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Wheat is one of the most important food crops in the world, but as a cool-season crop, it
is more prone to heat stress, which severely affects crop production and grain quality.
Heat tolerance in wheat is a quantitative trait, and the genes underlying reported
quantitative trait loci (QTL) have rarely been identified. Near-isogenic lines (NILs) with a
common genetic background but differing at a particular locus could turn quantitative
traits into a Mendelian factor; therefore, they are suitable material for identifying candidate
genes for targeted locus/loci. In this study, we developed and characterized NILs from two
populations Cascades × Tevere and Cascades × W156 targeting a major 7AL QTL
responsible for heat tolerance. Molecular marker screening and phenotyping for SPAD
chlorophyll content and grain-yield-related traits confirmed four pairs of wheat NILs that
contrasted for heat-stress responses. Genotyping the NILs using a 90K Infinium iSelect
SNP array revealed five single nucleotide polymorphism (SNP) markers within the QTL
interval that were distinguishable between the isolines. Seven candidate genes linked to
the SNPs were identified as related to heat tolerance, and involved in important processes
and pathways in response to heat stress. The confirmed multiple pairs of NILs and
identified candidate genes in this study are valuable resources and information for further
fine-mapping to clone major genes for heat tolerance.

Keywords: heat tolerance, near-isogenic lines, 7AL, quantitative trait loci, single nucleotide polymorphism assay,
candidate genes, wheat
INTRODUCTION

Crop growth and productivity are often limited by abiotic stresses, especially heat and drought
(Priya et al., 2019). Wheat is one of the most important food grain crops in the world, but being a
cool-season crop, it often experiences heat stress. Each 1°C rise in temperature above the optimum
can cause a 3–5% reduction in single grain weight under controlled environments (Dawson and
Wardlaw, 1989) or field conditions (Wiegand and Cuellar, 1981). Phenology is known to confound
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crop responses to heat; therefore, the effect of heat stress depends
on its timing, duration, and frequency (Rezaei et al., 2015; Balla
et al., 2019). While conventional breeding has developed some
heat-tolerant lines, it is a time-consuming process, and the
genetic and physiological basis of the improvements remain
unclear (Driedonks et al., 2016). Understanding the underlying
mechanism of heat tolerance and identifying candidate genes will
help to accelerate the breeding of heat-stress-resilient genotypes
(Budak et al., 2015).

Heat tolerance is a quantitative trait (Moffatt et al., 1990a; Yang
et al., 2002) that involves complex genetic, physiological, and
biochemical controls and is affected by environmental factors.
Numerous heat tolerance QTL have been identified; for example,
Yang et al. (2002) found QTL on the short arms of chromosomes
1B and 5A linked to grain filling duration; Mason et al. (2010,
2011) reported several QTL for heat susceptibility indices and
yield traits on chromosomes 1A, 1B, 2A, 2B, 3B, 5A, and 6D;
Paliwal et al. (2012) reported QTL on chromosomes 2B, 7B, and
7D for thousand-grain weight, grain fill duration, and canopy
temperature depression, respectively; Vijayalakshmi et al. (2010)
reported QTL on chromosomes 2A, 3A, 4A, 6A, 6B, and 7A with
significant effects on grain yield, grain weight, grain filling, stay
green, and senescence-associated traits under post-anthesis high-
temperature stress in wheat. Most of these reported QTL have
been based on mapping using low-density simple sequence repeat
(SSR) markers and/or amplified fragment length polymorphism
(AFLP) markers. Talukder et al. (2014) increased the marker
density to 972 molecular markers and identified QTL associated
with different traits related to heat tolerance in wheat. They found
that QTL QHtscc.ksu-7A on chromosome 7A was consistently
identified for traits thylakoid membrane damage (TMD), plasma
membrane damage (PMD), and SPAD chlorophyll content (SCC),
with high logarithm of odds (LOD) values ranging from 4.15 to
6.95 and explaining high phenotypic variations ranging from 18.9
to 33.5%. This major QTL QHtscc.ksu-7A, with flanking markers
Xbarc121 and Xbarc49, was chosen as the target locus for
developing NILs in this study.

It remains challenging to use QTL markers directly in
breeding programs due to the large genomic intervals of
the most identified QTL (Mia et al., 2019). One solution for
identifying candidate genes and closely linked markers is to
develop NILs, which turn quantitative traits into Mendelian
factors (Liu et al., 2006). NILs are pairs of lines that have the
same genetic background between isolines, except for the
targeted locus (Dorweiler et al., 1993). NILs make it easier to
study phenotypic impacts attributable to a specific gene or locus
(Pumphrey et al., 2007). Characterizing NILs through genotype–
phenotype association analyses can lead to the identification of
candidate genes (Mirdita et al., 2008; Liu et al., 2010; Mia et al.,
2019; Wang et al., 2019). Traditionally, NILs development has
been considered time-consuming and tedious (Tuinstra et al.,
1997). By combining a fast generation cycling system (FGCS)
(Zheng et al., 2013) with heterogeneous inbred family (HIF)
method and repeated DNA marker-assisted selection (MAS)
(Tuinstra et al., 1997), the NIL development process can be
shortened to about six generations per year (Yan et al., 2017).
Frontiers in Plant Science | www.frontiersin.org 2
Single nucleotide polymorphism (SNP) markers are high-
density DNA markers widely used in genetic studies, including
genetic diversity, phylogenetic relationships, and marker-trait
associations, such as genome-wide association study (GWAS) or
QTL mapping (Wang et al., 2014; Cabral et al., 2018). The 90k SNP
array, developed from hexaploid wheat and Aegilops tauschii
sequences (Wang et al., 2014) with dense coverage of the wheat
genome, has been extensively harnessed for genetic research
(Cavanagh et al., 2013; Avni et al., 2014; Colasuonno et al., 2014;
Russo et al., 2014; Sukumaran et al., 2015). Due to its efficiency of
characterizing genetic resources and discriminating between closely
related lines (Rimbert et al., 2018), 90k SNP genotyping was used in
this study to characterize the developed NILs, in combination with
phenotyping under controlled environments.

The objectives of this study were to 1) develop and confirm
NILs targeting the major heat tolerance QTL on chromosome
7A, 2) identify candidate gene(s) underlying the 7A QTL
responsible for heat tolerance by genotypic and phenotypic
characterization of the NILs, and 3) shed light on the genetic
mechanism of heat tolerance in wheat by inspecting this major
genomic region and investigating its underlying candidate genes.
MATERIALS AND METHODS

Plant Materials and Selection of Crossing
Parents
In a previous study, 499 wheat genotypes from a variety of
sources were screened and evaluated for heat-stress responses
(Hameed, 2015). Among them, cultivars Tevere and W156
showed heat tolerance at both the seedling and reproductive
stages with high yield, whereas Cascades (Aroona//Tadorna/Inia
66) was sensitive at both stages (unpublished data). Cascades and
Tevere are two common wheat cultivars and W156 is a landrace,
which originated from Australia, Italy, and India, respectively.
When the flanking marker Xbarc49 of the targeted 7A QTL was
used for genotyping the three cultivars, heat-tolerant Tevere and
W156 showed the tolerance allele at 216 bp, and heat-susceptible
Cascades showed the susceptibility allele at 203 bp. The three
cultivars were therefore used to establish two cross populations,
Cascades/W156 and Cascades/Tevere, for the development of
NILs targeting the 7A locus.

Development of NILs
NILs were developed from the two populations using the HIF
method (Tuinstra et al., 1997) in combination with embryo-
culture-based FGCS (Zheng et al., 2013; Yan et al., 2017),
following a similar procedure as described in Wang et al.
(2019). Specifically, MAS started from the second generation of
progenies (F2) (Figure 1A) where genomic DNA was isolated
from two-week-old seedlings of each plant using a modified
CTAB method (Murray and Thompson, 1980). Xbarc49 (Figure
1B), the flanking marker of QHtscc.ksu-7A (Talukder et al.,
2014), was used to identify heterozygous progenies (Rr) from the
two cross populations (Figure 1C). PCR reactions were
performed, and amplified products viewed following the
August 2020 | Volume 11 | Article 1316
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protocol described in Wang et al. (2018). MAS of heterozygous
progenies, together with embryo-culture-based FGCS (Figures
1D, E), continued until the eighth generation of progenies (F8);
at F8, only those homozygous progenies from single seed descent
with the tolerance allele (RR/+) from either W156 or Tevere and
those with susceptibility allele (rr/–) from Cascades were selected
as pairs of candidate NILs. Thirteen pairs of F8 NILs, numbered
from NIL1 to NIL13, developed from the two populations were
used as putative NIL pairs to screen their phenotypes for
performance under heat stress.

Plant Growth Conditions and Heat
Treatments
The seeds of all isolines were germinated in water on Petri dishes,
before sowing one plant per pot (8 cm × 8 cm × 16 cm)
containing soil media (5:2:3 compost:peat:sand, pH 6.0) (Mia
et al., 2019). For each isoline, six pots (three replicates each for
Frontiers in Plant Science | www.frontiersin.org 3
the control and the heat-stress treatment) were grown in a
naturally lit glasshouse at The University of Western Australia,
Crawley, Western Australia (31°59’ S, 115°49’E). The plants were
fertilized fortnightly with ‘Diamond Red’ (Campbells Fertilisers
Australasia Pty Ltd, Australia) from four weeks after sowing until
the end of the grain-filling period. The glasshouse environment
(temperature, relative humidity, and light intensity) is detailed in
Supplementary Table S1. The experiment was arranged in a
completely randomized block design.

Anthesis date, as Zadoks’ growth scale Z60 (Zadoks, 1974), of
each plant was recorded by tagging each plant on the wheat head
where the first anther appeared. The time point to start the heat
treatment, treatment temperature, and other settings were as per
previous studies (Pradhan et al., 2012; Talukder et al., 2014;
Shirdelmoghanloo et al., 2016a). Specifically, on the 10th day
after anthesis (DAA), the three treatment pots were moved into a
growth chamber set to 37/27°C (day/night), 14-h photoperiod,
FIGURE 1 | (A) Process of the HIF method to develop NIL pairs, with percentage heterozygosity in each generation shown on the left of the flow chart. (B) QTL
hotspot in wheat chromosome 7A and the marker (in the box) used for selection, adapted from Talukder et al., 2014. (C) Marker-assisted selection of different
progeny types, with tolerance progeny, susceptible progeny, and heterozygous progeny marked RR, rr, and Rr, respectively, on the top of the gel bands. (D) Culture
of young embryos on Petri plates in a sterile medium. (E) Seedlings from embryo culture growing in the plant growth chamber.
August 2020 | Volume 11 | Article 1316
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and 420 mmol m−2 s−1 light intensity for the 3-day heat
treatment. Enough water was given to the plants to ensure
there was no drought stress, only heat stress. The pots were
returned to the glasshouse after the heat treatment.

Phenotype Screening
Chlorophyll contents were measured on flag leaves using a
handheld portable chlorophyll meter (SPAD-502Plus; Konica
Minolta, Osaka) for both the control and heat-stressed plants.
Time points for measurements followed the procedures described
in Pradhan et al. (2012). Changes in SPAD chlorophyll contents
(DSCC) in flag leaves were calculated based on differences in
chlorophyll contents before (as ‘Chl10’ at 10 DAA) and after (as
‘Chl13’ at 13 DAA) treatment, as follows: DSCC = mean of Chl10 –
mean of Chl13 (Shirdelmoghanloo et al., 2016b). Measurements
and calculations were the same for controls.

Agronomic traits (grain number and grain yield per plant)
were measured after harvest for plants in the control and heat-
stressed treatments. The performance differences in final yield
between isoline pairs were determined by subtracting mean
values in the control from those in the heat treatment.

Statistical analyses were undertaken using t-tests to compare
phenotypic variation in the NIL pairs. True NILs were confirmed
if significant differences existed in the performance of tested
traits between isolines, and their resistant and susceptible
phenotypes matched their genotypes of Xbarc49’s RR/+ and
rr/ – alleles, respectively.

Genotyping by 90k Infinium iSelect SNP
Array
The 90K SNP array was used for genotyping, with genotype–
phenotype associations used to identify candidate gene(s) (Alaux
et al., 2018). Specifically, genomic DNA samples of the confirmed
NILs were genotyped using the Wheat 90K Illumina iSelect
Array (Wang et al., 2014). SNP clustering and genotype calling
were performed using GenomeStudio 2.0 software (Illumina).
SNPs with a call frequency <0.8 (i.e., missing data points >20%),
minor allele frequency (MAF) <0.05 or heterozygous calls >0.25
were removed. SNP sequences that differed between NIL pairs
were used to perform a BLAST search against the wheat
reference genome (IWGSC, 2018). SNPs located on the 7AL
Frontiers in Plant Science | www.frontiersin.org 4
chromosome arm, especially those within the marker interval of
QHtscc.ksu-7A (Talukder et al., 2014), were scrutinized using
JBrowse (http://www.wheatgenome.org/Tools-and-Resources/
Sequences) for candidate gene discovery.
RESULTS

Four NIL Pairs Confirmed With Significant
Differences in Chlorophyll Content
After comparing the DSCC data for NIL pairs, no significant
differences were observed among the 13 putative NIL pairs
grown in the non-stressed (control) treatment, whereas the
isolines of four NIL pairs significantly differed in the heat-
stressed treatment. Of these, the isolines with positive alleles
(+NILs) had smaller reductions in SPAD chlorophyll content
than isolines with negative alleles (–NILs). The isolines of NILs 5,
10, and 13 differed significantly at P < 0.05, and NIL 9 differed
significantly at P < 0.01 (Table 1).

Tolerant Isolines Performed Better Than
Susceptible Isolines on Other Agronomic
Traits in the Confirmed NlLs
Further investigation showed that significant differences existed
between most of the treated isolines and their corresponding
controls for yield-related traits. The differences or gaps in grain
number per pot and yield per pot between the control and heat-
stressed treatments are shown in Figure 2 to compare yield
performance in tolerant and susceptible isolines. For grain
number, three of the four +NILs (5, 9, and 10) had smaller gaps
than –NILs. For yield, all four +NILs had smaller gaps between
non-stressed and stressed treatments than their counterparts.
Generally, heat stress had smaller negative effects on grain
number and yield in +NILs than –NILs.

Five SNP Markers With Consistent
Contrasting Genotypes in the Confirmed
NIL Pairs
Of the 81,587 SNPs on the array, 53,052 were analyzed across the
21 chromosomes after removing those that did not meet the
TABLE 1 | Reduction of SPAD chlorophyll content (DSCC) in the confirmed NIL pairs.

NIL name Population DSCC (Chl10–Chl13)

Control Treatment

Mean P-value Mean P-value

NIL5(+) Cascade/Tevere –0.4 ns 0.53 *
NIL5(–) –0.8 7.13
NIL9(+) Cascade/W156 1.1 ns 4.57 **
NIL9(–) 5.05 7.97
NIL10(+) Cascade/W156 0.67 ns 1.7 *
NIL10(–) 0.6 12.23
NIL13(+) Cascade/Tevere 0.15 ns 1.7 *
NIL13 (–) 1.27 6.7
Aug
ust 2020 | Volume 11 | Art
ns = non-significant at P ≤ 0.05; * = significant at P ≤ 0.05; ** = significant at P ≤ 0.01. The statistics was done using t-test. (+) indicates isolines with resistance allele fromW156 or Tevere;
(–) indicates isolines with susceptibility allele from Cascades.
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selection criteria. Analyzing the SNPs among the four confirmed
pairs of isolines identified five SNPs within the 7AL QTL region
with consistent contrasting genotypes between the resistant and
susceptible isolines (Table 2).

Candidate Genes Identified by Blasting the
Wheat Reference Genome
Seven candidate genes were identified within the QHtscc.ksu-7A
region by blasting the above five SNP markers with wheat
reference genome RefV1.0. The annotations for high and low
confidence genes of RefV1.0 were used, with various databases
compared, including NCBI (https://www.ncbi.nlm.nih.gov) and
InterMine (http://www.wheatgenome.org/Tools-and-Resources/
Sequences), to determine possible gene functions (Table 3).

Markers BS00071558_51 and wsnp_Ku_c5160_9203226 were
co-located on gene TraesCS7A01G612600LC, with their SNP
variations in the intron and untranslated region (UTR),
respectively (Figure 3). Markers wsnp_Ku_rep_c113718_96236830
and wsnp_RFL_Contig2864_2688208 were co-located on gene
TraesCS7A01G432000 and TraesCS7A01G431600, respectively,
with their SNP variations in the UTR and exon regions. Although
no gene was co-located on wsnp_Ra_c26491_36054023, the marker
was located close to genes TraesCS7A01G428200 (15,752 bp away)
and TraesCS7A01G428400 (273,590 bp away), both of which
function as peroxidase.

Blasting the sequence of TraesCS7A01G612600LC in NCBI
identified five ESTs related to plant biotic or abiotic stress
Frontiers in Plant Science | www.frontiersin.org 5
responses (Manickavelu et al., 2012). Genes TraesCS7A01G432000
and TraesCS7A01G431600 were involved in important biochemistry
or molecular functions, such as protein binding, Zinc finger, F-box
domain, Kelch motif, and Per-Arnt-Sim (PAS) domain, all of which
are involved in various pathways of plant responses and reactions to
external stimulus (Craig and Tyers, 1999; Adams et al., 2000; Prag
andAdams, 2003; Hefti et al., 2004; van den Burg et al., 2008; Hennig
et al., 2009; Moglich et al., 2009; Peng et al., 2012; Liu et al., 2015).

Apart from these genes, two other noteworthy genes—
TraesCS7A01G430500, which functions as a sugar transporter family
protein, and TraesCS7A01G430600, which functions as a heat shock
protein (HSP)—were located in the interval between marker
wsnp_Ra_c26491_36054023 and wsnp_RFL_Contig2864_2688208.
DISCUSSION

In this study, we reported the development of 13 putative NIL pairs
targeting a major locus for heat tolerance. Among them, four pairs
were confirmed as true NILs by genotype–phenotype association
analysis. The confirmed NILs showed differential responses under
non-stressed and heat-stressed conditions. NILs with alleles from
the heat-tolerant parents (Tevere andW156) performed better than
their counterparts in terms of physiological and agronomical traits,
such as chlorophyll content, grain number, and grain yield.
Characterization of these NIL pairs revealed that the presence of
the tolerance allele significantly increased heat tolerance in the
TABLE 2 | SNPs showing consistent contrast callings in the confirmed four pairs of NILs.

No. Marker Name SNP Physical location

1 BS00071558_51 [T/C] chr7A:626897156.626897256
2 wsnp_Ku_c5160_9203226 [T/C] chr7A:626897816.626898016
3 wsnp_Ku_rep_c113718_96236830 [A/G] chr7A:625739519.625739719
4 wsnp_Ra_c26491_36054023 [A/G] chr7A:621582917.621583094
5 wsnp_RFL_Contig2864_2688208 [T/C] chr7A:625640069.625640169
August 20
FIGURE 2 | Differences in agronomic trait gaps between the confirmed isolines of tolerant and susceptible alleles. Three replicates each for the control (naturally lit
glasshouse with conditions described in detail in Table S1) and the heat-stressed treatment (growth chamber set at 37/27°C day/night) were used for statistical
analysis. The column indicates trait gaps between the treatment and control, with error bar on top. * indicates significant difference at P ≤ 0.05; ** indicates
significant difference at P ≤ 0.01. Statistics done using t-test.
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plants. One reason for the higher grain yield and grain number in
the heat-tolerant NILs may be the positive correlation between
chlorophyll content and gas exchange parameters reported in
several studies (Chen et al., 2016; Wang et al., 2016).

Many physiological traits have been closely associated with
heat response, such as canopy temperature, leaf senescence,
night respiration, chlorophyll fluorescence, and cell membrane
thermo-stability (Narayanan, 2018). The original QTL targeted in
this study was associated with multiple traits, including thylakoid
membrane damage (TMD), plasma membrane damage (PMD),
and SPAD chlorophyll content (SCC) (Talukder et al., 2014).
Membrane thermostability has a strong genetic correlation with
grain yield in wheat (Reynolds et al., 1994; Fokar et al., 1998). Loss
of chlorophyll content during grain filling has been associated
Frontiers in Plant Science | www.frontiersin.org 6
with reduced yield under field conditions (Reynolds et al., 1994).
TMD and PMD have also been associated with grain yield
(Moffatt et al., 1990b; Saadall et al., 1990; Reynolds et al., 1994;
Araus et al., 1998; Marcum, 1998; Blum et al., 2001; Wahid and
Shabbir, 2005). Strong correlations among these traits suggest that
these traits are under pleiotropic genetic control.

Leaf chlorophyll content is a major indicator of the
photosynthetic capability of plant tissues (Rao et al., 2001;
Pietrini et al., 2017). Some studies that focused on yield and
photosynthetic traits (Raven and Griffiths, 2015; Gaju et al., 2016;
Merchuk-Ovnat et al., 2016) have shown that the photosynthetic
function duration of leaves is closely correlated to grain yield in
wheat. Furthermore, spectral characteristics measured by SPAD
are a good indicator for evaluating crop responses to high
TABLE 3 | Function annotations of candidate genes.

Gene Physical position Database Identifier Description

TraesCS7A01G612600LC 626894752.626898021 EMBL-EBI BQ245642
HX055146
HX055177
CJ956871
CJ945027

Yield improvement under stress
response to blast fungus
wheat responses to fungi infections
response to powdery mildew infection
responses to fungi infections

TraesCS7A01G432000 625737761.625740656 Interpros IPR013083 Zinc finger, RING/FYVE/PHD-type

TraesCS7A01G431600 625635655.625640991 GOs
Interpros

Pfams

GO:0005515
IPR001810
IPR015915
IPR000014
IPR011498
PF13426
PF13415
PF07646
PF13418
PF12937

Molecular Function: protein binding
F-box domain
Kelch-type beta propeller
PAS domain
Kelch-repeat type 2
PAS domain
Galactose oxidase, central domain
Kelch motif
Galactose oxidase, central domain
F-box-like

TraesCS7A01G428200 621564527.621567165 GOs

Interpros

Pfams

GO:0020037
GO:0055114
GO:0004601
GO:0006979
IPR000823
IPR002016
IPR010255
IPR019793
IPR019794
PF00141

MF: heme binding
BP: oxidation-reduction process
MF: peroxidase activity
BP: response to oxidative stress
Plant peroxidase
Haem peroxidase, plant/fungal/bacterial
Haem peroxidase
Peroxidases heam-ligand binding site
Peroxidase, active site
Peroxidase

TraesCS7A01G428400 621856684.621857860 Similar function as gene TraesCS7A01G428200

TraesCS7A01G430500 624959655.624961254 GOs

Interpros

Pfams

GO:0016021
GO:0016020
GO:0055085
GO:0005215
GO:0022857
GO:0022891
IPR020846
IPR003663
IPR005828
IPR005829
PF00083

CC: integral component of membrane
CC: membrane
BP: transmembrane transport
MF: transporter activity
MF: transmembrane transporter activity
MF: substrate-specific transmembrane transporter activity
Major facilitator superfamily domain
Sugar/inositol transporter
Major facilitator, sugar transporter-like
Sugar transporter, conserved site
Sugar (and other) transporter

TraesCS7A01G430600 624965100.624967076 Interpros

Pfams

IPR013126
IPR029047
IPR029048
IPR018181
PF00012

Heat shock protein 70 family
Heat shock protein 70kD, peptide-binding domain
Heat shock protein 70kD, C-terminal domain
Heat shock protein 70, conserved site
Hsp70 protein
August 2020 | Volume 11 | Article 1316
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temperature (Talukder et al., 2014; Tao et al., 2016). Due to its
correlation with yield and other performance indicators under
heat stress, chlorophyll content measured by SPAD could be
used as an easy and reasonable morphological marker for
assessing heat tolerance, especially at the initial mass screening
stage. The smaller the reduction in SPAD chlorophyll content
(DSCC), the more tolerant the plant should be to heat stress.
SPADmeters have been used to estimate leaf chlorophyll content
in research and agricultural practices because it is a quick, simple
and non-destructive method (Novichonok et al., 2016; Padilla
et al., 2018; Zhao et al., 2018; de Souza et al., 2019; Galanti et al.,
2019; Zhang et al., 2019). Here, agronomic traits such as grain
number and grain yield were also measured to further confirm
the true NIL pairs, which are valuable material for further studies
of post-anthesis heat tolerance in wheat.

Except for the report by Talukder et al. (2014), the major QTL
QHtscc.ksu-7A targeted in this study has been identified as
responsible for heat tolerance in other studies. Vijayalakshmi et al.
(2010) reported a 7A QTL linked to marker Xbarc121 for heat-
tolerance traits, including Fv/Fm and time to maximum rate of
senescence. Talukder et al. (2014) revealed that several ESTs, located
in the same wheat deletion bin as Xbarc49, were related to stress
response in different studies; therefore, the authors proposed that
the major QTL QHtscc.ksu-7A was a genomic region rich in
genes related to stress response. Dixit et al. (2015) hypothesized
that multiple genes underpinned large-effect QTL. In this study,
seven candidate genes within the targeted major 7AL QTL were
identified as responsible for heat tolerance post-anthesis. The
gene TraesCS7A01G612600LC is a homologous gene to
TraesCS7A01G612600L; blasting TraesCS7A01G612600L by Blastx
(translated nucleotide to protein) on NCBI with criteria of
percentage identity ≥50% and e-value of <1e-5 revealed its origin
from Triticum urartu, and it has been up-regulated at 24 h osmotic
stress in the ABA-dependent signaling pathway (Li et al., 2019).
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Therefore, the gene TraesCS7A01G612600LC identified in this study
supposedly has a similar function as its homologous gene. Abscisic
acid (ABA) is generally considered as a stress signaling hormone,
and the expression of stress-responsive genes in plants is primarily
regulated by ABA-dependent and ABA-independent pathways
(Agarwal and Jha, 2010; Yoshida et al., 2014). The ABA-
dependent pathway is central to osmotic-stress responses in
plants (Li et al., 2019). Moreover, five expression sequence tag
(EST) markers associated with TraesCS7A01G612600LC were
related to plant biotic or abiotic stress responses. Among these
EST markers, HX055146, HX055177, CJ956871, and CJ945027
were related to wheat responses to fungi infections, including
Fusarium head blight and powdery mildew (Manickavelu et al.,
2012), while BQ245642 encoded a polypeptide useful for yield
improvement by improving plant growth and development under
at least one stress condition (Kovalic et al., 2007).

The annotation of genes TraesCS7A01G432000 and
TraesCS7A01G431600 revealed their involvement in some
important biochemistry or molecular functions, such as protein
binding, Zinc finger, F-box domain, Kelch motif, PAS domain,
and galactose oxidase. F-box domain genes are related to plant
resistance, while F-box proteins are associated with cellular
functions, such as signal transduction and regulation of the cell
cycle during plant vegetative and reproductive growth and
development (Craig and Tyers, 1999). For example, F-box protein
FOA1 plays a role in ABA signaling involved in seed germination
(Peng et al., 2012), ACRE189/ACIF1 regulates cell defense and death
when tomato and tobacco are attacked by pathogens (van den Burg
et al., 2008), Kelch motifs and kelch-repeat b-propellers undergo a
variety of binding interactions with other molecules (Adams et al.,
2000; Prag andAdams, 2003), and a PAS domain acts as amolecular
sensor (Hennig et al., 2009; Moglich et al., 2009; Liu et al., 2015) and
has been deemed as the key structural motif involved in protein-
protein interactions during physiological reactions (Hefti et al.,
FIGURE 3 | Candidate gene structures and SNPs between tolerant and susceptible NILs. The structural information of genes and SNP markers was extracted from
the wheat genome database (https://urgi.versailles.inra.fr/jbrowseiwgsc/gmod_jbrowse). The SNP positions between tolerant and susceptible NILs are marked with
an asterisk. For the first three genes, SNPs distinguishing tolerant and susceptible NILs were within the identified genes, either exon, intron, or untranslated region
(UTR); for the other four genes, SNPs were outside the candidate genes and their physical distances to the genes are labeled.
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2004). In summary, all these biological structures are extensively
involved in various pathways of plant responses and reactions to
external stimuli such that we can deduce that genes
TraesCS7A01G432000 and TraesCS7A01G431600 regulate heat
tolerance by controlling protein structures and protein binding on
the biological structures mentioned above to achieve signal
transduction, which is the key part in the pathway of heat tolerance.

The remaining four genes TraesCS7A01G428200 ,
Trae sCS7A01G428400 , Trae sCS7A01G430500 , and
TraesCS7A01G430600 have functions as peroxidase, peroxidase,
sugar transporter family protein, and HSP, respectively. The sugar
transporter family protein is related to yield as sugar transport is one
of the most important processes for plant development and their
responses to biotic and abiotic factors (Lalonde et al., 2004; Lemoine
et al., 2013). Tolerance to heat stress is frequently associated with
maintaining sugar content in source leaves (Vasseur et al., 2011;
Zhou et al., 2017). For example, a heat-tolerant tomato (Solanum
lycopersicum) genotype had significantly higher fructose and
sucrose contents in mature leaves than a heat-sensitive genotype
under heat stress (Zhou et al., 2017). Peroxidase is related to stress
tolerance—peroxidase activities increased significantly in a heat-
tolerant wheat genotype in response to heat treatment (Sairam et al.,
1998). Exposure to heat stress often leads to the generation of
destructive ROS (reactive oxygen species), but plants have
antioxidant mechanisms to escape excessive ROS. Several studies
have shown that peroxidase plays an important role in antioxidant
mechanisms and ameliorates the effects of heat stress in wheat
(Suzuki et al., 2011; Caverzan et al., 2016). HSPs play a pivotal role
as chaperones in conferring biotic and abiotic stress tolerance
(Baniwal et al., 2004). The expression of HSP genes induced by
high temperature can preserve the stability and function of
intracellular proteins and protect them from denaturation
through protein folding. They enhance membrane stability and
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detoxify ROS by positively regulating the antioxidant enzyme
system. Additionally, HSP genes use ROS as a signal to molecules
to induce HSP production. HSP also enhances plant immunity by
accumulating and stabilizing pathogenesis-related proteins under
various biotic stresses (Haq et al., 2019). Genotypes generating HSPs
can withstand heat stress as they protect proteins from heat-induced
damage (Farooq et al., 2011).

The gene structure analysis (Figure 3) identified several SNPs
distinguishing tolerant and susceptible NILs located within
the candidate genes, in which one marker wsnp_RFL-
Contig2864_2688208 falls in the exon region. These markers can
be used as functional markers, because not only does the exon
encodes protein functional units but also noncoding DNA including
intron and UTR has played significant roles in many studies (Cobb
et al., 2008; Khurana et al., 2013; Lu et al., 2015; Grünewald et al.,
2015). SNPs outside the identified candidate genes can still be used
in marker-assisted selection for genetic and breeding research.
Aharon et al. (2016) explored how far SNPs can be from the
affected genes using a pathway-based approach and found that
affected genes were often up to 2Mbps from the associated SNP and
not necessarily the closest to the SNP.

The molecular mechanisms underlying heat tolerance in
wheat remain unclear. A schematic network, proposed to
explain the mechanism of heat tolerance in legumes, suggested
that signalling and metabolic pathways, involving a series of
physiochemical processes and important molecules such as
HSPs, antioxidants, metabolites, and hormones, play key roles
in regulating the legume response to heat stress (Liu et al., 2019).
The candidate genes identified in this study are consistent, to a
large extent, with their proposed network. Therefore, we
hypothesize that such a pathway might exist in wheat, where
many key genes collaboratively regulate the crop’s response to
heat stress (Figure 4).
FIGURE 4 | Postulated pathway based on the findings of this study showing a collaborative regulation network of multiple genes in wheat in response to heat
stress. Signaling pathway and metabolic pathway involving a series of physiochemical processes and important molecules, including HSPs, antioxidants, metabolites,
and hormones.
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CONCLUSIONS

The NILs developed and validated in this study confirmed that
the 7AL QTL, QHtscc.ksu-7A, is a major locus responsible for
heat tolerance in wheat. The confirmed NILs and identified
candidate genes are valuable resources for future studies in fine
mapping and functional analyses of the chromosome region to
clone the underlying gene(s).
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