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Increased plant density markedly affects canopy morphophysiological activities and crop
productivity. This study aims to model maize canopy final morphology under increased
interplant competition by revising a functional–structural plant model, i.e., ADEL-Maize.
A 2-year field experiment was conducted at Mengcheng, Anhui Province, China, in 2016
and 2018. A randomized complete block design of five plant densities (PDs), i.e., 4.5,
6, 7.5, 9, and 15 plants m−2, with three replications was applied using a hybrid, i.e.,
Zhengdan 958. Canopy morphology at different PDs was measured with destructive
samplings when maize canopy was fully expanded. The relationship of changes of organ
morphology in relation to increased plant density was analyzed based on 2016 data. The
ADEL-Maize was first calibrated for the hybrid at 4.5 plants m−2 and then revised by
introducing relationships identified from 2016 data, followed by independent validation
with 2018 field data. A heatmap visualization was shown to clearly illustrate the effects
of increased plant density on final morphology of laminae, sheaths, and internodes.
The logarithmic + linear equations were found to fit changes for the organ size versus
increased plant density for phytomers excluding ear position or linear equations for the
phytomer at ear position based on 2016 field data. The revision was then further tested
independently by having achieved satisfactory agreements between the simulations and
observations in canopy size under different PDs with 2018 field data. In conclusion, this
study has characterized the relationship between canopy morphology and increased
interplant competition for use in the ADEL-Maize and realized the simulations of final
size of laminae, sheaths, and internodes, as affected by increased plant density, laying
a foundation to test an ideotype for maize withstanding high interplant competition.

Keywords: Zea mays, functional-structural plant modeling, interplant competition, crop ideotype, canopy
photosynthesis

INTRODUCTION

Greater crop productivity and grain quality are required to ensure current and future food security
due to continuous expansion of a large population and climate change (Ray et al., 2013; Long et al.,
2015). Increasing sowing density is a common maize cultivation practice in China as it is in other
countries due to limited land for such a large population (Al-Naggar et al., 2015; Liu et al., 2017).
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Maize production improvement, in particular, has been due to the
greater tolerance of increased plant density (PD) (Tokatlidis and
Koutroubas, 2004; Ci et al., 2011) by altering canopy architecture
with erect leaves at the top and flat leaves at the bottom (Zhu
et al., 2012), made available by the efforts of plant breeders
(Chen et al., 2016). However, when PD surpasses a certain limit,
there will be a significant loss of maize grain yield due to the
diminishing photosynthesis, asynchronous anthesis-silking, and
ovary abortion (Sanoi, 2000; Tokatlidis and Koutroubas, 2004;
Al-Naggar et al., 2015). However, it is harder to push the limit
of PD levels further at this stage due to the shortage of sugar
supply (Ciampitti and Vyn, 2011). Thus, it is a straightforward
strategy to improve canopy photosynthetic capacity during the
flowering stage when kernel set is being determined under high
interplant competition (Ciampitti and Vyn, 2011; Long et al.,
2015; Liu et al., 2017).

The light distribution within crop canopies is dependent upon
the features of plant canopy architecture, such as leaf number,
leaf size, shape, curvature, and leaf inclination and azimuth,
which is highly spatiotemporally variable. Crop architecture with
erect leaves at the upper layer of the canopy has been bred,
known as a compact canopy type, which allows irradiance to
penetrate the canopy, reaching the bottom leaves for a greater
entire canopy photosynthetic capacity (Hammer et al., 2002; Zhu
et al., 2012). However, the canopy architectural characteristics are
far from being well explored due to lack of powerful tools that
can test all combinations of architectural and eco-physiological
traits (Zhu et al., 2012; Rötter et al., 2015). Functional–structural
plant models (FSPMs) have been developed and widely used
as a tool in simulating plant architecture and physiological
functions under various environments (Drouet and Pagès, 2003;
Song et al., 2008; Ma et al., 2018). Thus, the FSPM enables
the component organization in the canopy to be determined
by virtual trials, by which an ideal canopy architecture, i.e.,
ideotype (Mock and Pearce, 1975) that optimizes the use of
various resource favoring canopy productivity may be achieved.
Using a method for digital plant reconstruction based on stereo
cameras to capture the architecture of five genetically diverse
rice varieties, Burgess et al. (2017) have studied the canopy-level
impact on photosynthetic efficiency and found that a plant type
with erectophile leaves allows more efficient penetration of light
into lower canopy layers, and this, in turn, leads to a greater
photosynthetic potential.

However, most of the research has focused on modeling
of individual plants (Yan et al., 2004), and it is relatively
rare for plant models to consider the impacts of interplant
competition with a few attempts (Fournier and Andrieu, 1999;
Ma et al., 2007, 2008) due to the complex interaction between
organ kinetics and environments (Ford, 2014). Consequently,
understanding how canopy responds to increased PD holds
great significance in designing optimal plant population density
and predicting maize canopy morphology under increased PD.
However, existing models do not take the density factor into
account. Given the growth and development of plants under
high density changed obviously, it is necessary to add the
density module into FSPMs. ADEL-Maize has been developed
in simulating three-dimensional (3D) canopy development in

an optimal environment based on L-system formalism (Fournier
and Andrieu, 1999). This model has provided an open framework
that allows incorporating new modules in accounting for
environmental effects. For example, this model was successfully
revised in predicting the impacts of drought stress on maize
canopy development by introducing the canopy response to
drought stress (Song et al., 2008). Consequently, ADEL-Maize
is a suitable platform that can be extended to simulate canopy
production under interplant competition.

Within the above context, the objectives of the present study
are to (i) calibrate the ADEL-Maize for a local hybrid at 4.5 plants
m−2; (ii) establish response functions of canopy production to
increased plant population densities; and (iii) revise and validate
the ADEL-Maize in simulating canopy morphology in response
to increased PDs.

MATERIALS AND METHODS

Field Experiments
A 2-year experiment was carried out at Mengcheng Agricultural
Sci-Tech Park, Anhui province, China (latitude 33◦09′N,
Longitude 116◦33′E) with a lime concretion black soil type in
2016 and 2018. The data in 2016 were reported in Sher et al.
(2018), and the data in 2018 are reported for the first time. Five
PD treatments with three replicates designed to induce differing
levels of interplant competition were used, and they are 4.5, 6,
7.5, 9, and 15 plants m−2 (referred to as PD4.5, PD6, PD7.5,
PD9, and PD15, respectively). A maize cultivar, i.e., Zhengdan
958 (referred to as ZD958), planted widely across China was
sown in east–west-oriented rows. Each plot was 9 m long and
5 m wide (eight rows). The row space was 0.6 m at each PD,
and the plant space was 0.38 m (PD4.5), 0.28 m (PD6), 0.22 m
(PD7.5), 0.19 m (PD9), and 0.11 m (PD15). The population from
4 to 7.5 plants m−2 is commonly used by local farmers for this
genotype. The five adjacent reference plants in a row representing
the average growth status at the middle of each plot were tagged
with plastic labels for leaves 5 and 10 to identify the phytomer
rank in guiding destructive samplings. In order to maintain non-
limiting conditions for water and nutrients, soil samples were
taken a few days prior to sowing to determine the nutritional
content, based on which base nutrients were used at a rate of
150 kg ha−1 for N, 112.5 kg ha−1 for P2O5, and 112.5 kg ha−1 for
K2O; an initial irrigation was applied at 900 cm3 ha−1, and the
subsequent irrigation depended on fully irrigated from sowing
to completion of canopy production. Maize seeds were manually
sown to achieve a designated density on June 12, 2016, and June
10, 2018. The weeds in the field were removed manually, and the
insect pests were rigorously controlled by appropriate pesticide.

Measurement of canopy morphology from each replicate, with
destructive sampling of plants, was carried out when the canopy
was fully expanded. The detailed approach has been described
(Song et al., 2015, 2016). The rank of each phytomer in the plant
was counted acropetally. In this study, we measured total and
fully expanded leaf number, length of lamina and sheath, lamina
maximum width, sheath average width, and internode length
and diameter for each phytomer during the destructive sampling.
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Only canopy size at full expansion was used for the analysis.
Daily meteorological data including maximum, minimum, and
mean temperature and precipitation from June to October in
both 2016 and 2018 were obtained from a standard local weather
station located nearby the experimental field. The precipitation
and average temperature from sowing to anthesis are shown
in Supplementary Figure 1. The total rainfall was 170.1 mm
in 2016 and 277.8 mm in 2018. It was a bit drier in 2016
compared to 2018. The average temperature was 27.5◦C in 2016
and 28.1◦C in 2018.

Modeling of Morphological Changes
Versus Increased Plant Density
Lamina length and width, sheath length and width, and internode
length and diameter are affected by increased PD (Andrieu
et al., 2006; Song et al., 2016). We attempted to establish the
relationships that organ final size changes as a function of PD
based on a series of levels of PD in this experiment. Thus,
the data were analyzed with different functions embedded in
Microsoft Excel.

Revision of ADEL-Maize
Calibration of Parameters for a Local Hybrid ZD958
The final canopy size, i.e., lamina length and width, sheath
length and width, and internode length and diameter, at different
phytomers for ZD958 at the lowest PD, i.e., 4.5 plants m−2, was
provided as the base value of canopy size. The total leaf number
was 18 in both seasons. The lower rank leaves at phytomers 1–5
cannot be considered due to early dropping off.

Insertion of Canopy Morphological Response to
Increased Plant Density
The module describing the relationships between canopy sizes,
i.e., lamina length (LL), lamina maximum width (LW), sheath
length (SL), sheath maximum width (SW), internode length
(IL), and internode diameter (ID) at different density levels
relative to PD4.5 and increased PD relative to 4.5 was added
to the ADEL-Maize model, and the 2018 dataset was used to
independently assess the performance of the revisions made to
ADEL-Maize using data from the 2016 experiment. The revised
model was used to predict the final length of leaf and internode
for each phytomer.

Validation of Model Simulations
To test the effects of simulation, we used a root mean square
error (RSME) to compare the simulation and observation. As
there are n sites in the comparisons, the index computed from
the observed values (OBSi) and the simulation values (SIMi)
is the normalized root mean square error (NRSME) (Loague
and Green, 1991). The simulation is considered excellent with
NRMSE ≤ 10%, good if 10–20%, fair if 20–30%, poor if >30%
(Jamieson et al., 1991).

NRMSE =

√
6n

1 (SIMi − OBSi)2

n
×

1
OBS
× 100% (1)

where SIMi and OBSi represent simulated and observed values,
respectively, and OBS represents the observed mean value.

Once validated, a visualization of integrative effects of the
maize canopy under PD4.5, PD6, PD7.5, PD9, and PD15,
respectively, in 2018 was presented visually to show the impacts
of increased PD.

RESULTS

Canopy Final Size Affected by Increased
Plant Density
The effects of increased PD on canopy final size at anthesis in
2016 are shown in Figure 1. The thermal time was calculated
as 992.6◦Cd at anthesis in 2016. Lamina length, lamina width,
sheath length, sheath width, internode length, and internode
diameter at different phytomers from 6 to 18 under 4.5 plants
m−2 were listed in the second column after phytomer rank
(Figure 1). In general, both lamina and sheath widths decreased
in response to increased interplant competition while lengths of
internodes increased and diameters of internodes were reduced
in response to increased PD, consistent with Andrieu et al.
(2006) and Song et al. (2016). In this study, the heatmap from
column PD6 to PD15 was further made to visually indicate
the impacts of increased PD from PD4.5 to PD6, from PD6
to PD7.5, from PD7.5 to PD9, and from PD9 to PD15 on
canopy morphology. The more greenness indicates a greater
increase due to increased PD, while the more reddish color
indicates a greater reduction. Lengths of both laminae and
sheaths increased in lower phytomers but decreased in upper
phytomers. Consequently, the heatmap is shown quite effective
to illustrate the impacts of increased PD with finer details
in retrieving the canopy position, organ types, and interplant
competition severity.

Derivation of the Relation Between
Organ Size and Increased Plant Density
The relationship between increased rates of organ size at different
densities and increased PD relative to PD4.5 in 2016 is shown
(Figure 2). The relationship was grouped as phytomers 6–11 (a–
p from top to base at first column), phytomer 12 (ear position,
b–q from top to base at second column), and phytomer 13–
18 (c–r from top to base at third column). For phytomers
6–11 or 13–18, the relationship cannot be fitted by a simple
function due to a large variation of the relationship with
phytomer position. To account for the effects of phytomer
position, we further fitted the relationship by logarithmic + linear
equations as Y(PD,PP) = Ao

∗In(PD) + Bo
∗PP + Co for

phytomers 6–11 and phytomers 13–18 (Ao, Bo, Co denote the
parameters, PD denotes plant density, PP denotes phytomer
position; o denotes organ type). For phytomer 12, the
relationship was found to be nicely fitted by linear equations
as Y = Do

∗PD + Eo (Do, Eo denote the parameters, o
denotes organ type).

The parameters for Ao, Bo, and Co in Table 1 and for Do,
Eo in Table 2 were provided based on the fitting for phytomers
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FIGURE 1 | Canopy final size composed of lamina length (A), sheath length (B), internode length (C), lamina width (D), sheath width (E), and internode diameter (F)
at PD4.5, as affected by increased plant density (A–F), indicated as a visual heatmap in 2016 (horizontal color bar from redness to greenness indicates the changes
from –16 to 10%).

6–11 and 13–18 and phytomer 12. R2 is generally high (greater
than 80%) except for IL fitting, indicating that the fitting with
logarithmic + linear relationships was reasonable in describing
the changes of organ size versus increased PD and phytomer
position. These equations were introduced into ADEL-Maize,
and the parameters were retrieved in the simulations.

Characterization of Leaf Angles to
Increased Plant Density
The angles between leaf insertion point and vertical stem for
three representative leaves under different PDs in 2016 are
presented (Supplementary Figure 2). The leaf angle was 18◦
for the position right below ear (ear position-1), 22◦ for ear
position, and 10◦ for the position right above the ear (ear
position +1) at PD4.5. The angle for the leaf at ear position-1
was significantly reduced when PD reached 6 plants m−2 but
was not affected further by increased interplant competition.
The leaf angle in other positions was not significantly affected
by increased PD. Thus, leaf angle in the positions near the
ear for the compact type was relatively stable across PDs. The
leaf angle detail was used in ADEL-Maize calibration for the
experimental hybrid.

Simulation and Validation
The canopy morphology at full expansion for phytomers from
6 to 18 under various PDs in 2018 was simulated with the
revised ADEL-Maize in an L-studio platform. The observation
data for canopy size at the same time were used to test
the simulation under different PDs. The comparison between
simulation and observation of canopy morphology including
lamina length, maximum width, sheath length, sheath maximum
width, internode length and diameter, as well as leaf area (LA),
and leaf inserting height (LIH), exampled as PD4.5, PD7.5,
and PD15, is shown in Figure 3. It can be seen that the
simulations generally agreed well with independent observations
from field measurements.

In addition, the calculated value of RMSE in determining the
difference between simulation and observation under different
PDs in 2018, exampled as PD4.5, PD7.5, and PD15, is shown
(Table 3). RMSE values were entirely under 20%, indicating that
the simulations for different items were generally acceptable.
Of which, RMSE values for SW and IL were relatively large,
ranging from 10 to 20%, and the rest fell below 10%,
indicating that the simulation for LL, LW, SL, and ID was
quite successful, and the simulation for SW and IL should be
further improved.
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FIGURE 2 | The relationship between the rate of increased LL, lamina length; LW, lamina width; SL, sheath length; SW, sheath width; IL, internode length; and ID,
internode diameter at phytomers 6–11 (A,D,G,J,M,P), 12 (B,E,H,K,N,Q), and 13–18 (C,F,I,L,O,R) at different densities relative to PD4.5 and increased value of
different plant densities relative to 4.5 in 2016.

Therefore, this study suggested that the revised ADEL-Maize
to simulate canopy final morphology during flowering in relation
to increased PD was acceptable.

Visualization of Simulations
The canopy morphology composed of lamina, sheath, and
internode size at different PDs in 2018 was visualized, exampled
as PD4.5, PD7.5, and PD15 using the revised ADEL-Maize in
an L-studio platform. The effects of increased PD on canopy
morphology were visually illustrated as in the images (Figure 4).

DISCUSSION

Relations Between Canopy Morphology
and Increased Plant Density
To be more profitable, the local farmers tend to cultivate
crops in a relatively high PD in achieving greater production
under limited farmland. As such, we started from the density
at 4.5 plants m−2 as the reference, widely adopted for
local summer cropping in the south Huang-Huai-Hai region,
one of the major maize-producing areas in China, and
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TABLE 1 | The regression of parameters, i.e., Ao, Bo, and Co and R2 for LL, LW,
SL, SW, IL, and ID for two separate groups of phytomers below or beyond ear
position in 2016.

Organ morphology Ao Bo Co R2

Type Phytomer position

LL 6–11 2.99 0.12 0.32 0.86

13–18 −7.09 −2.36 39.64 0.88

LW 6–11 −4.34 0.80 7.07 0.94

13–18 −8.71 0.73 13.93 0.94

SL 6–11 0.73 −2.46 21.63 0.89

13–18 −4.49 0.61 8.41 0.96

SW 6–11 −8.99 −0.24 4.92 0.95

13–18 −9.41 0.09 1.55 0.93

IL 6–11 4.94 −2.01 18.61 0.65

13–18 2.91 −2.06 32.08 0.80

ID 6–11 −7.69 −0.53 −11.36 0.90

13–18 −9.66 0.07 −8.52 0.93

LL, leaf length; LW, leaf width; SL, sheath length; SW, sheath width; IL, internode
length; ID, internode diameter; Ao, Bo, and Co indicate parameters for regression;
R2 indicates the coefficient of determination.

TABLE 2 | The list of parameters, i.e., Do and Eo and R2 for phytomer 12 at ear
position in 2016.

Organ morphology Do Eo R2

Type Phytomer position

LL 12 0.11 1.70 0.83

LW 12 −1.17 −1.78 0.90

SL 12 −0.86 −0.12 0.95

SW 12 −1.93 2.83 0.98

IL 12 0.54 0.73 0.79

ID 12 −1.63 −9.53 0.99

LL, leaf length; LW, leaf width; SL, sheath length; SW, sheath width; IL, internode
length; ID, internode diameter; o indicates organ types, i.e., lamina, sheath,
and internode; Do and Eo indicate parameters for regression; R2 indicates the
coefficient of determination.

increased the strength of interplant competition to moderate
and even severe level for the rest of the PDs. The complex
effects of increased PD on canopy morphology composed
of individual organ size can be retrieved by the heatmap
(Figure 1). It will help visually demonstrate the impacts of
increased interplant competition. Canopy morphology function
of increased PD and phytomer position was modeled by
fitting equations. The empirical relationships can be used
in modeling work. A mechanistic understanding of canopy
morphological response to increased interplant competition is
essential in the future.

Model Canopy Architecture as Affected
by Increased Plant Density
Maize canopy has the fixed architectural characteristics and
a relatively stable competition due to full expansion during
the stage bracketing flowering when kernel setting is being

determined. The modeling of canopy architecture under various
PDs is of benefit to analyze the interaction of 3D organs
and environments for coping with interplant competition.
Comparing to crop models in accounting for PD (Cazanga
et al., 2019), it is more challenging for FSPMs to do so due
to the requirement of fine 3D architectural details apart from
physiological traits (Drouet and Pagès, 2003; Zhu et al., 2012;
Burgess et al., 2017).

ADEL-Maize was employed in simulating 3D canopy
production with an open, well-established, and 3D maize
modeling platform, allowing implementing specific research aims
by introducing additional new modules (Fournier and Andrieu,
1999; Song et al., 2008). The relationships of changes of lamina
length and width, sheath length and width, and internode length
and diameter versus increased PD have been quantified and
introduced to the ADEL-Maize. By inserting relationships into
ADEL-Maize, the prediction of canopy morphology response to
increased PD was realized and testified by having validated the
simulation independently. In this study, we only considered the
angles between leaves and the stem for three leaves near the ear
from PD effects and validation due to a shortage of data for rest
leaves. It is meaningful since the three leaves are most important
for grain-filling. This study made an important attempt in
modeling the effects of increased PD on canopy morphology; that
is, the accumulation of organ dynamics as affected by increased
interplant competition. It is noteworthy that these relationships
may vary with hybrids, row configuration, etc., thus have to
be calibrated in specific cases. The canopy morphology under
various PDs received irradiance by the leaf element induced
by interplant and intraplant competition. Therefore, a more
mechanistic understanding in driving canopy development as
a function of irradiance will be necessary in the future (Ford,
2014).

Consequently, the tool for plant functional–structural
modeling, i.e., the revised ADEL-Maize will be able to test the
impacts of altering canopy architecture including leaf size, shape,
angles, which is subjected to various PDs and plant arrangements
(Qi et al., 2010; Burgess et al., 2017). This allows studies to
achieve a plant ideotype under high interplant competition
by adjusting the parameters, and thus canopy photosynthesis
can be maximized.

Implications in Modeling Canopy
Photosynthesis as Affected by Increased
Plant Density
High PD cropping should overcome the failure of seed setting by
supplying sufficient carbohydrates at the developmental stage of
bracketing flowering (Sanoi, 2000). In order to enable the revised
model for assisted analysis of boosting canopy productivity under
high PDs, model light distribution in the canopy and canopy
photosynthesis according to irradiance should be done in a
further study. In the early stage of FSPM, light distribution can
be simulated with a traditional approach, i.e., light extinction
with a function of leaf area index (Maddonni and Otegui, 1996;
Yan et al., 2004), which may treat the canopy as a big leaf
model or a two-leaf model or multilayer model like the way
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FIGURE 3 | Comparison of simulated (red curves) and measured (scattered dots) values of individual organs, i.e., LL, lamina length; LW, lamina width; SL, sheath
length; SW, sheath width; IL, internode length; ID, internode diameter; LA, leaf area; and LIH, leaf inserting height; (vertical coordinate) at different plant densities
(PDs) at full canopy expansion, exampled as PD4.5 (top subfigure layer), PD7.5 (middle subfigure layer), and PD15 (bottom subfigure layer) varying with phytomer
position (horizontal coordinate) (All subfigures have x axis unit as phytomer position; vertical bars indicate standard errors).

TABLE 3 | The normalized RMSE values (%) calculated for different organ types
under different PDs in 2018, exampled as 4.5, 7.5, and 15 plants m−2.

Organ morphological parameter PD4.5 PD7.5 PD15.0

LL 3.89 4.41 7.65

LW 6.51 6.57 9.77

SL 5.84 5.45 8.14

SW 17.74 15.61 18.83

IL 13.69 9.93 14.58

ID 2.77 7.19 5.27

LA 9.85 5.99 12.50

LIH 16.59 6.60 11.58

PD, plant density; LL, lamina length; LW, lamina maximum width; SL, sheath length;
SW, sheath maximum width; IL, internode length; ID, internode diameter, exampled
as PD4.5, PD7.5, and PD15. RMSE, root mean square error. The normalized RMSE
is expressed as a percentage.

it is treated in crop models. For example, light interception
by the individual plants has been simulated with ADEL-
Maize (Pommel et al., 2001). The FSPM has a very delicate

description of plant architecture, enabling to model light
distribution for each structural element precisely. In particular,
different models for precise simulation of irradiance in the
canopy have been developed (Chelle and Andrieu, 1998,
1999; Cieslak et al., 2008; Wang et al., 2008; Henke and
Buck-Sorlin, 2018). For instance, an efficient QuasiMC
based on photons tracing was available in simulating
canopy light environments rapidly (Cieslak et al., 2008).
Thus, the QuasiMC can be employed in the revised ADEL-
Maize to model irradiance distribution in the canopy
under various PDs.

Once irradiance received by each leaf unit is obtained, a
photosynthetic model will be applied to calculate leaf and
canopy photosynthesis. Empirical models of leaf photosynthetic
light response may be used to estimate canopy photosynthesis
(Hammer et al., 2009; review in Wu et al., 2016). Notably,
recently, the mechanistic leaf level photosynthetic model is
receiving much attention in linking molecular to whole
plant level for crop improvement (Wu et al., 2016, 2018).

A

4.5 plants m-2

B

7.5 plants m-2

C

15 plants m-2

100 cm

FIGURE 4 | Visualization of maize canopy architecture during flowering under increased plant density, exampled as (A) 4.5, (B) 7.5, and (C) 15 plants m-2 (vertical
bar represents 100 cm).
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Canopy photosynthesis can be scaled up from integration of leaf
level photosynthetic simulation (Wu et al., 2016, 2019).

CONCLUSION

To enhance canopy photosynthesis for maize withstanding
high interplant competition, modeling canopy morphology and
architecture in response to increased PDs is a key focus. The
effects of increased PD on lamina length and width, sheath
length and width, and internode length and diameter were
illustrated with a heatmap visualization based on which the
changes with regard to increased PD relative to the PD4.5 could
then be further characterized by logarithmic and linear equations
for phytomers excluding ear position and linear equations for
the phytomer bearing an ear, respectively. ADEL-Maize has
been revised by having (i) calibrated the model parameters
for the local hybrid, and (ii) inserted the equations identified
into the model. The revisions were also successfully validated
by achieving satisfactory agreement between simulations and
observation from an independent dataset. The visualization of
canopy production at different PDs has been completed by
visually showing the effect as a whole. To allow the revised
model to be used in designing an ideotype to maximize
canopy photosynthesis to overcome ear tip abortion due
to lack of carbohydrate supply, it is necessary to further
incorporate a model of irradiance distribution within the
canopy and a biochemical model of C4 leaf photosynthesis
under various PDs. In summary, this study has made an
important step forward in providing a valuable tool that
helps define an ideotype for maize cropping under high
interplant competition.
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