) proteins in a very 
wide array of abiotic stresses. Interestingly, a link exists between Lys-rich K-segment and 
stress tolerance levels. It is of interest to note that abiotic stresses largely influence the 
expression patterns of SR proteins and also the alternative splicing (AS) patterns. We have 
checked if any lncRNAs form a cohort of differentially expressed genes from the publicly 
available PPSB, sequence read archives of NCBI GenBank. Finally, we discuss the link 
between Lys and Ser synthesis, catabolism, Lys-proteins, and SR proteins during plant 
development and their myriad roles in response to abiotic stresses.
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INTRODUCTION

Amino acids are organic compounds, which contain amine 
(-NH2) and carboxyl C(=O)OH) functional groups along with 
a side chain (R group). As amino acids are building blocks 
of proteins, they participate in the synthesis of hormones in 
animals and in peptide hormone synthesis in plants (Hirakawa 
et  al., 2017). In the case of plants, amino acids also take part 
in the synthesis of several secondary plant products. Amino 
acids that cannot be synthesized by some mammals and humans 
are generally known as “essential,” and lysine (Lys) is one 
among them (Bright and Shewry, 1983). The pathway of Lys 
is always a target for the development of herbicides in addition 
to increasing nutritional value in cereals. Lys is entangled in 
histone modifications and, therefore, is associated with epigenome 
and stress biology in plants (Yuan et  al., 2013). Lys is the 
most limiting in all major cereal grains and is therefore 
considered as a nutritionally significant amino acid (Wenefrida 
et al., 2009; Galili and Amir, 2013). This is precisely the reason 
why Lys is a target for crop improvement. Poor people suffer 
from deficiencies in the essential amino acids like Lys and 
methionine. If crop plants contain less Lys, the nutritional 
value of such crops is also reduced by more than 50% and 
leads to imbalances in the amino acids. But breeding methods 
have led to the accumulation of Lys in vegetative tissues, which 
is in fact deleterious to the growth of plants (Ghislain et  al., 
1995). Therefore, pathways for Lys synthesis in plants have 
been identified and also the corresponding genes that encode 
them, keeping in view of their genetic transformation as an 
alternative approach. But such an effort requires identification 
of seed specific promoters, which help in the accumulation 
of more Lys in seeds/grains (Amir and Tabe, 2006). Most 
importantly, Lys acts as a precursor for the metabolic pathway 
implicated in plant stress response and also its development 
as revealed from the studies of Arruda et  al. (2000) and Galili 
et  al. (2001). Negrutiu et  al. (1984) isolated for the first time, 
a Lys over-producing mutant from the protoplast cultures of 
Nicotiana sylvestris. This mutant was a result of altered expression 
of one of the biosynthetic pathway genes encoding a 
dihydrodipicolinate synthase (DHDPS). Reduced sensitivity to 
feedback inhibition in transgenic plants with overexpressed 
bacterial DHDPS (Perl et  al., 1992; Shaul and Galili, 1992, 
1993) helped to discover the Lys biosynthetic pathway and its 
modulation. Further, Karchi et  al. (1995) dissected out that 
Lys biosynthesis and catabolism are coordinately regulated 
during the development of a seed in tobacco. Thus, for the 
first time the amino acid Lys has been correlated with plant 
development. Galili et  al. (2001) later reviewed the catabolic 
events of Lys and implicated them not only to development 
but also to abiotic stress tolerance. A large body of information 
suggests that the regulatory networks associated with Lys 
biosynthesis and catabolism are intertwined largely with plant 
tissues and organ specificity and interactions between diverse 
metabolic fluxes.

Another important amino acid in the body of plants is 
serine (Ser), which helps to form the phospholipids necessary 
for signal transduction. L-Ser is not only a proteinogenic amino 

acid, but also it participates in catalytic functions of diverse 
enzymatic reactions in plants. Importantly, Ser takes an active 
part in the biosynthesis of many biomolecules such as amino 
acids, phospholipids, and sphingolipids that are obligatory for 
cell proliferation (Kalhan and Hanson, 2012). Ser gets 
phosphorylated by kinases and participates in signaling 
mechanisms (Chaneton et  al., 2012). In plants, multiple 
biosynthetic pathways exist for Ser. The photorespiratory glycolate 
pathway appears as the major one, but non-photorespiratory 
phosphorylated pathway also exists.

This review discusses dehydration proteins known as dehydrins 
(DHNs), which are members of the LEA protein family group 2 
or D-11 (Close, 1997). Since they do not have proper tertiary 
structures, they are described as “protein clouds” or “cooked 
spaghetti” (Uversky, 2013, 2016). DHNs are hydrophobic, with 
more than 50% of the residues being charged or polar in 
nature and 25% being either alanine or glycine. DHNs contain 
Lys- and Ser-rich residue and are associated with stress tolerance 
(Malik et  al., 2017). Both Lys and Ser are essential, the former 
for humans, and the later for plants. Interestingly, both of 
them are important in plants as a link between metabolism 
and development. This review focuses on the climacteric links 
that have been established in recent times about Lys and Ser 
biosynthesis and catabolism, their association with plant growth 
and development, abiotic stress tolerance, and also Lys- and 
Ser-rich proteins, functional significance, and their remarkable 
ability to bestow stress tolerance in plants.

TWO Lys BIOSYNTHETIC PATHWAYS 
EXIST IN PLANTS BUT DIFFER FROM 
THAT OF PROKARYOTES

In nature, two pathways namely diaminopimelate (DAP) pathway 
(Figure  1A) and α-aminoadipate (AAA) have been identified 
for biosynthesis of Lys (Figure  1B). The first pathway belongs 
to the aspartate derived biosynthetic family, involved also in 
the synthesis of threonine, methionine, and isoleucine (Galili, 
1995; Velasco et  al., 2002; Hudson et  al., 2005). The second 
pathway is part of the glutamate biosynthetic family, involving 
α-ketoglutarate and acetyl coenzyme A (as seen in Thermus 
thermophilus; Miyazaki et  al., 2004; Xu et  al., 2006). While 
the DAP pathway operates in prokaryotes and plants, the AAA 
pathway in yeast, protists, and higher fungi. In the DAP pathway, 
aspartate and pyruvate act as precursors for the biosynthesis 
of Lys via the intermediate DAP. This pathway adds carbon 
groups to aspartate to yield Lys (Figure  1A), but exhibits 
feedback regulation either by Lys or by threonine (Velasco 
et al., 2002; Hudson et al., 2005). Both pathways are not known 
to operate in any single organism/plant till date. In higher 
plants, Lys is synthesized in plastids and no evidence exists 
for its cytosolic synthesis (Hudson et  al., 2006). Glutamate 
first gets converted to aspartate by aspartate aminotransferase 
enzyme (AAT). Aspartate kinase (AK), the first enzyme of 
the pathway catalyzes aspartate to 3-aspartic semialdehyde 
(3-ASA). While light and photosynthetic activity in the daytime 
positively affect 3-ASA biosynthesis especially in young leaves 
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(Figure  1A), darkness stimulates the degradation of aspartate 
to asparagine. Isoenzymes of AK exist as monofunctional 
polypeptides, which have the Lys-sensitive kinase activity. 
Interestingly, the bifunctional enzymes AK/homoserine 
dehydrogenase (HSD) contain threonine-sensitive AK as well 
as HSD isozymes linked on a single polypeptide. Threonine 
partially feedback regulates HSD enzyme and, therefore, Lys 
production is affected (Galili, 2002; Figure  1A). Some of the 
factors affecting Lys biosynthesis in plants are shown in Table 1. 
Vauterin et  al. (1999) have shown that activity of DHDPS is 
high in meristems, in the vasculature of leaves, roots, stems, 
carpels, styles, stigma, pollen, and young embryos. In line 
with this, they demonstrated that DHDPS promoter exhibits 
cell type-specific expressions, indicating its multiple functions 
in diverse tissues. Synthesis of Lys by transcriptional activation 
in a tissue specific manner clearly implicates regulation of the 
enzyme at the RNA level. The enzyme L,L-diaminopimelate 
aminotransferase (LL-DAP-AT) is a novel variant that catalyzes 
tetrahydrodipicolinate to L,L-DAP and then helps in the synthesis 
of Lys in lower plants (Physcomitrella patens) as well as higher 
plants like A. thaliana, soybean, and spinach (Hudson et  al., 
2006). This indicates that the enzyme is highly conserved among 
diverse plant species. Further, in A. thaliana, this enzyme catalyzes 
a reversible reaction. DHDPS and dihydrodipicolinate reductase 
(DHDPR) enzymes catalyze the two vital steps in Lys biosynthesis 
(Figure  1A). It is arguable, however, if it has a tetrameric or 
dimeric arrangement since it is not yet distinctly known. 

Tetrahydrodipicolinate (THDPA) is converted to meso-2,6-
diaminopimelate (m-DAP) catalyzed by different enzymes. Hudson 
et  al. (2006) reported a novel and specific LL-DAP-AT that 
directly converts THDPA to LL-DAP in A. thaliana (regarded 
as DAP-AT pathway). Interestingly, LL-DAP-AT operates efficiently 
in the forward/biosynthetic direction in plants (Hudson et  al., 
2006). Diaminopimelate epimerase is the last enzyme in the 
pathway, which converts m-DAP to Lys (Figure  1A).

TRANSGENIC PLANTS ACCUMULATE 
HIGH Lys CONTENT

Transgenic lines were generated by over expressing bacterial 
Lys biosynthetic pathway genes in several plants. While seeds 
were wrinkled in high-Lys producing transgenic Glycine max 
(Falco et  al., 1995), seed germination retarded in A. thaliana 
(Zhu and Galili, 2003, 2004), and the endosperm hardened 
in the QPM mutant of maize (Gibbon et  al., 2003). Long 
et  al. (2013), and Yang et  al. (2016) generated transgenic rice 
by overexpressing a combination of bacterial genes that encode 
AK and DHDPS and also by inhibiting Lys ketoglutarate (α-KG) 
reductase/saccharopine dehydrogenase (LKR/SDH). These 
transgenic lines of rice displayed 60-fold increase in Lys and 
thus biofortified, but endosperm color was dark-brown. 
Surprisingly, the seed germination and subsequent performance 
of these plants when evaluated in the field conditions did not 

A B

FIGURE 1 | (A) Lysine biosynthesis pathway and its feedback regulation in plants. Ec, Escherichia coli; Sc, S. cerevisiae; Hi, Haemophilus influenzae. 
(B) Biosynthesis pathway of lysine via aminoadipate. The pathway operates mostly in fungi.
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show any change in their nutrition. Overexpression of 
tryptophan decarboxylase 3, an enzyme involved in serotonin 
(sometimes called the happy chemical, seen in human brain 
mostly) biosynthesis proved that tryptophan (a remote precursor 
of serotonin) and serotonin are responsible for dark-brown 
phenotype of endosperm in high-Lys producing lines 
(Kanjanaphachoat et  al., 2012; Yang et  al., 2016, 2018). 

They  also  proposed that 2-aminoadipate (an intermediate in 
Lys catabolism) might play a role between jasmonate signaling, 
elevated serotonin levels, and the endosperm color. Using a seed-
specific promoter, Zhu and Galili (2003, 2004) overexpressed a 
bacterial DHDPS gene in a knockout A. thaliana mutant lacking 
the bifunctional enzyme α-aminoadipic semialdehyde synthase 
(AASS) that contains both LKR/SDH activities (in bacteria and 
fungi, the two enzymes are encoded by separate genes; Zhu et al., 
2002). Transgenic A. thaliana seeds displayed 64-fold increase in 
free Lys levels. Houmard et al. (2007) achieved significant increase 
in the amount of Lys in transgenic maize kernels by RNA 
interference technique through endosperm specific suppression 
of LKR/SDH gene. Possibilities exist therefore for attaining high 
Lys containing crop plants as nutrient/food supplements to both 
animals and humans using its degradative pathway genes. In the 
light of the above facts, a deeper understanding of the metabolism 
and its networks are needed before we  create Lys/nutrient-rich 
crop plants acceptable to the consumers.

Lys CATABOLISM PRODUCES 
GLUTAMATE AND STRESS-RELATED 
METABOLITES, WHICH HELP TO 
OVERCOME ABIOTIC STRESS

If amino acids (cysteine or Lys for example) are accumulated 
in high concentrations, they may be  toxic to the plants (Zhu 
and Galili, 2004), hence, they must be degraded. The saccharopine 
pathway (Figure 2) is the primary pathway for Lys degradation, 
which occurs in the liver (in animals) specifically within 
mitochondria (Galili et  al., 2001). This is the reverse of the 
AAA pathway (Figure  1B), and in plants and animals, the 
first two steps in the catabolism are catalyzed by LKR/SDH 
activities. Lys combines with α-KG to form saccharopine by 
the enzyme LKR (Figure 2), which ultimately generates glutamate 
and other stress-related metabolites. Also, Lys has been found 
vital during seed germination, where it serves as a source of 
carbon and energy by feeding the intermediates (like α-KG) 
of TCA cycle to the growing seedlings (Afendi et  al., 2012). 
Thus, the mechanistic insights into Lys degradation and its 
intermediates serving as the precursors for generation of energy 
(NADH) via the electron transport chain have been furnished 
(Araujo et  al., 2010).

Lys serves as an alternative respiratory substrate under a 
variety of stresses, including drought, and senescence under 
extended darkness (Urano et  al., 2009; Joshi et  al., 2010). 
Flexibility/remobilization of molecules are necessary since it 
helps the plants to maintain metabolic homeostasis and supply 
energy, the primary necessity to survive. Consistent with 
this, under salinity and drought stress conditions, contents 
of Lys and other amino acids increased in wheat, potato, 
and safflower, which displayed tolerance to stress (Saeedipour 
and Moradi, 2012; Muttucumaru et  al., 2015; Zafari and 
Ebadi, 2016) and high expression of LKR/SDH and aminoadipic 
semialdehyde dehydrogenase (AASADH) genes involved in 
saccharopine pathway (Brocker et al., 2010; Less et al., 2011). 

TABLE 1 | Factors affecting the biosynthesis of Lys and Ser in plants.

Lysine Serine References

Two pathways exist in 
plants for the biosynthesis 
of Lys.

Three (glycolate linked to 
photorespiration and two 
non-photorespiratory) 
pathways exist for Ser 
biosynthesis.

Galili (2002), Zhu and 
Galili (2004), Ros et al. 
(2014), Dellero et al. 
(2016), Igamberdiev and 
Kleczkowski (2018).

Synthesized in plastids. Synthesized in 
chloroplasts and 
mitochondrial matrix.

Ho and Saito (2001).

Feedback regulation by 
Lys controls its own 
synthesis. Further, 
threonine also affects Lys 
synthesis. Thus, two 
amino acids control its 
biosynthesis. Lys also 
inhibits DHDPS and 
arrests thereby its own 
biosynthesis.

Feedback regulation by 
Ser controls its 
biosynthesis, but 
activated by another 
amino acid 
L-homocysteine unlike 
Lys, suggesting an 
allosteric mechanism.

Galili (2002), Velasco et al. 
(2002), Ros et al. (2014), 
Zhu and Galili (2004), 
Okamura and Hirai 
(2017).

Lys production is 
concurrently regulated by 
both synthesis and 
degradation in 
reproductive and 
vegetative tissues.

Ser production in 
photosynthetic tissues is 
mostly regulated by high 
atmospheric CO2 
concentration.

Zhu and Galili (2004), Ros 
et al. (2014).

Light and photosynthetic 
activities affect the first 
enzyme AK in the 
pathway positively, and 
darkness stimulates 
degradation of aspartate 
to asparagine. Lys inhibits 
its synthesis by inhibiting 
the activity of AK. AK is 
also sensitive to 
threonine. Lys 
allosterically inhibits 
DHDPS, thereby arresting 
its own synthesis.

Interaction of Fd-GOGAT 
has been found essential 
for photorespiratory 
SHMT activity. Therefore, 
a complex regulation 
occurs in this high flux 
pathway, and Ser 
biosynthesis.

Galili (2002), Hudson 
et al. (2006).

Two genes in the pathway 
are light-regulated. AK is 
also modulated by 
sucrose and inorganic 
phosphate (Pi), thus affect 
Lys biosynthesis.

Expression of only 
PGDH1 is modulated by 
high CO2, but not by 
PGDH2. Both PGDH1 
and PGDH3 genes are 
regulated by light-dark 
regimes in 
photosynthetic tissues. 
In non-photosynthetic 
tissues, PGDH genes are 
expressed under light-
dark regimes. Thus, 
PPSP pathway appears 
critical for both types 
tissues and affects 
thereby Ser biosynthesis.

Zhu-Shimoni and Galili 
(1998), Vauterin et al. 
(1999), Galili (2002). 
Benstein et al. (2013), 
Toujani et al. (2013).
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Further, ectopic expression of AASADH resulted in the 
generation of stress-tolerant plants (Rodrigues et  al., 2006). 
In radish, drought stress was relieved with Lys application 
in chelation with Zn as seed priming (Noman et  al., 2018). 
Supporting such studies, Wang et  al. (2013) observed higher 
Lys and protein contents in transgenic maize lines in 
comparison with wild type plants. Such transgenics exhibited 
not only substantial growth but also salt stress tolerance. 
Upregulation of saccharopine pathway genes directs Lys to 
degrade to α-aminoadipate semialdehyde (AAS) and glutamate, 
which in turn regulates homologs of animal glutamate receptors 
involved in plant development (Galili et  al., 2001). Arruda 
et  al. (2000) pointed out that the saccharopine pathway 
described above might be  accountable for the biosynthesis 
of several regulatory molecules implicated in root growth 
and senescence under both biotic and abiotic stresses. Further, 
Rizwan et  al. (2017) demonstrated the alleviation of metal 
stress in wheat upon foliar spray of Lys. It has been found 
that variability exists among different populations of A. halleri 
for Cd accumulation (Stein et  al., 2017; Corso et  al., 2018). 
Such an intraspecific variability has prompted Serre et al. (2020) 

to investigate the molecular mechanisms associated with metal 
tolerance, especially the Lys-methylated proteins in plants. The 
effect of Cd on Lys-methylated proteins and KMTs were studied 
in A. thaliana, A. lyrata, and A. halleri, which have differential 
tolerance to Cd. Gene expression, protein mass spectrometric, 
and immunoblotting techniques revealed significant expressions 
in Lys-methylated proteins and regulation of genes coding 
KMTs by Cd (Serre et  al., 2020). Interruption of KMT gene 
in A. thaliana displayed a significant increase in Cd tolerance 
in comparison with wild type plants. Further, a knock-out 
mutant of the calmodulin Lys methyltransferase gene exhibited 
enhanced Cd tolerance. These results suggest that the regulation 
of nonhistone proteins by Lys methylation play pivotal roles 
in A. thaliana plants to Cd stress. The results are novel and 
unexpected, hinting us to explore more about lysine-methylated 
proteins and KMTs in future to generate plants for 
phytoremediation. But in the developing maize endosperm, 
saccharopine pathway is induced by exogenous supply of 
lysine and repressed by salt stress. In young maize coleoptiles, 
LKR/SDH and AASADH were induced at the transcript level 
by abiotic stress. Only the AASADH protein accumulates in 
the stressed tissues, but not the LKR/SDH. These results 
indicate that in the developing seeds, the saccharopine pathway 
is used for pipecolic acid synthesis, although proline plays 
a role in abiotic stress response. Thus, saccharopine pathways 
in maize seed development and stress response differ from 
dicots (Kiyota et  al., 2015). Batista-Silva et  al. (2019) 
demonstrated rapid detoxification of Lys in the leaves of A. 
thaliana during initial stages of stress recovery. Their results 
indicate that amino acid-derived secondary metabolites increase 
when the stress is being relieved and further showed an 
increase in the levels of amino acids that act as precursors 
for secondary plant product biosynthesis.

MULTIPLE PATHWAYS CO-EXIST FOR 
Ser BIOSYNTHESIS IN PLANTS

Ser participates in the biosynthetic pathways of several key 
biomolecules essential for synthesis of other nitrogen bases 
(purines, pyrimidines, and thymidine), amino acids (cysteine, 
glycine, and tryptophan), phospholipids, sphingolipids, and cell 
proliferation (Ros et  al., 2014; Mattaini et  al., 2016). Cysteine 
in turn is needed for the biosynthesis of both methionine and 
homocysteine. Ser biosynthesis in plants proceeds via different 
pathways: glycolate pathway, which is associated with 
photorespiration and two non-photorespiratory pathways and 
the phosphorylated and the glycerate pathways. Existence or 
coexistence of three distinct pathways in plants for Ser 
biosynthesis reveals the complex nature of its regulatory processes. 
Out of the three, glycolate pathway (Figure  3A) has been 
considered as the prime pathway (Tolbert, 1980; Douce et  al., 
2001). Photorespiration has been considered as the main source 
of Ser in plants since this pathway is associated with it; therefore, 
it has been assumed that, at least, in photosynthetic tissues 
the quantitative contribution of this pathway to Ser pool would 
be  higher. For this reason, the non-photorespiratory pathways 

FIGURE 2 | Lysine catabolism via saccharopine is the prominent pathway. 
Broken line indicates that through several reactions, glutaryl Co-A is 
converted to TCA cycle intermediate acetyl coenzyme A for energy 
generation.
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have been considered of minor importance to date. Ser is 
synthesized through glycolate, glycerate, and PPSB pathways, 
which are described below.

BIOSYNTHESIS OF Ser IN PLANTS

Through the glycolate pathway, L-Ser is synthesized during 
plant photorespiration within the mitochondrial matrix. In this 
pathway, one molecule of glycine is decarboxylated and 
deaminated by a fascinating complex enzyme called glycine 
decarboxylase (GDC). Both carbon dioxide (CO2) and ammonia 
(NH3) are formed with the release of NADH from NAD+ (Douce 
et  al., 2001). In a complex reaction, the methylene carbon of 
glycine molecule is transferred to tetrahydrofolate (THF) to form 
methylene tetrahydrofolate (5,10-CH2-THF). Methylene THF now 
combines with the second molecule of glycine to form L-Ser 
catalyzed by a Ser hydroxymethyltransferase (SHMT) enzyme 
(Figure 3A). This is a pyridoxal 5'-phosphate-dependent enzyme, 
which catalyzes the reversible reaction of Ser to glycine in either 
a tetrahydrofolate-dependent or tetrahydrofolate-independent 
manner. One-carbon units that result from the activity of SHMT, 
have been found vital in proliferating cells (Wu et  al., 2017). 
The glycolate pathway has also biological significance like the 
other two. For instance, Arabidopsis SHMT mutant (shm1-1) 
was isolated by Somerville and Ogren (1981), which shows a 

strong photorespiratory phenotype that is rescued under high 
CO2 (Voll et al., 2006). One of the SHMT1-deficient mutants 
defective in GLU1 gene has been reported in A. thaliana 
(Jamai et  al., 2009), which encodes ferredoxin-dependent 
glutamate synthase located in chloroplasts (Fd-GOGAT). 
This enzyme is associated with the photorespiratory 
reassimilation of NH3 and primary nitrogen assimilation. 
An important observation made by Jamai et al. (2009) shows 
that Fd-GOGAT is targeted to the mitochondria as well as 
chloroplasts. Interaction of Fd-GOGAT has been found 
essential for photorespiratory SHMT activity (Table 1). Thus, 
a complex regulation occurs in this high flux pathway.  
Both SHM1 and SHM2 are targeted to the mitochondria  
and operate redundantly in one carbon metabolism of 
non-photorespiring especially during lignification of  
vascular cells. Interestingly, double mutant lacking both  
mitochondrial SHMTs shows a lethal phenotype even under 
non-photorespiratory conditions, which point out the 
non-redundant role(s) of both isoforms and the importance 
of C1 metabolism for plant development (Engel et al., 2011). 
Five more SHM isoforms were predicted and targeted to 
different subcellular compartments like cytosol, plastids, and 
nucleus. Functional information is available for the plastidic 
isoform SHM3 (Zhang et  al., 2010), which is believed to 
be  involved in general one-carbon metabolism along with 
cytosolic isoforms SHM4 and SHM5 (Engel et  al., 2011).

A
B

C

FIGURE 3 | (A) Biosynthesis of serine via glycolate pathway during photorespiration. 2PG, 2-phosphoglycolate; PGLP1, 2PG phosphatase 1; GLYR1/2, glyoxylate 
reductase 1/2, glutamate glyoxylate aminotransferase 1; GDC, glycine decarboxylase complex; THF, tetrahydrofolate; SHMT1, serine hydroxymethyl transferase 1; 
SGAT1, serine glyoxylate aminotransferase 1; HPR, hydroxypyruvate reductase 1; GLYK1, glycerate kinase 1. (B) Serine biosynthesis via glycerate pathway. At, 
Arabidopsis thaliana. (C) Phosphorylated pathway of L-serine biosynthesis (PPSB). 3-PG, 3-phosphoglycerate; 3-PHP, 3-phosphohydroxypyruvate; 3-PS, 
3-phosphoserine; and At, Arabidopsis thaliana.
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Ser is also synthesized in leaves through glycerate pathway. 
It is well-known that 3-phosphoglycerate (3-PG) is synthesized 
during glycolytic pathway (Figure  3B). L-Ser is formed from 
3-PG by a dephosphorylation reaction (Kleczkowski and Givan, 
1988) and includes part of the reverse sequence of the 
photorespiratory cycle. 3-PG forms glycerate and the reaction 
is catalyzed by 3-phosphoglycerate phosphatase (PGAP). Glycerate 
is then converted to hydroxypyruvate by glycerate dehydrogenase 
(GDH) enzyme (Figure  3B). In the last reaction, alanine-
hydroxypyruvate aminotransferase (AH-AT) enzyme and glycine 
hydroxypyruvate aminotransferase (GH-AT) convert 
hydroxypyruvate to L-Ser. While one reaction takes place in 
the cytosol (PGAP), the remaining three (GDH, AH-AT, and 
GH-AT) take place in peroxisomes through enzymatic pathways 
(Kleczkowski and Givan, 1988; Greenler et  al., 1989). To date, 
several genes involved in the glycerate pathway have been 
identified. However, no specific genes have been characterized 
and/or cloned to account specifically for glycerate pathway, so 
its functional significance remains little unclear (Ros et al., 2013; 
Igamberdiev and Kleczkowski, 2018).

One of the Ser biosynthetic pathways, PPSB, is conserved 
across bacteria, plants, and animals (Fell and Snell, 1988; Ho 
and Saito, 2001) and operates in plastids in plants. 3-PG generated 
via plastidial glycolysis and Calvin cycles acts as a precursor 
for the synthesis of Ser (Figure  3C). In the three sequential 
reactions, 3-PG is first converted to 3-phosphohydroxypyruvate 
(3-PHP) by the enzyme D-3-phosphoglycerate dehydrogenase 
1 (PGDH1), EC 1.1.1.95; Slaughter and Davies, 1968). In this 
conversion, the cofactor NAD+ is reduced to NADH. 3-PHP 
is then converted to 3-phosphoserine (3-PS) by a transamination 
reaction catalyzed by 3-phosphoserine aminotransferase (PSAT, 
EC2.6.1.52; Hanford and Davies, 1958). Wulfert and Krueger 
(2018) for the first time provided the genetic evidences for the 
PSAT genes. PSAT1-silenced lines displayed a strong inhibition 
of shoot and root growth and hypersensitivity to the inhibition 
of the photorespiratory Ser biosynthesis at higher CO2 levels 
(Table 1). Such lines also showed accumulation of certain amino 
acids, due to increased assimilation of NH3. Knockdown of 
PSAT1 alters the amino acid metabolism in plants (Wulfert 
and Krueger, 2018). PSAT catalyzes the transfer of the amino 
group of glutamate to 3-hydroxypyruvate, resulting in 
2-oxoglutarate and 3-phosphoserine. It is interesting to note 
that PSAT1 is essential for light and sugar-dependent growth 
promotion in A. thaliana (Wulfert and Krueger, 2018). During 
this biosynthetic pathway, glutamate is converted to 
2-oxoglutarate, an intermediate in the TCA cycle that generates 
energy. 3-PS is finally catalyzed by 3-phosphoserine phosphatase 
(PSP, EC 3.1.3.3) to form Ser (Figure  3C). The enzymatic and 
genetic evidence for these enzymes were achieved by Benstein 
et  al. (2013), Cascales-Miñana et  al. (2013), and Toujani et  al. 
(2013). While three genes for PGDHs were described, two 
genes encoding for PSAT noticed in the TAIR,1 cloned and 
observed to have activity in vitro (Ho et  al., 1998, 1999a,b; 
Ho and Saito, 2001). Coexistence of multiple genes for PPSB 
and the presence of corresponding enzymes in different tissues 

1 http://www.arabidopsis.org/

indicate that they may perform diverse functions. This fact 
needs to be further investigated, but there is evidence supporting 
it (Ho and Saito, 2001; Waditee et  al., 2007; Benstein et  al., 
2013). The genes associated with PPSB are expressed in several 
tissues (Ros et  al., 2014) based on which it is argued that this 
pathway acts as a link between metabolism and development. 
It has been demonstrated that PGDH1 expression has been 
modulated by high CO2 levels (Benstein et  al., 2013). They 
demonstrate that the content of Ser is reduced in PGDH1-silenced 
plants exposed to high CO2. They are of the opinion that 
expression of PGDH2 is not modulated by high CO2. Furthermore, 
PGDH1 and PGDH3 genes have been found regulated in  
A. thaliana by light-dark regimes in photosynthetic tissues 
(Toujani et  al., 2013; Table  1). On the other hand, in 
non-photosynthetic tissues, PGDH family of genes are equally 
expressed under light-dark regimes indicating that PPSB 
pathway (Figure  3C) may be  critical for both photosynthetic 
and non-photosynthetic tissues (Table 1). Unlike PGDH family 
of genes, where their expression pattern is tightly regulated 
at organ level, PSP1 gene is expressed in all organs (Cascales-
Miñana et  al., 2013; Toujani et  al., 2013). This could be  due 
to the presence of a unique PSP1 gene. Thus, several pieces 
of evidence point out that the PPSB pathway is highly relevant 
in photosynthetic tissues during dark conditions, when 
photorespiration does not operate.

Ser METABOLISM IS ESSENTIAL FOR 
PLANT DEVELOPMENT AND ABIOTIC 
STRESS TOLERANCE

Though biological significance of PPSB has been demonstrated 
and found essential for the development of male gametophyte, 
pollen, embryo, and postembryonic root growth (Cascales-
Miñana et  al., 2013; Toujani et  al., 2013; Ros et  al., 2014, and 
the references therein), its metabolic implications have not 
been completely understood. In PPSB-deficient mutants, 
adenosine 5'-phosphosulfate reductase genes, sulfate transporters 
were upregulated (Anoman et  al., 2019) with enhanced flux 
of 35S into thiol biosynthesis, mostly in root tissues, and also 
their transport and allocation. Thus, deficiency of PPSB activity 
perturbs sulfur homeostasis between photosynthetic and 
non-photosynthetic tissues (Anoman et  al., 2019). Besides 
supplying carbon to the one-carbon pool (necessary for the 
biosynthesis of thymidylate and methionine), Ser is implicated 
in signaling mechanisms (Ser is phosphorylated by kinases; 
Antonov et  al., 2014; Ros et  al., 2014; Mattaini et  al., 2016). 
Double mutants of gapcp1gapcp2 arrested not only primary 
root growth, but also showed defects in pollen development. 
Supplementation of L-Ser to the gapcp1gapcp2 mutant roots 
resulted in the recovery of root growth (Muñoz-Bertomeu 
et  al., 2009). Further, it has been noticed that embryo and 
male gametophyte become lethal in mutant plants lacking Ser 
palmitoyltransferase, an enzyme associated with sphingolipid 
biosynthesis (Chen et al., 2006; Dietrich et al., 2008). Associated 
with the above, in psp1 and pgdh1 homozygous mutant, 
development of embryo in Arabidopsis is totally arrested inferring 
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the importance of Ser in all the above cases (Benstein et  al., 
2013; Cascales-Miñana et al., 2013; Toujani et al., 2013). Similarly, 
in PSP1- and PGDH1-deficient Arabidopsis mutants, root 
development was inhibited, indicating poor auxin biosynthesis 
in such mutants. In plants, tryptophan (produced by condensation 
of Ser and indole) acts as a precursor for auxin biosynthesis 
(Tzin and Galili, 2010; Dunn, 2012), so lack of Ser in the 
cells leads to root developmental defects. Benstein et al. (2013) 
further noticed inhibition of leaf initiation when plants containing 
reduced levels of PGDH activity were grown under elevated 
levels of CO2. Ser is also implicated in folate metabolism. 
Mutants deficient in tetrahydrofolate metabolism show defects 
both in root and embryo development. It is however opined 
that Ser is not solely responsible for root development, and 
multiple factors/processes might be  involved along with Ser. 
Interestingly, D-Ser (a derivative of L-Ser) has been found to 
act as a signaling molecule between male gametophyte and 
pistil communications (Michard et  al., 2011). Thus, these 
observations infer that Ser metabolic pathways are critical for 
plant ontogeny. Alterations in PPSB gene expressions perturb 
not only the TCA cycle but also amino acid biosynthesis 
(Cascales-Miñana et  al., 2013; Toujani et  al., 2013).

SHMT1 functions in the photorespiratory pathway and play 
a critical role in controlling cell damage provoked by high 
light (photooxidative stress) and salt stresses and in restricting 
pathogen-induced cell death (Moreno et  al., 2005). Further, 
SHMT1, located in mitochondria, converts glycine to Ser, and 
Liu et  al. (2019) reported complementation of A. thaliana 
shm1-1 (photorespiratory growth phenotype) by SHMT1 wild 
type plants. They found that reduced SHMT activity led to a 
decreased stomatal closure in response to ABA and salt stress. 
Transgenic lines, which showed reduced SHMT activity, were 
not only more sensitive to salt stress but also to drought stress 
recovery. In line with this, Batool et  al. (2018) propose that 
cysteine is the limiting factor for ABA biosynthesis in the 
early stages of drought conditions in guard cells and potentially 
in other cell types of the leaf. Thus, its explicit glycolate pathway 
has a role to play in plant abiotic stress. Glycerate pathway 
has been linked to γ-aminobutyric acid (GABA) shunt, which 
affects plant growth as well as development throughout life 
cycle and accumulates rapidly and contributes in response to 
biotic and abiotic stresses (Ramos-Ruiz et al., 2019). Ser formed 
in glycerate and PPSB pathways acts as a precursor of glycine, 
formate, and glycolate, which accumulate under stress conditions 
(Igamberdiev and Kleczkowski, 2018). A hypothesis has been 
presented by Igamberdiev and Kleczkowski (2018) on the 
regulation of redox balance in stressed plant cells via participation 
of the reactions connected with glycerate and PPSB pathways. 
Thus, a link between carbon and nitrogen metabolism exists, 
which is regarded as vital in maintaining cellular redox and 
energy levels under stress conditions.

Accumulation of Ser was noticed in plants exposed to low 
and high temperatures, flooding, and high salt stress levels 
(Stewart and Larher, 1980; Kaplan et  al., 2004; Bocian et  al., 
2015; Li et  al., 2017) as well as combined stresses of drought 
and heat (Hossain et  al., 2017). Overexpression of PGDH gene 
isolated from Aphanothece halophytica (a cyanobacterial species) 

lead to elevated salt and cold stress tolerance in A. thaliana 
(Waditee et  al., 2007), indicating the involvement of PGDH 
enzyme in abiotic stresses. In line with this, studies conducted 
by Rosa-Téllez et al. (2020) have demonstrated that the response 
observed to salt stress depends on the isoform studied. Thus, 
while PGDH1 activity could be  relevant for plant tolerance to 
salinity, the function of PGDH3 seems detrimental under such 
environmental conditions. Lines overexpressing PGDH1 
(OexPGDH1) accumulate less proline and raffinose (stress 
markers) in roots under salt stress than lines overexpressing 
PGDH3 (OexPGDH3). Moreover, the levels of oxidized 
glutathione (GSSG; derived from Cys) increased under salt 
stress in OexPGDH3 as compared to both OexPGDH1 and 
wild type plants. Ser is utilized in many biosynthetic pathways 
and thereby contributes to nucleotide synthesis, methylation 
reactions, and production of the reducing power. Both glutathione 
and NADPH help in antioxidant defense in plants (Yang and 
Vousden, 2016). Glutathione acts as a precursor of phytochelatins 
and helps in chelating toxic metals, and needed for the 
detoxification of methylglyoxal, a cytotoxic and an emerging 
signaling molecule in plant abiotic stress responses and tolerance. 
Further, glutathione has been found to impact translation and 
subsequent changes. Interestingly, PPSB could affect the ABA 
signal transduction and thus trigger the downstream genes 
under cold and salt stress conditions. In support of this statement, 
double mutants like gapcp1gapcp2, which have an impaired 
phosphorylation pathway are insensitive to ABA (Muñoz-
Bertomeu et al., 2011a,b), suggesting that Ser pathway somehow 
triggers ABA signals for environmental stress tolerance. Ser 
acts as a precursor for the synthesis of glycine betaine, an 
important osmotic agent, and a scavenger of ROS. Some species 
like rice and Arabidopsis do not produce glycine betaine, but 
in such a case, glutathione (a derivative of cysteine) scavenges 
ROS generated during abiotic stress (Rosa-Téllez et  al., 2020). 
The relevance and importance of catabolism of amino acids 
as an alternative respiratory substrate has been demonstrated 
during drought or short light periods (Araujo et  al., 2010; 
Engqvist et  al., 2011; Krüßel et  al., 2014). It appears therefore 
that a tight relationship exists between Lys and Ser metabolism 
during abiotic stress recovery.

DHNs CONTAIN LYSINE-RICH RESIDUES 
INVOLVED IN ABIOTIC STRESS 
TOLERANCE

Late embryogenesis abundant proteins (LEAs) are hydrophilic 
and thermostable in nature. This property helps them to interact 
not only with biomolecules, but also metal ions (Liu et  al., 
2013; Cuevas-Velazquez et  al., 2017). DHNs are group II LEA 
proteins and are widely distributed in bryophytes, gymnosperms, 
and angiosperms (Yu et  al., 2018), accumulate during 
embryogenesis and induced in vegetative tissues following 
exposure to diverse environmental stresses (Battaglia et  al., 
2008). They are low molecular weight (ranging 9–200 kD), 
modular, intrinsically disordered proteins (IDPs), and lack 
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well-defined three-dimensional structures (Riley et  al., 2019). 
But SbDHN5 (from Sorghum bicolor) has been discovered as 
an ordered protein with phosphorylation sites (Nagaraju et  al., 
2018). Hence, it would be of interest to find out the overexpression 
of SbDHN5 in crop plants and their resistance to abiotic stresses. 
Proximate in vitro evidences exist that DHNs protect plants 
in myriad ways, such as buffering of ion sequestration (Alsheikh 
et  al., 2003), hydrate water (Bokor et  al., 2005), chaperone 
activity (Abedini et al., 2017), membrane binding and stabilization 
(Xing et al., 2011), enzyme cryoprotection (Hughes and Graether, 
2011; Drira et  al., 2013), and in scavenging ROS (Hara et  al., 
2013). DHNs contain Lys-rich K-segment, which is prevalent 
in all DHNs with EKKGIMDKIKEKLPG (15 amino acids) and 
located near the C-terminus (Close, 1996; Malik et  al., 2017). 
K-segments participate in forming class A2 amphipathic α-helix 
that protect both enzymes and membranes (Baker et al., 1988). 
More than one K-segment is also noticed in few DHN proteins, 
but with several conserved residues (Koag et al., 2009; Graether 
and Boddington, 2014). DHNs have four different types of 
conserved sequence motifs namely K-, S-, Y-, ([V/T]D] [E/Q]
YGNP), and ф segments. Quite intriguing is that no position 
in the K-segment is conserved totally (Graether and Boddington, 
2014). Without any exception, all DHNs contain a minimum 
of one copy of Lys-rich K-segment located near the C-terminal. 
In some DHNs, more than one K-segment, but with distinct 
amino acid sequences may be  present. The conserved residues 
among the K-segment include Lys-Ile-Lys-Glu in the core, 
Lys-Leu-Pro-Gly in the C-terminal, and Glu-Lys-Lys in the 
N-terminal regions (Graether and Boddington, 2014). However, 
the amino acid residues in K-segment among lower and higher 
plants may differ. In gymnosperms, K-segment shares a variable 
sequence like (Q/E)K(P/A)G(M/L)LDKIK(A/Q)(K/M)(I/L)PG, 
while in higher plants, it has EKKGIMDKIKEKLPG (Close, 
1996; Jarvis et  al., 1996). While K-segment is associated with 
plant development besides stress tolerance, the conserved 
sequence of Y is homologous to that of chaperone molecules 
(Martin et  al., 1993). On the other hand, S-segment contains 
Ser cascade sequence SSSSSSSD, and this segment is observed 
mostly as a single copy in DHNs. S-segment is a phosphorylatable 
patch of 4–10 Ser residues and can transfer DHNs from cytoplasm 
to the nucleus (Goday et  al., 1994). Stretches of sequence with 
a variable length are usually noticed and S-segment also participates 
in plant development alongside abiotic stress tolerance. It is 
also of interest to note that in YnSKn-type DHNs, the K- and 
S-segments are linked by a fixed motif GXGGRRKK (where X 
can be any amino acid), indicating a functional linkage between 
K- and S-segments. While the motif GXGG is highly pliable 
and interacts with negatively charged phosphoserines with 
K-segment, motif RRKK appears to be  a nuclear localization 
signal (Jensen et  al., 1998; Malik et  al., 2017). In between the 
conserved motifs, there are ф segments with small, polar, and 
charged amino acids. Ф-segments are stretches of sequences 
with variable lengths of amino acids. Based on the sequence 
and the number of K, S, and Y segments, DHNs have been 
further classified in five subfamilies/subgroups such as KnS, YnSKn, 
Kn, YnKn, and SKn (Mundy and Chua, 1988). While YnSKn-type 
DHNs are expressed mostly under desiccation and salt stresses, 

Kn, SKn, and KnS are upregulated by cold, desiccation, and 
salt stresses (Graether and Boddington, 2014). The presence 
of S (Ser) motif preceding the K (Lys) motif (YnSKn, SKn, 
and SnKS) and also frequent occurrence of one of such 
subclasses YnSKn in monocots has been noticed by Abedini 
et  al. (2017). Interestingly, out of 13 HvDHNs, 10 YnSKn 
members were noticed in a drought-tolerant barley (Kosová 
et al., 2011), and three in Sorghum bicolor out of six detected 
(Nagaraju et al., 2018). DHNs have been observed in vegetative 
tissues grown under control conditions, inferring that they 
play a key role in plant growth. The Y2K4-type DHN 
MtCAS31 (from Medicago truncatula) by interacting with 
AtICE1 (induces CBF expression 1) has been shown to 
associate with stomatal development, increasing the drought 
tolerance by decreasing the stomatal density of transgenic 
A. thaliana (Xie et  al., 2012). DHN5 when overexpressed 
in A. thaliana showed different responses to biotic (as an 
antibacterial and antifungal factor) and abiotic stresses (Drira 
et  al., 2015, 2016) besides protecting lactate dehydrogenase, 
β-glucosidase, and glucose oxidase from cold and heat stresses 
(Brini et  al., 2010; Drira et  al., 2013).

The DHNs are localized mostly in the cytoplasm, nucleus, 
plasma membrane, and mitochondria (Hara et  al., 2013). It 
is interesting to note that many S-segment-containing DHNs 
are localized to the nucleus inferring that the S-segment moves 
to nucleus besides Kn and YnKn types (Wisniewski et  al., 1999; 
Lin et  al., 2012). Graether and Boddington (2014) discovered 
that several of Kn, SKn, KnS, YnSKn, and YnKn DHNs were 
upregulated during low temperature (cold), desiccation, and 
salt stresses. The His-flanking K-segments (the major functional 
component) have been found to bind to membranes and play 
a major role during stress response (Eriksson et  al., 2011). 
Further, a correlation exists between the number of K-segments 
and abiotic stress tolerance. In line with this statement, K-segment 
of wheat DHN WZY2 has been found to protect plants from 
temperature stress (Yang et  al., 2015). In this regard, it is 
interesting to note that the derivative containing two K-segments 
(WZY2) displays remarkable cold and heat stress tolerance 
than the truncated derivative without K-segments. This implies 
that K-segment is the major functional component of WZY2 
(Yang et  al., 2015). Interestingly, among the spliced DHN1a_s 
(YSK2) and unspliced DHN1a_u (YS), only the spliced variant 
exhibited resistance to cold and drought stresses and to Botrytis 
cinerea (Rosales et  al., 2014).

Ser-RICH PROTEINS ARE IMPLICATED 
IN ABIOTIC STRESS AS WELL AS IN 
PLANT DEVELOPMENT

Lazar et  al. (1995) first identified serine/arginine-rich (SR) 
proteins using monoclonal antibodies raised against a Ser 
phospho epitope in the arginine/serine-rich (RS) domain. SR 
proteins now appear as a highly conserved family of RNA-binding 
protein members in eukaryotes and regarded as crucial alternative 
splicing (AS) regulators of pre-mRNAs (Palusa et  al., 2010), 
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thereby increasing the transcript complexity. SR proteins range 
in size from 21 to 41  kDa in A. thaliana, and have two RNA 
recognition motifs at the N- and C-terminal RS domains, rich 
in SR dipeptides. AS has been recognized as a means of plant 
adaptation to a changing environment and is controlled in a 
tissue- and development-specific manner especially under abiotic 
stress conditions. These proteins play crucial roles in maintaining 
genome stability (Xiao et  al., 2007), promoting transcriptional 
elongation (Lin et al., 2008), and cell cycle progression (Zhong 
et al., 2009). Many environmental stresses modulate AS patterns 
of SR proteins, phosphorylation status, and subcellular 
distribution in plants. In the promoter regions, Chen et  al. 
(2019) found 92 development-, stress-, and hormone-related 
cis-elements. This implies that SR proteins play an important 
role during plant development and in response to environmental 
stresses. SR proteins were predicted to interact with other SR 
and non-SR proteins, inferring their association in other 
functions. Developmental defects were noticed with the 
overexpression of Arabidopsis SRp30, RSZ33, or mutations in 
SC35 and SCL genes (Lopato et  al., 1999; Maria et  al., 2003; 
Yan et  al., 2017), implying the involvement of SR proteins in 
plant development. The number of SR proteins may vary in 
different taxa (16 in Physcomitrella patens, 18 in Brachypodium, 
22  in rice, 25  in Brassica rapa, and 40  in wheat; Melo et  al., 
2020), which are divided into many subfamilies. Expression 
levels of the SCL30a, SCL28, and SCL33 genes were altered 
upon treatment with ABA (Cruz et  al., 2014), indicating that 
SR proteins respond to ABA. Zhang et  al. (2014) noticed that 
splicing factor SR34b mutation reduces cadmium tolerance in 
Arabidopsis by regulating iron-regulated transporter 1 gene. 
Besides its response to high light intensities (Tanabe et  al., 
2008), Arabidopsis SR45 participates as a suppressor to innate 
immunity (Zhang et  al., 2017). Likewise, SR protein RSZ21 
obtained from Arachis has been found to play a role in plant 
defense and HR-like cell death (Kumar and Kirti, 2012). Yoon 
et al. (2018) discovered altered expression levels of 78.6% genes 
(22 out of 28) and 60.7% of AS patterns in Brassica rapa in 
response to abiotic stresses. The highest expressions were detected 
when plants were exposed to oxidative, cold, and heat treatments. 
Interestingly, cold and heat stresses caused the most AS events. 
These studies point out that type of abiotic stress largely 
influences the expression patterns of SR proteins and also the 
AS patterns. Using CRISPR/Cas9-mediated plant genome 
engineering, Butt et  al. (2019) targeted each rice SR locus and 
produced single knockouts. Such a study is extremely vital 
and forms a useful resource material to understand the role 
of SR proteins in plant development as well as abiotic stresses.

DO ncRNAs HAVE A ROLE IN THE 
REGULATION OF Lys AND Ser 
PATHWAYS AND ITS INTERACTIONS?

Major part of the genome is non-coding and is transcribed 
into non-coding RNAs (ncRNAs) only, which is known to 
play a regulatory role. Among these ncRNAs, long non-coding 
RNAs (lncRNAs) are known to be  involved in regulation of 

gene expression. However, very little is known about the role 
of ncRNAs in providing tolerance against biotic stress including 
plant diseases. The interactions of lncRNAs with proteins in 
plants using a system genomic approach is promising and is 
relevant to ascertain characteristic trait biology relationships. 
In the recent past, several databases for genes encoding lncRNAs 
in plants have become available, which include greeNC (Gallart 
et  al., 2016), CantataDB (Szczesniak et  al., 2016), PLncDB (Jin 
et al., 2013) etc. However, these databases lack bona fide entries 
and have poor annotations. In plants, lncRNAs are known to 
perform multiple biological functions, which include the 
following: phosphate homeostasis (Bazin and Bailey-Serres, 
2015), flowering (Swiezewski et al., 2009), photomorphogenesis 
(Wang et  al., 2014), stress response (Yuan et  al., 2018), fertility 
(Liu et al., 2017), etc. The lncRNAs are also known to function 
as target mimics of miRNAs (Aung et  al., 2006; Pant et  al., 
2008) and regulate post-translational processes via protein 
modifications and protein-protein interactions (PPIs; Liu et al., 
2015), etc. Song and Zhang (2017) have extensively reviewed 
the characteristics, identification, and functions of lncRNAs in 
response to various stresses. The authors delve into a greater 
understanding and need of nutrient deficiency and the factors 
associated with abiotic stress. We also argue that the identification 
of regulatory elements associated with a disease and validating 
them through NGS has been a routine task. In this process, 
distinct signatures in the form of lncRNAs in plants would 
be ideal candidates for studying agronomically important traits. 
It is a challenge to identify ncRNAs that were not characterized 
earlier and to find if they are specific to any trait/genotype. 
For example, the miRNA target analysis also divulged that 
DHNs are targeted by 51 miRNAs responsive to abiotic stress. 
The gene expressions are common and well-coordinated under 
diverse abiotic stress conditions and DHNs are no exception. 
The role of DHNs under different abiotic stress conditions, 
the regulatory networks of DHN genes, and their physiological 
functions have been discussed (Yu et  al., 2018). In S. bicolor, 
transcript expressions were higher in roots, stems, and leaves 
in comparison with inflorescences (Nagaraju et al., 2018). While 
all DHN genes exhibited high expressions in stems under cold, 
heat, salt, and drought stresses, SbDHN2 displayed the highest 
expression under multiple stresses in all the tissues of S. bicolor 
(Nagaraju et al., 2018). These results infer that the involvement 
of SbDHN2 of YnS group in a wide array of stresses. In the 
recent past, studies on proteome diversity revealed that lncRNAs 
play a very important role in serine/arginine (SR) regulations 
(Fesenko et  al., 2017). Furthermore, the role of lncRNAs in 
nonsense-mediated mRNA decay was identified under differential 
alternative splicing in relation to altitude, not the abiotic stress, 
which is beyond the scope of this review. Furthermore, Ser 
and Lys metabolism together are not explicitly known.

CONCLUSIONS AND OUTLOOK

Both Lys and Ser are key amino acids, involved in plant 
ontogeny and also connected with abiotic stress tolerance. The 
biosynthetic pathways are multiple and complex. Among the 
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pathways that exist, the PPSB appears to play a critical role 
during growth and development. Diverse mechanisms associated 
with biosynthesis and catabolism of these two important amino 
acids however, need to be  elucidated and also their interaction 
with other pathways. Attempts were made to enrich the seeds 
of rice and others with Lys, but still problems exist with regard 
to seed morphology. These shortcomings need to be  overcome 
in future in order to make high Lys-containing lines available 
to the public. Further, it is concluded that Lys is catabolized 
to serve as an alternative respiratory substrate since photosynthetic 
activity is impaired under abiotic stress conditions. Thus, plants 
get detoxified by supplementing the much-needed energy during 
the time of abiotic stress recovery. This vital function of Lys 
is in addition to its regular participation in protein synthesis 
and other metabolic activities. Such functions to the amino 
acids are novel and were not predicted earlier. Many functions 
of Lys and Ser during growth and development have come 
into light recently, though the mechanistic explanations are 
not clear. Further, Lys- and Ser-rich proteins and their induction 

during abiotic stress reveals the crucial role they play in a 
wide spectrum of abiotic stresses. Identification of the cis- and 
trans-acting elements associated with the activation/suppression 
of the biosynthetic pathway genes and subsequent events that 
take place in the downstream remains elucidated. Finally, 
lncRNAs appear to play a role in these processes by interacting 
with serine kinase and several novel proteins. Mapping those 
miRNAs and lncRNAs, their interaction and the key roles 
they play during the regulation of these processes is certainly 
the biggest challenge for future research.
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