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Temperature is considered one of the critical factors directly influencing grapevine during
the three primary growth and development stages: sprout, flowering, and fruit-coloring,
which is strongly correlated to the yield and quality of the grape. The grapevine is
frequently exposed to high-temperature conditions that are detrimental to growth.
However, the mechanisms of the heat stress response and adaptation in grapevine are
not adequately studied. The Arabidopsis copine gene AtBON1 encodes a highly
conserved protein containing two C2 domains at the amino terminus, participation in
cell death regulation and defense responses. Previously, we showed that a BON1
association protein from the grapevine, VvBAP1, plays a positive role in cold tolerance.
Similarly, the involvement of VvBAP1 in the resistance to heat stress was also found in the
present study. The results indicated VvBAP1 was significantly induced by high
temperature, and the elevated expression of VvBAP1 was significantly higher in the
resistant cultivars than the sensitive cultivars under heat stress. Seed germination and
phenotypic analysis results indicated that overexpression of VvBAP1 improved
Arabidopsis thermoresistance. Compared with the wild type, the chlorophyll content
and net photosynthetic rate in VvBAP1 overexpressing Arabidopsis plants were markedly
increased under heat stress. At high temperatures, overexpression of VvBAP1 also
enhanced antioxidant enzyme activity as well as their corresponding gene transcription
levels, to reduce the accumulation of reactive oxygen species and lipid peroxidation.
Besides, the transcriptional activities of HSP70, HSP101, HSFA2, and HSFB1 in VvBAP1
overexpressing Arabidopsis plants were significantly up-regulated compare to the wild
type. In summary, we propose that VvBAP1 may play a potential important role in
enhanced grapevine thermoresistance, primarily through the enhancement of antioxidant
enzyme activity and promoted heat stress response genes expression.
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INTRODUCTION

Temperature is considered one of the critical factors directly
influence grapevine more the three primary growth and
development stages: sprout, flowering and fruit-coloring
(Lorenz et al., 1995). Both yield and quality of grapevine are
reduced when encountered high temperatures (Wahid et al.,
2007). Therefore, high temperature is one of the principal
limiting factors in the development of grapevine economic
industry worldwide. Through climate prediction models, the
Intergovernmental Panel on Climate Change predicted an
increase in global mean temperatures between 1.5°C and 5°C
during the 21st century. Also, global warming will likely
accompany with more frequent and powerful extreme
temperature events (Lobell et al., 2008). Thus, revealing the
mechanism of the grapevine thermoresistance has become a
vital research topic that provides a reliable theoretical basis for
grapevine breeding.

When exposed to a high-temperature conditions, a series of
injuries in plants, including protein misfolding and denaturation,
irreversible loss of enzyme activity, and disruption of cellular
structural components, occur (Schöffl et al., 1998; Howarth,
2005). These damaging events ultimately caused a severe
reduction in the net photosynthetic rate and ion flux, excessive
production of reactive oxygen species (ROS), such as hydrogen
peroxide (H2O2) and superoxide (O−

2 ), thus inhibition of plant
growth (Bokszczanin et al., 2013). To maintain metabolic
homeostasis under heat stress that the organisms can survive
and even multiply, plants have formed physiological,
biochemical, cellular, and molecular regulatory mechanisms to
precisely regulate thermoresistance (Bartels and Sunkar, 2005;
Zhuang et al., 2014).

As ROS induced by heat stress may cause oxidative damage,
plants have also evolved a unique ROS scavenging systems, like
superoxide dismutase (SOD), catalase (CAT), ascorbate
peroxidase (APX), peroxidase (POD) and other antioxidant
enzymes, might work with synergy to reduce accumulation of
cellular ROS and attenuate oxidative injury to plants (Mittler
et al., 2011). Additionally, more and more results have indicated
that heat shock proteins (HSPs) are important molecular
chaperones that ensure protein proper folding, which are
essential to help plants acquire thermotolerance (Chen et al.,
2011). Moreover, the small HSP (sHSP) and heat stress
transcription factors (HSFs) were also reported to help plant
growth and development under heat stress (Qu et al., 2013).

Grape (Vitis vinifera L.) is one of the most essential economic
fruit crops throughout the world. In recent years, China has the
most productive and second most widely cultivated area of
grapevine worldwide. However, the fruit yield and quality of
grapevine are often highly influenced by extreme climatic
conditions, especially heat stress (Szenteleki et al., 2012). In
many main centers of origin for grapevine, the daily maximum
temperature can often surpass 40°C, even beyond 45°C, which
has seriously limited the development of the grapevine economic
industry (Salazar-Parra et al., 2010; Pillet et al., 2012). However,
in elucidating the response and adaptation of grapevine to heat
Frontiers in Plant Science | www.frontiersin.org 2
stress, immense efforts have been put into exploring the
physiological and morphological changes. Recently, many
studies have offered unique insights into understanding the
heat stress responses of grapevine via transcriptomic and
proteomic analyses (Kosová et al., 2011; Jiang et al., 2017). In
grapevine leaves, several sHSPs and APX encoding genes
identified as playing significant roles in thermotolerance (Liu
et al., 2012). Previous transcriptome data have revealed high
transcript levels of a series of VvHSF genes such as VvHSFA1a,
VaHSFA1a, VvHSFA2a, VaHSFA2a, and VvHSFB2b in Vitis
vinifera or Vitis amurensis, permitting adaptation to heat stress
(Liu et al., 2012; Xin et al., 2013; Rocheta et al., 2014; Xu et al.,
2014). Additionally, VvHSFA2a expression is up-regulated in
grapevine berries during heat stress (Pillet et al., 2012). Similarly,
it has been demonstrated that the VvHSFB2b homologous gene
VpHSFB2b is related to heat resistance in Chinese wild grape
Vitis pseudoreticulata (Peng et al., 2013). Hu et al. (2016)
reported ten VpHSFs, especially VpHSFB1a, VpHSFC1a,
VpHSFA2a, VpHSFA3a, and VpHSFA6a were markedly up-
regulate exposed to heat stress, the results suggest that their
positive regulation roles of heat stress responsive in Vitis
pseudoreticulta. Furthermore, the transcription of galactinol
synthase gene, VvGOLS1 was detected significantly as up-
regulated in grape berries under high temperature conditions
(Pillet et al., 2012). Although numerous genes that relate to
grapevine thermotolerance have been recognized, knowledge
about the precise functions and molecular mechanism are
largely unknown at the present time.

In Arabidopsis, AtBAP1 (BON1 ASSOCIATED PROTEIN 1)
has been demonstrated to belong to C2 domain phospholipid-
binding protein as a functional partner of AtBON1 (BONZAI1).
AtBON1 encodes a highly conserved protein containing two C2
domains at the N-terminus, is involved in cell death regulation
and defense responses (Hua et al., 2001). Arabidopsis AtBON1-
deficient mutant displayed reduced plant height at the optimum
growth temperature, and that overexpression of AtBAP1 could
compensate for the dwarf phenotype of the bon1-1 mutant,
indicating these two proteins have similar biological functions
(Hua et al., 2001; Yang and Hua, 2004). Subsequent study has
shown that AtBAP1 could suppress programmed cell death
induced by virulent pathogens and ROS (Yang et al., 2007).
Furthermore, the transcription factor AtICE1 can bind to the
promoter of AtBAP1, thus promoting the elevated transcription
level of AtBAP1 under cold stress (Zhu et al., 2011). However,
the biological role of BAP1 in grapevine has not been
fully elucidated.

In our previous study, we cloned and functionally
characterized VvBAP1 from the grapevine ‘F-242’ as the
nearest orthologue to AtBAP1 (Zhang et al., 2014). Then, we
found that VvBAP1 was correlated with the cold resistance in
grapevine, VvBAP1 could regulate the soluble sugar content and
enhance antioxidant enzyme activities, thereby promoting the
grape cold resistance (Hou et al., 2018). Recently, Cao et al.
(2019) demonstrated that VvBAP1 may functioning as an
important factor in suppressing grape berries cell death, its
transcript was significantly inhibited by drought stress.
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However, further studies should be conducted to examine
whether VvBAP1 involved in the heat tolerance of grapes.
Thus, we evaluated VvBAP1 expression in cultivars of
grapevine that are known to exhibit different responses to heat
stress conditions. Further, the VvBAP1-overexpressing
Arabidopsis plants were used to analyze the physiological
functions of VvBAP1 by measuring a series of physiological
indexes relevant to heat stress response, with an aim of
revealing the VvBAP1-mediated mechanisms which are
inducing thermoresistance in grapes.
MATERIALS AND METHODS

Plant Materials and Growth Conditions
Shoots (with buds) of four grape (Vitis vinifera L.) cultivars
named ‘Chardonnay’, ‘Cabernet Sauvignon’, ‘Zuoyouhong’ and
‘Beta’ served as explants. The shoots were rinsed with water
overnight, and surface sterilized with 75% (v/v) ethanol for 30 s,
followed by 0.1% HgCl2 for 8 min. After that, the explants were
washed 3-5 times with sterile water. Next, a pair of scissors was
used to cut approximately 2-3 cm of stem segment, leaving the
apical bud intact. The explants were cultured on sterile MS solid
medium (half strength) containing 0.57 mM IAA (indole acetic
acid). Culture conditions were as follows: 12 h light/12 h dark
cycle (light intensity of 200 mmol·m-2·s-1); 25 ± 1°C. The tissue
culture seedlings were used in experiments after 40-55 days.

Wild type Arabidopsis thaliana used herein was of the ecotype
Columbia (Col-0). The transgenic Arabidopsis plants
overexpressing VvBAP1 (OEVvBAP1-38 and OEVvBAP1-40) were
described in our previous study (Hou et al., 2018). Regarding plant
growth, we surface sterilized the Arabidopsis seeds and maintained
them at 4°C for 72 h. After that, they were germinated and cultured
on sterile MS solid medium at 22 ± 1°C under a 16 h light/8 h dark
cycle (light intensity of 120 mmol·m-2·s-1).

Heat Stress Treatment
To test the response ofVvBAP1 to high temperature, the 45-55 days
old grape subcultured seedlings were placed in a growth chamber at
40°C for 0, 3, 6, 9, 12, 18, and 24 h. Control plants were maintained
at 25 ± 1°C. At the end of each time point, the leaves were sampled
then preserved in liquid nitrogen for RNA extraction.

Regarding Arabidopsis seed germination analysis, the seeds
were maintained for 6 h at 45°C prior to germination. Seeds for
each genotype were sown (300 per plate) on the same MS solid
medium and maintained at 22°C under constant light (60
mmol·m-2·s-1). The seeds were not received, 45°C treatment was
used as the control. Seeds that exhibited a clear protrusion of the
radicle via the seed coat were considered germinated. The
number of germinated seeds were recorded after every 12 h
during the experiment.

Seven-day old seedlings of each genotype Arabidopsis were
placed at 45°C for 2 h, then maintained them to continue to
cultivate for 2-3 days at 22°C. The 4 weeks phase seedlings of
each genotype Arabidopsis were treated at 42°C for 8 h, then
plants were recovered to grow at 22°C for 10 days. Then the
Frontiers in Plant Science | www.frontiersin.org 3
phenotypes were observed, and the survival rates were measured.
Control plants were cultured at 22°C ± 2°C.

The 4 weeks phase seedlings of each genotype Arabidopsis
were treated at 45°C for 2 h, then the change electrolyte leakage,
malondialdehyde (MDA) content, SOD, POD, CAT and APX
activities, expression levels of Cu/Zn SOD, POD2, CAT1, CAT2,
CAT3, APX1, APX2 and heat response-related gene were tested.

qRT-PCR
We employed the CTABmethod (Iandolino et al., 2004) to extract
total RNA from the leaves of the experimental plants. The RNA
was then reverse transcribed to cDNA using the Prime Script RT
reagent Kit with the Gdna Eraser (TaKaRa, Dalian, China). The
MyiQ Real-Time PCR Detection System (Bio-Rad, USA) was used
to perform RT-PCR. SYBR green I (BioWhittaker Molecular
Applications) was included in the reaction master mix. The
following reaction conditions were used: 95°C for 60 s; 40 cycles
of 95°C for 10 s; 56°C for 20 s; and 72°C for 15 s. Each experiment
containing three replicateswas repeated at least thrice.Relative gene
expression was determined using the 2-DDCT method (Livak and
Schmittgen, 2001). Genes AtACTIN2 or VvACTIN served as
internal control for Arabidopsi and grape, respectively. Table S1
shows the primers used in the qRT-PCR experiments.

MDA Content and Electrolyte Leakage
MDA content was estimated by the method as described
previously (Ding et al., 2007). Briefly, 0.1 g leaves were ground
into homogenate in 1 ml 10% (w/v) trichloroacetic acid (TCA),
and then supernatant was collected by centrifugation for 10 min
at 4000 rpm. Next, 500 ml of the supernatant was added to equal
volume of 10% (w/v) TCA, containing 0.6% (w/v) thiobarbituric
acid (TBA). The mixture was then incubated at 100°C for 15 min,
and then centrifuged for 10 min at 4000 rpm after cooling to
room temperature. The absorbance of the mixture was measured
at 532 nm then adjusted at 600 nm for non-specific absorbance.
The quantity of MDA was computed from the extinction
coefficient of 155 mM−1 cm−1 and presented as mmol kg−1, in
which one unit was equivalent to 1 mmol MDA per kg of pulp.

Electrolyte leakage from the leaf discs were determined as per
the methods described previously (Zhao et al., 2009), with a few
variations. In brief, we rinsed the treated leaves with deionized
(DI) water and left then to dry. Next, the leaf discs were obtained
using a circular borer, and then soaked in DI water at 25°C for
1 h. The electrical conductivity (EC1) of the leakage solution
from the leaf discs was detected with a conductivity meter (YSI
model 55). Then, the mixture was brought to a boil for 10 min.
Both total ionic strength and the electrical conductivity (EC2)
were measured after cooling the solution to room temperature.
The formula below was used to calculate the relative permeability
of the membrane: EC1/EC2 × 100%.

Each experiment contained three biological replicates and
was repeated at least thrice.

Measurement of Chlorophyll Content and
Photosynthetic Rate
A portable chlorophyll meter (SPAD-502PLUS, Minolta, Tokyo,
Japan) was used to measure the chlorophyll content. The rate of
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photosynthesis was assessed using a liquid-phase oxygen
measurement system (CHLOPOLAB-2, Hansatech, King’s
Lynn, UK), following the instructions provided by the
manufacturer. While taking the measurements, plants were
maintained in 200 mmol m−2 s−1 light intensity at 25°C.

Detection of Reactive Oxygen
Species (ROS)
Reactive oxygen species (ROS) accumulation was determined by
assessing the levels of superoxide (O−

2 ) and hydrogen peroxide
(H2O2) via histochemical staining. We performed 3,3’ -
diaminobenzidine (DAB) and nitro-blue tetrazolium (NBT)
staining according to previous publication (Wang K. et al.,
2017). Each treatment, rosette leaves were picked and soaked in
DAB (1 mg mL–1, pH 3.8) or NBT solution (0.1 mg mL-1) at 25°C
for 8 h, and then photographed and subjected to analysis after
sufficient bleaching in boiling 75% (v/v) ethanol. The quantitative
measurements of H2O2, (O

−
2 ) were performed according to Zhang

et al. (2011). At least three experiments were performed, each
experiment contained three biological replicates.

Measurement of Antioxidant
Enzyme Activity
The frozen leaves samples (0.6 g) were ground into homogenate
in ice-cooled 0.1 M phosphate buffer (pH 7.6) containing 0.5 mM
EDTA, and then supernatant was obtained by centrifugation at
12,000 rpm for 10 min at 4°C. The supernatant was collected to
determinate antioxidant enzymes activities. CAT activity was
measured by the previously reported protocol (Aebi, 1984), and
absorbance was taken at 240 nm. The activity of SOD and POD
were investigated according to the Liang et al. (2015) method
with minor changes. The activity of APX was evaluated as per the
methods described previously (Wang L. et al., 2017). At least
three experiments were performed, each experiment was
performed in biological triplicate. The result from one set of
experiments is provided here.

Statistical Analysis
Statistical analysis for all experiments were performed using SAS.
Differences between multiple treatments were analyzed using
one-way ANOVA and means separated by Tukey’s HSD test (P <
0.05). Data are mean values of three independent biological
replicates ± SE.
RESULTS

Expression Profiles of VvBAP1 in Grape
Cultivars Leaves With Different
Thermotolerance
In order to evaluate the potential role for VvBAP1 in the
grapevine resistance to heat stress, we first detected
the distinction between VvBAP1 expression profiles in the
grapevine varieties with different thermotolerance. The
transcript level of VvBAP1 in the leaves of resistant cultivars
‘Zuoyouhong’ and ‘Beta’ were markedly higher compare to the
Frontiers in Plant Science | www.frontiersin.org 4
other two sensitive grapevine cultivars ‘Cabernet Sauvignon’ and
‘Chardonnay’ under non-stressed conditions. After heat stress,
the VvBAP1 transcript level in all grapevine cultivars increased
significantly, and VvBAP1 from ‘Zuoyouhong’ and ‘Beta’ were
more sensitive to high temperature, as its transcript level
increased much higher compare to that from ‘Cabernet
Sauvignon’ and ‘Chardonnay’ (Figure 1A). In the follow-up
experiment, we further used the tissue culture seedlings of the
sensitive cultivars ‘Chardonnay’ and the resistant cultivar
‘Zuoyouhong’ to analyze the expression pattern of VvBAP1
with 40°C treatment. The results indicated VvBAP1 was
significantly induced in the two grapevine cultivars by high-
temperature, showing the highest transcriptional expression at
9 h. Besides, the transcript level of VvBAP1 in ‘Zuoyouhong’ was
always significantly higher than that in ‘Chardonnay’ (Figure
1B). These data suggest that VvBAP1 could play an essential
function in heat stress response in the grapevine.
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Effect Of VvBAP1 Overexpression on the
Growth of Transgenic Arabidopsis Plants
Under Heat Stress
In order to further analyze the physiological function of VvBAP1
in the heat stress tolerance, the VvBAP1-overexpressing
Arabidopsis plants, which have been reported in our previous
research (Hou et al., 2018), were used for seed germination and
Frontiers in Plant Science | www.frontiersin.org 5
phenotypic analysis under heat stress. The results of the seed
germination rate showed that there was no substantial difference
between the seeds of each genotype under non-stressed
conditions (Figure 2A), when germinated after heat stress
treatment, all plants displayed a significant reduction in seed
germination percentages, and the two ectopic overexpressing
lines showed faster germination rate compared to the wild type
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(Figure 2B). When grown under non-stressed conditions, all the
plants exhibited similar phenotypes. However, after heat
treatment, the VvBAP1-overexpressing Arabidopsis exhibited
better growth than wild type plants (Figures 2C, E), and the
transgenic lines displayed obviously higher survival rates
compared to the wild type (Figures 2D, F). These results
indicated that VvBAP1 did indeed improve resistance to heat
stress in plants.

Effects of VvBAP1 Overexpression on
Physiological Indexes of Transgenic
Arabidopsis Plants Under Heat Stress
To further investigate the function of VvBAP1 in regulating
thermoresistance, the electrolyte leakage and MDA content in
leaves of VvBAP1-overexpressing Arabidopsis and the wild type
was analyzed. We found that there was no apparent differences in
the electrolyte leakage and MDA content between each genotype
plants under non-stressed conditions. However, all the plants
exhibited a remarkable increase in the MDA content and
electrolyte leakage following heat treatment, and this was more
significant in wild type, relative to the transgenic plants (Figures
3A, B). These findings demonstrated that VvBAP1 has a positive
role in improving the cytomembrane stability to enhance heat
resistance in plants further.

Studies have shown the plant photosynthesis can be
suppressed early following exposure to high temperature
Frontiers in Plant Science | www.frontiersin.org 6
(Larkindale et al., 2005; Allakhverdiev et al., 2008). Given this,
we explored the impact of heat stress on chlorophyll content and
photosynthetic rate. As shown in Figure 3C, under non-stressed
conditions, transgenic lines exhibited marginally higher
chlorophyll content, relative to the wild type plants. Heat stress
exerted no substantial impact on the transgenic plants’
chlorophyll content, but dramatically reduced that of the wild
type. The photosynthetic rate of each genotype of plants declined
after heat stress treatment. However, the photosynthetic rate of
VvBAP1-overexpressing lines was considerably higher compared
to the wild type (Figure 3D). These provide further evidence that
the photosynthetic ability of plants overexpressing VvBAP1 was
less affected when compared with the wild type under high-
temperature condition, which could be a reason for the VvBAP1-
mediated increase tolerance to heat stress.

Changes in the Levels of Accumulated
ROS in VvBAP1-Overexpressing
Arabidopsis Leaves Under Heat Stress.
When plants are subjected to heat stress, oxidative damage
caused by excessive of ROS production was identified as a
critical limiting factor in plant growth by disrupting
macromolecules and cytomembrane (Miller et al., 2007;
Larkindale and Vierling, 2008). Consequently, the effects of
heat stress on the contents of H2O2 and (O−

2 ) were measured
by the histochemical detection in the leaves of each genotype
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plants. When stained separately with DAB and NBT, which were
applied to evaluate H2O2 and (O

−
2 ) accumulation, the leaves were

similarly and lightly stained under non-stressed condition. In
contrast, the leaves of the wild type displayed more intense
brown coloration or blue patches, relative to the leaves of
transgenic plants after heat stress (Figures 4A, B). These
results showed that high temperature led to increased ROS
production such as H2O2 and (O−

2 ), while those in transgenic
plants were significantly lower, relative to the wild type. These
findings were confirmed further by conducting quantitative
assays (Figures 4C, D).

Overexpression of VvBAP1 Enhanced the
Activities of ROS-Scavenging Under
Heat Stress
As is well known, the measurement of the activity of ROS-
scavenging enzymes has been extensively applied to analyze the
resistance to stress in plants (Suzuki et al., 2011).The main
antioxidant enzymes include SOD, POD, CAT and APX could
work together to reduce cellular ROS accumulation and
attenuate oxidative injury to plants (Xu et al., 2016). Thus, we
Frontiers in Plant Science | www.frontiersin.org 7
assessed the activity of these four enzymes, and the relative
expression of their corresponding genes Cu/Zn SOD, POD2,
CAT1, CAT2, CAT3, APX1 and APX2. The results showed that
heat stress increased antioxidant activities and up-regulate
transcription of their corresponding genes in all plants.
Compared with the wild type, overexpression of VvBAP1
enhanced the increase in antioxidant activities well as their
corresponding genes transcription levels induced by heat stress
(Figures 5A–K). Collectively, these data suggested that
overexpress VvBAP1 enhanced the antioxidant enzyme activity
by promoting the expression of genes encoding those enzymes in
vivo, resulting in reduced levels of ROS under heat stress

VvBAP1 Is Involved in Heat Tolerance by
Enhancing Heat Response-Related
Gene Expression
Apart from the antioxidant system, HSPs, often regarded as
important molecular chaperones that ensure proper protein
folding, which is vital in the growth and development of plants
under the high-temperature conditions (Hahn et al., 2012).
Moreover, HSFs are related to the direct regulation the
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transcriptional level of heat stress-induced genes (Baniwal et al.,
2004). We assessed the changes in the transcript abundances of
HSP70, HSP101, HSFA2, HSFB1, and HSFB2a. After heat
treatment, these genes were markedly up-regulate in all
genotype plants, especially HSP70, HSP101, and HSFA2. Their
transcript level was induced hundreds of times. Additionally, the
transcript abundances of HSP70, HSP101, HSFA2, and HSFB1 in
transgenic plants were much higher compared to the wild type
(Figures 6A–E). These results suggested that the increased HSPs
Frontiers in Plant Science | www.frontiersin.org 8
and HSFs transcription might be relevant to VvBAP1-mediated
heat stress response in grapevine, which may have improved the
transgenic plants thermoresistance.
DISCUSSION

Temperature is considered as one of the critical factors directly
influencing grapevine during the three primary growth and
Non-stress Heat stress

SO
D

 a
ct

iv
it

y 
(m

g.
g-1

 F
W

)

0

10

20

30

40

50
WT
OEBAP1-38
OEBAP1-40

a

d

c

d d

b

Non-stress                 Heat stress

Non-stress Heat stress

A
P

X
 a

ct
iv

it
y 

( µ
m

ol
.m

in
-1

.g
-1

 F
W

)

0

2

4

6

8

10

12
WT
OEBAP1-38
OEBAP1-40

a

d

c

d d

b

Non-stress                 Heat stress

Non-stress Heat stress

R
el

at
iv

e 
ex

pr
es

si
on

 o
f C

A
T

1

0

1

2
WT
OEBAP1-38
OEBAP1-40

a

b

a

b
b

a

Non-stress                 Heat stress

Non-stress Heat stress

R
el

at
iv

e 
ex

pr
es

si
on

 o
f A

P
X

1

0.0

.5

1.0

1.5

2.0

2.5

3.0
WT
OEBAP1-38
OEBAP1-40

a

b

a

b
b

a

Non-stress                 Heat stress

Non-stress Heat stress

P
O

D
 a

ct
iv

it
y 

(m
in

.g
-1

 F
W

)

0

20

40

60

80

100

120

140

160
WT
OEBAP1-38
OEBAP1-40

a

c

b

c c

a

Non-stress                Heat stress

Non-stress Heat stress

R
el

at
iv

e 
ex

pr
es

si
on

 o
f C

u/
Z

nS
O

D

0

2

4

6

8

10

12

14
WT
OEBAP1-38
OEBAP1-40

a

d

c

d d

b

Non-stress                Heat stress

Non-stress Heat stress

R
el

at
iv

e 
ex

pr
es

si
on

 o
f C

A
T

2

0

1

2

3

4

5

10
15
20
25
30 WT

OEBAP1-38
OEBAP1-40

a

d

c

d d

b

Non-stress                Heat stress

Non-stress Heat stress

R
el

at
iv

e 
ex

pr
es

si
on

 o
f 

A
P

X
2

0

1

2

3

4

5
100

200

300

400

500
WT
OEBAP1-38
OEBAP1-40

a

d

c

d d

b

Non-stress                Heat stress

Non-stress Heat stress

C
A

T
 a

ct
iv

it
y 

(m
g.

g-1
 F

W
)

0

10

20

30

40

50
WT
OEBAP1-38
OEBAP1-40

a

d

c
d

d

b

Non-stress                Heat stress

Non-stress Heat stress

R
el

at
iv

e 
ex

pr
es

si
on

 o
f 

P
O

D
2

0

1

2

3

4

5

20

40

60

80

100
WT
OEBAP1-38
OEBAP1-40

a

d

c

d
d

b

Non-stress                Heat stress

Non-stress Heat stress

R
el

at
iv

e 
ex

pr
es

si
on

 o
f C

A
T

3

0

2

4

6

8

10

12
WT
OEBAP1-38
OEBAP1-40

a

d
c

d
d

b

Non-stress                Heat stress

A B C

D E F

G H I

J K

FIGURE 5 | Effects of heat stress on ROS-scavenging enzymes of VvBAP1-overexpressing Arabidopsis leaves. The activity of CAT (A), POD (B), CAT (C) and APX (D),
the expression of SOD1 (E), POD2 (F), CAT1 (G), CAT2 (H), CAT3 (I), APX1 (J) and APX2 (K) in the leaves of overexpressing lines under heat stress (45°C for 2 h).
Each experiment was conducted thrice. Values are the means ± SE of three independent experiments (P < 0.05). Lower-case letters above bars denote significant
differences attested by Tukey’s HSD test.
November 2020 | Volume 11 | Article 544374

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Ye et al. VvBAP1 Involved in Heat Tolerance
development stages: sprout, flowering, and fruit-coloring
(Lorenz et al., 1995), which are strongly correlated to the yield
and quality of grape (Bonnefoy et al., 2013; Bonada and Sadras,
2015; Fraga et al., 2016). However, the grapevine is frequently
exposed to a high-temperature condition detrimental to growth
(Pereira et al., 2014). Thus, revealing the mechanism of the
grapevine thermoresistance is a vital research topic that provides
a reliable theoretical basis for grapevine breeding. Increasing data
on transcriptomic and proteomic analyses have provided
neoteric insights for elucidating the potential molecular
mechanism of the grapevine thermoresistance (Liu et al., 2012;
Carbonell-Bejerano et al., 2013; Liu et al., 2014; George et al.,
Frontiers in Plant Science | www.frontiersin.org 9
2015). However, understanding their precise functions and
molecular mechanism in heat resistance of those genes and
protein remains clarified at the present time. In this study, the
underlying physiological and molecular mechanisms of VvBAP1
from grapevine were preliminarily explored in response to
heat stress.

BAP1 has been demonstrated to belong to C2 domain
phospholipid-binding protein; it could suppress programmed
cell death in Arabidopsis induced by virulent bacterial or
oomycete pathogens (Yang et al., 2006; Yang et al., 2007).
Later study has shown that low temperatures could induce
the AtBAP1 transcription level elevate in Arabidopsis
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(Zhu et al., 2011). To reveal the biological functions of VvBAP1
in grapevines, We cloned VvBAP1 from the resistant grapevine
cultivar ‘F-242’and functionally characterized it as the nearest
orthologous to AtBAP1 in our previous reports (Zhang et al.,
2014). Then, we found that VvBAP1 was correlated with the cold
response process in grapevines, VvBAP1 could regulate the
soluble sugar content and enhance antioxidant enzyme
activities, thereby promoting the grape cold resistance (Hou
et al., 2018). In the research presented here, we showed that the
elevated expression ofVvBAP1was higher in the resistant cultivars
compare to that from sensitive cultivars under high temperature
conditions (Figure 1A). Furthermore, The qRT-PCR results
indicated VvBAP1 was significantly induced by high-
temperature; the highest level of expression was shown at 9 h
(Figure 1B). These data imply that VvBAP1 probably positively
affects the grapevine heat stress response. In the follow-up
experiment, we further used the VvBAP1-overexpressing
Arabidopsis plants to analyze the physiological functions of
VvBAP1 in heat stress response. Seed germination and
phenotypic analysis results indicated that overexpression of
VvBAP1 improved Arabidopsis thermoresistance (Figures 2A–F).

As is well known, the measurement of electrolyte leakage
contents in leaves has been extensively applied to analysis plant
cell membrane damage under abiotic stresses (Moore and
Roberts, 1998). MDA, the end lipid peroxidation product
induced by ROS, are widely used as a marker of ROS-mediated
injuries for plants (Bajji et al., 2002). The contents of chlorophyll
have been commonly utilized to index the heat stress impact on
photosynthesis in plants (Zhou et al., 2014; Wang X. L. et al.,
2017). Thus, we measured electrolyte leakage, MDA content,
chlorophyll contents, and net photosynthetic rate to evaluate the
role of VvBAP1 in the transgenic Arabidopsis plants under heat
stress. The results found that the wild type showing obviously
higher in the cell electrolyte leakage and MDA content compared
to the transgenic plants, indicating the positive effects of VvBAP1
especially on heat resistance in plants by improving the stability
of the cytomembrane (Figures 3A, B). Additionally, the
decreases of chlorophyll concentration and photosynthetic rate
in transgenic plants leaves were not as apparent as in the wild
type leaves under heat stress (Figures 3C, D).

Oxidative damage caused by excessive ROS production was
identified as one of the principal limiting factors in plant growth
under high temperatures (Hossain, 2015). Previous research has
found that increased ROS levels in heat-sensitive rice are
significantly more evident compared to the resistant rice under
the high-temperature conditions, indicating that ROS
accumulation is closely related to thermoresistance in plants
(Zhao et al., 2018). In this study, high temperature led to
increased ROS production such as H2O2 and (O−

2 ), while those
in transgenic plants markedly decreased, relative to the wild type
(Figures 4A–D). These data suggested that overexpressing
VvBAP1 suppressed ROS excessive accumulation, which
contributed to mitigating oxidative injury to plants caused by
heat stress. SOD, POD, CAT, and APX have been recognized as
important ROS scavengers to play a crucial function in heat stress
response, their activity levels are directly associated with the
Frontiers in Plant Science | www.frontiersin.org 10
acquisition of the thermotolerance in plants (Haider et al., 2017).
For instance, the mutants that lacked the capacity to eliminate ROS
were significantly weaker in basal thermotolerance (Larkindale
et al., 2005). In addition, overexpression of TaFBA1 enhanced-
transgenic tobacco basal thermotolerance by improving
antioxidant enzyme activity and reducing accumulation of ROS
(Li et al., 2018). Similarly, the antioxidant enzyme-encoding genes
have been extensively applied to analyze ROS responsive and
oxidative stress. In this study, we also found that compared with
the wild type, overexpression of VvBAP1 enhanced the increase in
antioxidant activities well as their corresponding gene transcription
levels induced by heat stress (Figures 5A–K). The results suggested
that overexpression of VvBAP1 increased the antioxidant enzyme
activity by promoting the expression of genes encoding those
enzymes in vivo, leading to reduced ROS level, resulting in
enhanced plant thermoresistance.

HSPs, often regarded as critical molecular chaperones that
ensure proper protein folding, are essential to help plants acquire
thermotolerance under the high-temperature conditions (Hahn
et al., 2012). For example, HSP70 is significantly induced by high
temperatures in grapevines (Morrell et al., 1997; Zhang et al.,
2005). Besides, HSFs are related to the direct regulation the
transcriptional level of heat stress-induced genes (Baniwal et al.,
2004). It was previously reported that VvHsfA1a, VvHsfA2a,
VvHsfB1, and VvHsfB2A were markedly up-regulated in Vitis
vinifera L during heat stress (Xin et al., 2013; Rocheta et al.,
2014). Therefore, we detected the HSP70, HSP101, HSFA2,
HSFB1 and HSFB2a expression in transgenic plants. The
results of qRT-PCR revealed that the transcript abundances of
HSP70, HSP101, HSFA2, and HSFB1 in VvBAP1 overexpressing
Arabidopsis plants were markedly up-regulated compare to the
wild type (Figures 6A–E). These data suggested that the
increased HSPs and HSFs transcription might be relevant to
VvBAP1-mediated heat stress response in grapevine.

In summary, we propose that VvBAP1may play a potentially
important role in enhanced grapevine thermoresistance, mainly
by a combination of increased antioxidant enzyme activity and
promoted heat stress response genes expression. Heat stress has
been shown to induce Ca2+ accumulation, in order to regulate
HSPs transcription and plant thermotolerance (Zhang et al.,
2009; Liu et al., 2010). Whether Ca2+ regulates the affinity of
VvBAP1 binding to its phospholipids substrate and therefore is
involved in the heat stress response signaling network, will be
necessary to investigate in follow-up experiments. In our
previous study, the VvBAP1 promoter has the MBS element
binding with the MYB transcription factor (Hou et al., 2018).
The MYB family is one of most crucial transcription factor
families involved in regulating the physiological process such as
development, metabolism, and stress response in plants (Dubos
et al., 2010). There is a need to conduct further studies to
determine whether MYB transcription factors involved in
response to heat stress in grapevine. If so, can MYB
proteins act as regulators and directly bind to the MBS
element within VvBAP1 promoter to enhance VvBAP1
expression? These research questions will form the subject of
future studies.
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