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Located downstream of the Yangtze River Delta, the Lake Taihu drainage basin (LTDB)
is one of the most developed areas in China. This area currently faces population
and development issues, as well as many environmental problems, such as cultural
eutrophication, algal blooms, and loss of native aquatic plants. Changes in aquatic
biodiversity have received less attention than have changes in terrestrial habitats
because relevant observations are lacking. In this study, information from 2010, 2014,
and 2018 concerning the transformation of the aquatic plant biodiversity was obtained.
The results showed that the dominant aquatic plants have changed from native plants
to invasive plants. Aquatic plant biodiversity showed a decreasing trend, which may
reduce the freshwater ecosystem function, and anthropogenic activities accounted for
these changes. How to prevent the decline in aquatic plants and control the invasion of
introduced aquatic plants should be a priority in the management of aquatic plants in
the LTDB.

Keywords: Yangtze River, aquatic plant, biodiversity index, Lake Taihu drainage basin, Eichhornia crassipes,
Cabomba caroliniana

INTRODUCTION

Aquatic ecosystems provide irreplaceable economic and cultural services to human societies and
are currently experiencing more significant loss compared to terrestrial ecosystems (Dudgeon et al.,
2006). Most shallow lakes (<7 m) with water turnover rates of less than one year are essential
components of the freshwater ecosystem (Ji, 2008). Currently, lakes in China are facing a series
of ecological and environmental problems, such as water area loss, the fragmentation of lake
ecosystems, a decline in biodiversity, and the weakening of ecological functions. Anthropogenic
influences (including water pollution, diking, draining, and conversion to agricultural or urban
use) have caused the degradation of many shallow lakes (Fang et al., 2006; An et al., 2013). Lake
Taihu has been viewed as a model shallow lake in China (Qin, 2008; Hu, 2016). Many articles
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on the transition and management of aquatic plants in this lake
[e.g., Zhang et al. (2018), and Wang et al. (2019)] have been
published. However, direct evidence of the transformation of
dominant aquatic plants and aquatic plant diversity in the Lake
Taihu drainage basin (LTDB) is rare because of the lack of long-
term field observations. Located downstream of the Yangtze River
Delta, which is one of the most developed and populated areas
in China, the Taihu Basin occupies only 1% (36,900 km?) of the
total territorial area but encompassed 4.4% (60.58 million) of the
total population and contributed 9.8% [8,081.5 billion renminbi
(RMB, the official currency of China)] of the gross domestic
product (GDP) of China in 2017 (Taihu Basin Authority TBA,
2017; Zhang et al., 2018). A serious eutrophication trend has
been detected in this area, and some lakes have transformed from
being dominated by submerged vegetation to being dominated
by algae, indicating this area is an environmentally sensitive
area (Mitsch and Gosselink, 2011; Zhang et al., 2017; Wang
et al., 2019). Moreover, studies on invasive aquatic plants have
received little attention, although many field investigations on
aquatic plants have been conducted in this area. Remote sensing
has been widely used for the recognition of aquatic plants,
but distinguishing distinct aquatic plants via this method is
challenging (Liu et al., 2015). Traditional field investigations are
thus still indispensable.

As primary producers of trophic chains, aquatic plants provide
food and shelter for fishes. Additionally, aquatic plants provide
breeding grounds for benthic organisms (Bornette and Puijalon,
2011). Losses and declines in native aquatic vegetation in the
LTDB have prompted extensive concerns (Gao et al., 2017; Zhang
et al., 2017). Owing to the flourishment of aquarium markets,
many introduced ornamental plants are imported and sold in
China without undergoing environmental impact assessments,
and these activities also contribute to the spread of introduced
plants (Xu et al., 2006; Jiang et al., 2011). However, synchronal
in situ studies on both native and introduced invasive species
have received little attention in this area. On the basis of previous
investigations, the main invasive plants in Lake Taihu are water
hyacinth (Eichhornia crassipes) and alligator weed (Alternanthera
philoxeroides). A new invasive plant, Carolina fanwort (Cabomba
caroliniana), has recently received considerable amounts of
attention. An introduced plant species, but one not listed as an
invasive plant, called parrot’s feather (Myriophyllum aquaticum)
was also found in the LTDB.

In the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services Global Assessment Report,
invasive species were identified as one of the top five global
factors driving negative changes in natural habitats around the
world. Although biological invasion is a natural process, it is
intensified by human activities. Especially in modern times,
biological invasion has become more frequent and complicated
due to international trade, horticulture, immigration, and other
cultural and commercial exchanges (Nentwig, 2008a). Economic
damage caused by invasive species accounts for approximately
5% of the worlds gross national product (GNP) (Pimentel
et al., 2008). In recent years, biological invasions have become
increasingly severe in China (Feng and Zhu, 2010; Wu and
Ding, 2019). As the world’s largest import and export country,

China’s trade activities have increased considerably since the
1980s (WTO, 2017). The trade link between China and the world
is becoming tighter than ever before, and trade can introduce
commercial, ornamental, and non-native species accidentally or
deliberately (Nentwig, 2008b). Coupled with the high diversity
of China’s ecosystems, it is more conducive to the invasion and
spread of introduced species, which also renders China one of
the most seriously endangered places.

In this study, the biodiversity and distributions of native and
introduced aquatic plants in the LTDB in situ were obtained
through field investigations in 2010, 2014, and 2018. We aimed to
address the status quo of invasive aquatic plants in the LTDB and
to help develop reasonable means to control invasive plants in
China. Three issues are discussed: (1) the identification of aquatic
plants with a dominant role in the LTDB; (2) the relationships
among aquatic plant biodiversity indices, the human population,
and the economy; and (3) possible control methods for invasive
plants in the LTDB.

MATERIALS AND METHODS

Study Area

The area of the LTDB includes Suzhou, Wuxi, and Changzhou
in Jiangsu Province; Jiaxing, Huzhou, and Hangzhou in Zhejiang
Province; and the mainland Shanghai Municipality (Qin et al,,
2007; Zhang et al., 2018). The main lakes in the LTDB include
Lake Taihu, Lake Gehu, and Lake Yangchenghu.

Data Collection

Field investigations were performed in the LTDB in July 2010,
August 2014, and from June to October 2018. We did not
use snorkels or scubas or other professional diving equipment
during our investigation. Fortunately, the ponds, lakes, channels,
or rivers in our investigations are not deep. For example, the
average depth of the largest lake in the LTDB, Lake Taihu, is only
1.9 m, allowing us to use free-diving to conduct our investigation
without rakes to minimize sampling errors. The sampling
quadrats were randomly selected, with an area of 1 x 1 m?,
and were approximately 5 km apart (Figure 1). Handheld GPS
recorders were used to capture location coordinates (longitudes,
latitudes, and elevations) in the field investigations. Location
information, water properties, habitat types, and surrounding
terrestrial vegetation types were recorded. Plant specimens were
collected, classified, and then identified according to the Flora
of China. The number of each dominant and companion plant
species was counted. Water quality indicators including the pH,
conductivity, dissolved oxygen, and salinity were determined by
a YSI multiparameter water quality analyzer (YSI Inc., Yellow
Springs, OH, United States). The sample information is listed in
the Supplementary Material.

The relative coverage (RC) and relative abundance (RA) of
each species in a sampling plot were measured. The RC was
estimated by visual assessment, and a species’ RC = projective
coverage/all projective coverage, and a species RA = number
of a species/numbers of all species in a sampling plot. The
RC and RA of a species were calculated in every individual
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FIGURE 1 | Distributions of aquatic plant quadrats in the Lake Taihu drainage basin (LTDB) in 2010, 2014, and 2018.

sampling plot, and their sums were used to calculate the relative
importance value (RIV). The species’ relative frequency (RF)
was calculated as RF = number of a species/number of all
plants in all sampling plots of a specific year. The RIV of a
species, that is, dominant advantage species index, is the sum
of the species’ RCs and RAs in all sampling plots and RF of a
specific year according to the following formula (Jing et al., 2014;
Wu et al., 2017):

RIV =(XRC+ XRA + RF)/3

Three a-species aquatic plant diversity indices of the plots
were calculated according to the following formulae (Ricklefs,
2008; Colwell, 2009; Molles, 2015):

Simpson diversity index: D=1 — 2P?%=1— X(Nj/N)?
Shannon-Wiener diversity index: H=— XP;In P;
Species evenness (Pielou) index: E = (—XP;In P;)/In N

where P; = N;/N, N; is the number of a particular plant species
in a plant sampling plot, and N is the total number of all plant
species in a plant sampling plot.

The population and GDP data from the years 2008 to 2017
were obtained from the Taihu Basin Authority of the Ministry of

Water Resources, China'. As the data from the year 2018 were
not yet released, they were calculated according to the sums of
the population and GDP data in this area.

Data Analysis

The data were tested to meet the assumptions of a normal
distribution and homoscedasticity of variances before the
statistical analysis, and these assumptions were verified by the
Shapiro-Wilk test and Levene’s test, respectively. A one-way
analysis of variance was used to examine differences (P = 0.05)
in plant biodiversity indices among the years 2010, 2014, and
2018. Simple linear regression models were constructed to
analyze the relationships among the year, plant biodiversity
indices, population, and GDP. Multiple regression models were
constructed to analyze the relationships among plant biodiversity
indices and the coverage of two invasive plants, E. crassipes
and Ca. caroliniana. Statistical analyses were conducted in
SPSS Statistics 19 (IBM Corp., Armonk, NY, United States).
Mapping was performed in ArcGIS 10.3 (Esri Corp., Redlands,
CA, United States).

'http://www.tba.gov.cn/
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RESULTS

Transformations of Dominant Aquatic

Plants in the LTDB

Twenty-four field quadrats were obtained in July 2010,
among which 34 aquatic plants were collected in total. The
native plant Ceratophyllum demersum had the highest RIV
(RIV = 10.68), followed by the invasive plant E. crassipes
(RIV =9.59) (Table 1).

In total, 36 field quadrats were obtained in August

RIV (RIV = 12.44), which was followed by that of Vallisneria
natans (RIV = 11.59) (Table 2).

In total, 67 field quadrats were obtained from June to
October 2018, and a total of 35 aquatic plants were obtained.
The invasive plant Ca. caroliniana had the highest RIV
(RIV = 16.84), which was followed by that of E. crassipes
(RIV = 13.65) (Table 3).

Relationships of the Aquatic Plant
Biodiversity With Population and GDP

2014, including 35 aquatic plants. The invasive plant The population of the LTDB experienced slight growth,
E. crassipes replaced Cer. demersum, achieving the highest from 57.24 million in 2010 to 60.91 million in 2018
TABLE 1 | The relative importance value (RIV) of aquatic plant species in the Lake Taihu drainage basin (LTDB) in 2010.

Species Status RIV Species Status RIV
Ceratophyllum demersum Native 10.68 Nymphoides indica Native 1.23
Eichhornia crassipes Invasive 9.59 Najas marina Native 1.1
Myriophyllum spicatum Native 8.68 Marsilea quadrifolia Native 1.07
Hydrilla verticillata Native 7.66 Pistia stratiotes Invasive 0.79
Potamogeton wrightii Native 5.77 Cabomba caroliniana Invasive 0.53
Hydrocharis dubia Native 5.19 Nymphoides peltata Native 0.51
Vallisneria natans Native 477 Alternanthera philoxeroides Invasive 0.50
Nelumbo nucifera Native 4.36 Hygroryza aristata Native 0.46
Utricularia vulgaris Native 4.34 Monochoria vaginalis Native 0.44
Lemna minor Native 3.80 Sparganium stoloniferum Native 0.15
Potamogeton crispus Native 2.06 Trapella sinensis Native 0.13
Ludwigia adscendens Native 1.91 Trapa japonica Native 0.12
Salvinia natans Native 1.87 Zizania latifolia Native 0.07
Alisma plantago-aquatica Native 1.41 Phragmites australis Native 0.03
Najas minor Native 1.39 Trapa bicornis Native 0.02
Typha orientalis Native 1.37 Vallisneria denseserrulata Native 0.02
Myriophyllum verticillatum Native 1.34 Sagittaria trifolia var. sinensis Native 0.02
TABLE 2 | The relative importance value (RIV) of aquatic plant species in the Lake Taihu drainage basin (LTDB) in 2014.

Species Status RIV Species Status RIV
Eichhornia crassipes Invasive 12.44 Potamogeton crispus Native 2.05
Vallisneria natans Native 11.59 Myriophyllum verticillatum Native 1.93
Ceratophyllum demersum Native 10.73 Calla palustris Native 1.76
Cabomba caroliniana Invasive 9.08 Ipomoea aquatica Native 1.59
Lemna minor Native 9.02 Euryale ferox Native 0.98
Hydrilla verticillata Native 8.46 Alternanthera philoxeroides Invasive 0.88
Hydrocharis dubia Native 7.55 Phragmites australis Native 0.73
Salvinia natans Native 7.51 Najas minor Native 0.71
Myriophyllum spicatum Native 6.45 Monochoria vaginalis Native 0.67
Nelumbo nucifera Native 5.57 Pistia stratiotes Invasive 0.65
Nymphoides peltate Native 5.13 Blyxa japonica Native 0.40
Potamogeton wrightii Native 4.09 Trapella sinensis Native 0.14
Ludwigia adscendens Native 3.98 Trapa bicornis Native 0.07
Nymphoides indica Native 3.85 Myriophyllum aquaticum Introduced 0.02
Trapa japonica Native 3.07 Vallisneria denseserrulata Native 0.02
Typha orientalis Native 2.69 Sparganium stoloniferum Native 0.01
Zizania latifolia Native 2.50 Sagittaria trifolia var. sinensis Native 0.01
Najas marina Native 2.41
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TABLE 3 | The relative importance value (RIV) of aquatic plant species in the Lake Taihu drainage basin (LTDB) in 2018.

Species Status RIV Species Status RIV
Cabomba caroliniana Invasive 16.84 Euryale ferox Native 117
Eichhornia crassipes Invasive 13.65 Vallisneria natans Native 0.91
Hydrilla verticillata Native 9.07 Nelumbo nucifera Native 0.88
Ceratophyllum demersum Native 7.71 Nymphoides peltata Native 0.71
Lemna minor Native 7.21 Phragmites australis Native 0.68
Hydrocharis dubia Native 7.03 Ipomoea aquatica Native 0.67
Myriophyllum spicatum Native 5.15 Pistia stratiotes Invasive 0.60
Potamogeton wrightii Native 4.61 Najas marina Native 0.45
Alternanthera philoxeroides Invasive 4.60 Stuckenia filiformis Native 0.43
Ludwigia adscendens Native 2.54 Sagittaria trifolia var. sinensis Native 0.19
Trapa japonica Native 2.50 Typha orientalis Native 0.13
Trapa bicornis Native 2.35 Utricularia vulgaris Native 0.12
Myriophyllum aquaticum Introduced 2.06 Potamogeton crispus Native 0.11
Vallisneria denseserrulata Native 1.81 Alisma plantago-aquatica Native 0.10
Trapa incisa Native 1.80 Hygroryza aristata Native 0.09
Nymphoides indica Native 1.72 Calla palustris Native 0.09
Salvinia natans Native 1.27 Typha angustifolia Native 0.03
Zizania latifolia Native 1.23
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FIGURE 2 | The trends in the (A) population and (B) GDP in the Lake Taihu drainage basin (LTDB) from 2010 to 2018.

(R> = 0.861, p < 0.001; Figure 2A). Additionally, the
LTDB experienced rapid GDP growth, from 4290.5
billion RMB (681.1 billion USD) in 2010 to 8746.2

billion RMB (1388.2 billion USD) in 2018 (R*> = 0.990,
p < 0.001; Figure 2B), representing a more than a
2-fold increase.

The three a-biodiversity indices showed similar tendencies
and were significantly higher in 2010 (D = 0.837 £ 0.058,
H =0.328 +0.039, and E = 0.182 £ 0.023; means =+ SE) (p < 0.05)
than in 2014 (D = 0.686 + 0.026, H = 0.269 + 0.005, and
E =0.105 £ 0.007; means & SE) and 2018 (D = 0.663 + 0.016,

H = 0.246 &+ 0.006, and E = 0.099 £ 0.003; means £ SE)
(Figure 3). The three o-biodiversity indices did not show
dramatic differences between 2014 and 2018 (Figure 3).

Linear regressions of aquatic plant biodiversity with
the population and GDP data in the years 2010, 2014,

and 2018 were performed to evaluate the relevance
between the biodiversity and anthropogenic activities
(Tables 4, 5). The results showed significant negative

correlations when comparing the three o-species plant
diversity indices with the population and GDP data
(Tables 4, 5).
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Relationship Between the Coverage of
Invasive Plants and Plant Biodiversity in
the LTDB

As invasive Ca. caroliniana and E. crassipes had become the
dominant aquatic species in the field quadrats in this study

TABLE 4 | The estimated equations and R? and p values for the Simpson diversity
index (D), Shannon-Wiener diversity index (H), and species evenness index (E) in
relation to the population (pop.) in the Lake Taihu drainage basin (LTDB).

Equation R2 p

Simpson diversity index (D) D =3.654 — 0.049 x pop. 0.982 <0.001
Shannon-Wiener diversity index (H) H =1.311 — 0.017 x pop. 0.993 <0.001

Species evenness index (E) E =1.541 — 0.024 x pop. 0.963 <0.001

TABLE 5 | The estimated equations and R? and p values for the Simpson diversity
index (D), Shannon-Wiener diversity index (H), and species evenness index (E) in
relation to the gross domestic product (GDP) (billion RMB) in the Lake Taihu
drainage basin (LTDB).

Equation R? p

D =0.974-3.807 x GDP 0.858 <0.001
H=0.369 - 1.452 x GDP 0.947 <0.001
E =0.245-1.802 x GDP 0.806 <0.001

Simpson diversity index (D)
Shannon-Wiener diversity index (H)
Species evenness index (E)

(Table 3), the linear regression of the coverage and the three
a-species aquatic plant diversity indices of the two species in the
aquatic plant sampling plots in 2010, 2014, and 2018 are shown in
Figures 4, 5. The results indicate that with increasing coverage of
the two plants, a negative trend appeared for the three a-species
aquatic plant diversity indices regardless of the different years,
and in some sampling plots, an invasive plant sometimes created
a mono-species community.

DISCUSSION

Transformation of Aquatic Plants and
Loss of Aquatic Plant Biodiversity in the
LTDB

In this study, we found that the total numbers of aquatic plants
in 2010, 2014, and 2018 in the LTDB did not have a significant
change, but the aquatic plant vegetation has transformed from
being dominated by the native plant Cer. demersum to being
dominated by the invasive plants Ca. caroliniana and E. crassipes
in the aquatic sampling plots. Aquatic plant biodiversity showed
a decreasing trend, which may reduce the freshwater ecosystem
function, and anthropogenic activities were responsible for these
changes. This transformation may cause declines in native species
and the extinction of narrowly distributed species, as invasive
species typically have advantageous traits that facilitate their
competitiveness with native species, and they are more tolerant
of eutrophication and other human pollution, often being able
to survive habitat disturbances to become dominant species
(Richards et al., 2006; van Kleunen et al., 2010).

A previous study showed a strong relationship between the
human population and invasive plant species richness (Weber
et al.,, 2008). Duan et al. (2009) showed that the GDP is the
dominant factor in the initial blooming date and that the GDP
per capita is the dominant factor for blooming duration in
Lake Taihu. Similarly, the population and GDP had negative
impacts on the aquatic plant biodiversity in the LTDB in this
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study (Tables 4, 5). Previous studies have shown that biodiversity
loss reduces the ecosystem function (Schnitzer et al., 2011;
Huang et al., 2018), and the loss of aquatic plant biodiversity
may change the freshwater ecosystem function in the LTDB
permanently. Human activities are not well quantified; thus, we
are not implicating the population or GDP growth as accounting
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(LTDB) in 2010, 2014, and 2018.

for these changes. The good linear regressions of the aquatic
plant biodiversity with the population and GDP data does not
indicate that these characteristics are the exact causes of the
two relationships; they are simply proper indicators that may
provide awareness of the relationship between the biodiversity
and anthropogenic activities.

Remote sensing data indicate that the distribution of aquatic
plants in the LTDB showed a gradually increasing trend from
1980 to 2014 and a sharp decrease in 2015, and the distribution
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remained at a low level until 2017 (Wang et al, 2019). In
this study, we found a decreasing trend for the biodiversity
of aquatic plants (Figure 3), and the invasive plants Ca.
caroliniana and E. crassipes directly reduced the plant biodiversity
(Figures 4, 5), which is consistent with previous studies that
found that biological invasion is an essential factor that driving
the decrease in the biodiversity of plant communities (Ryser
and Eek, 2000; Vila et al, 2011). High biodiversity typically
increases resistance to biological invasions, as high biodiversity
affords greater resistance to invasion and limits the availability of
vacant niches for new invaders (the “biotic resistance hypothesis”)
(Mitchell et al., 2006; Fan et al., 2013). The transformation from
dominantly native species to dominantly invasive species and the
loss of aquatic plant biodiversity may cause irreversible ecosystem
shifts in the LTDB.

Possible Management Implications for

Invasive Plants

Eichhornia crassipes was introduced into China as an ornamental
plant in the early twentieth century and quickly spread after its
escape from domestic surroundings (Pan et al., 2012; Wu and
Ding, 2019). The plant has a fast growth ability, high sexual and
asexual reproductive capacities, a relatively short growth period,
and low genetic differentiation, causing the plant to become the
most widely distributed invasive aquatic plant worldwide (Zhang
et al,, 2010; International Union for Conservation of Nature
TUCN, 2013). The plant can cover the water surfaces to form a
continuous floating mat, which is extremely harmful to aquatic
habitats (Charles and Dukes, 2008; Michelan et al., 2018). It is
difficult to eradicate from a water body using the salvage method
(Patel, 2012). The use of herbicides causes secondary pollution
in the water bodies (Feng et al., 2017; Mishra and Maiti, 2017).
Biological control methods for E. crassipes using insects on have
been proven to be successful in Louisiana, United States (Wainger
etal., 2018), but a similar biocontrol method has not been applied
in the LTDB, and the potential impact of introduced insects on
the local environment remains unknown. Bicudo et al. (2007)
also showed that removal of E. crassipes from a reservoir was
inefficient and led to a more turbid state.

Cabomba caroliniana is a perennial submerged plant species
that is native to the United States and South America and is often
introduced as an aquarium plant in the rest of the world (Wilson
et al., 2007; McCracken et al., 2013). The plant was introduced
into China as an ornamental plant in the 1980s (Ding et al., 2003).
Owing to its unique leaf shape and ease of cultivation, it was
sold in aquarium markets in southern China and later turned
into a weed that was difficult to control. The plant was widely
used in the construction of wetland parks and river channel
restoration in China due to its high water purification, pollution
tolerance, and esthetic values before it was included on the list of
invasive species (Zou et al., 2012). Currently, Ca. caroliniana is
in the early stage of its invasive outbreak in China, as it was only
recently recognized as an invasive plant (Ministry of Ecology and
Environment MEE, 2016). No extraordinary removal measures
have been developed, and salvage requires a high amount of
manpower. During this process, the species easily forms stem

fragments that may produce new populations with water flow,
benefiting its spread (Scheers et al., 2019). The rapid spread of
Ca. caroliniana may indicate that the plant has not yet reached its
distribution limit.

CONCLUSION

In this study, the aquatic plant biodiversity in the LTDB was
obtained in 2010, 2014, and 2018. The results showed that the
aquatic plant dominance has transformed from native plants
to the invasive plants E. crassipes and Ca. caroliniana. The
aquatic plant biodiversity has experienced a decreasing trend,
which may result in changes to the structure and function of
aquatic ecosystems in the LTDB. Additionally, the results of this
study indicate that anthropogenic activities may have accounted
for these changes.
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