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Silicon (Si) plays an important role in improving soil nutrient availability and plant carbon (C)
accumulation and may therefore impact the biogeochemical cycles of C, nitrogen (N), and
phosphorus (P) in terrestrial ecosystems profoundly. However, research on this process in
grassland ecosystems is scarce, despite the fact that these ecosystems are one of the
most significant accumulators of biogenic Si (BSi). In this study, we collected the
aboveground parts of four widespread grasses and soil profile samples in northern China
and assessed the correlations between Si concentrations and stoichiometry and
accumulation of C, N, and P in grasses at the landscape scale. Our results showed that
Si concentrations in plants were significantly negatively correlated (p < 0.01) with associated
C concentrations. There was no significant correlation between Si and N concentrations. It
is worth noting that since the Si concentration increased, the P concentration increased
from less than 0.10% to more than 0.20% and therefore C:P and N:P ratios decreased
concomitantly. Besides, the soil noncrystalline Si played more important role in C, N, and P
accumulation than other environmental factors (e.g., MAT, MAP, and altitude). These
findings indicate that Si may facilitate grasses in adjusting the utilization of nutrients (C, N,
and P) and may particularly alleviate P deficiency in grasslands. We conclude that Si
positively alters the concentrations and accumulation of C, N, and P likely resulting in the
variation of ecological stoichiometry in both vegetation and litter decomposition in soils. This
study further suggests that the physiological function of Si is an important but overlooked
factor in influencing biogeochemical cycles of C and P in grassland ecosystems.
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INTRODUCTION

Silicon (Si) is the second most abundant element in the Earth’s
crust but the beneficial function of this element for plants was
overlooked until studies found that Si is actively taken up by
many plants (Epstein, 1994; Carey and Fulweiler, 2012; Ma and
Yamaji, 2015). After being absorbed by plants dissolved Si is
deposited as amorphous SiO2 (or phytoliths) in plant tissues (Ma
and Yamaji, 2006; Cooke and Leishman, 2016), while less Si
binds to semicellulose of the cell, potentially improving the
strength and rigidity of plants (Broadley et al., 2012; He et al.,
2015). This physiological function of Si enhances plant resistance
against abiotic stresses such as drought and salt environments
(Hattori et al., 2005; Liang et al., 2007; Rios et al., 2017) and biotic
stresses including plant pathogens and insect pests (Ma, 2004). Si
is therefore highly beneficial for plant growth and productivity
(Van Bockhaven et al., 2013; Li and Delvaux, 2019).

Interest in the impacts of Si on carbon (C), nitrogen (N), and
phosphorus (P) concentrations in plants is increasing (Schoelynck
et al., 2010; Schaller et al., 2012a; Neu et al., 2017; Klotzbücher et al.,
2018; Li et al., 2018a). Most of these studies have reported that the Si
concentration is negatively correlated with that of C in plants
(Schaller et al., 2012b; Klotzbücher et al., 2018). However, the
application of Si promotes N concentration in non-leguminous
plants exposed to N-deficient grasslands (Xu et al., 2018), despite
the fact that the N concentration in wetland plants showed negative
correlations with the concentration of Si (Schaller et al., 2016).
Similarly, P concentration in plants in a P-deficient habitat is also
promoted by the application of Si (Schaller et al., 2012b; Kostic et al.,
2017; Neu et al., 2017) but is suppressed in an environment of
excessive P (Ma and Takahashi, 1990; Hu et al., 2018). This shift
between C concentration and nutrient status in response to Si
application alters the stoichiometry of C, N, and P in plants, that this
has been commonly used to indicate the balance of these elements
(Hessen et al., 2004; He et al., 2008; Li et al., 2018b). Furthermore,
many studies have observed that Si supply could improve plant
biomass production (Eneji et al., 2008; Liang et al., 2015; Neu et al.,
2017; Li et al., 2018a; Li and Delvaux, 2019; Li et al., 2019) and could
enhance significantly total C, N, and P accumulation in plants (Xu
et al., 2015; Li et al., 2018b). However, most of these studies were
carried out in farmlands in either pot or field experiments and
comprehensive investigations of natural ecosystems are still lacking.

Grassland ecosystems occupy more than 20% of the world’s
land surface (Scurlock and Hall, 1998) and store considerable
quantities of C to sequester 0.5 Pg C into soil every year (Scurlock
and Hall, 1998; Fang et al., 2010; Wu et al., 2014). Additionally,
grasslands play an important role in the global terrestrial
production of biological silicon (BSi) (Blecker et al., 2006;
White et al., 2012; Song et al., 2014a). However, Si is not yet
well accepted as an important element in conceptual models of
the grassland C biogeochemical cycle or the closely related N and
P cycles (Schmidt et al., 2011; Song et al., 2012a; Lehmann and
Kleber, 2015). The physiological effects of Si on accumulation
and stoichiometry of C, N, and P in grasses are less well known.

We collected aboveground parts of four of the most
widespread grasses in our study area in northern China to
determine the concentrations of Si and explore the impacts on
Frontiers in Plant Science | www.frontiersin.org 2
stoichiometry and accumulation of C, N, and P. Here, we
hypothesize that Si accumulation could affect the concentration
and stoichiometry of C, N, and P in grass species. The Si could
promote N and P absorption in plant, while the C concentration
is negatively correlated with Si concentration. We further analyzed
the same species of grasses with diverse Si concentrations
throughout grasslands in northern China. The study area belongs
to agro-pastoral ecotone, where is experiencing degradation at
varying degrees because of climate change and human activities
(Jiang et al., 2006; Yang et al., 2019). These results facilitated
the systematic assessment of the impacts of Si accumulation
on stoichiometry and accumulation of C, N, and P in grasslands
at landscape scales and further could provide references for
grassland management.
MATERIALS AND METHODS

Study Area and Field Sampling
The study area is situated between the northern part of Hebei
Province and the southeastern part of Inner Mongolia in
Northern China (Figure 1). The climate may be described as
semi-humid and semi-arid temperate, with mean annual
precipitations (MAP) and mean annual temperatures (MAT)
ranging from 311.9 to 421.3 mm and from 2.1°C to 8.3°C,
respectively. The main soil types are kastanozems and arenosols
as classified by the Food and Agriculture Organization (FAO).
The vegetation type is typical steppe or meadow steppe (Figure 1)
(Hou, 1982).

Field investigations and sampling were conducted at 29 sites
in July 2017, when grasses reached maturity. At each sampling
site, three replicates of 2 m × 2 m plots were randomly set up.
Data recorded for plant species included cover, abundance and
height. Aboveground parts of all plants in a 1 m × 1 m quadrat
within the 2 m × 2 m sample plots were harvested to estimate
total aboveground biomass. At the same time, the soil profiles (0–
10 cm) of each plot were collected. The detailed method could be
referred to Yang et al. (2019).

Four of the most widely distributed grass species were sampled
for determining aboveground biomass, including Leymus chinensis,
Cleistogenes squarrosa, Agropyron mongolicum and Stipa krylovii
(Table 1). Each species had one sample (over 150 g) in one site, but
not all the sites contained all the four species (Table 1). A total of
57 samples were collected, including 16 samples of L. chinensis, 23
samples of C. squarrosa, 7 samples of A. mongolicum, and 11
samples of S. krylovii.

Sample Analysis
Plant samples were carefully cleaned with distilled water, dried for 2
hours at 105°C, dried at 65°C to constant mass and subsequently
finely powdered. Tomeasure Si and P concentrations, approximately
75 mg of plant samples were fused with Li-metaborate at 950°C
and dissolved in dilute nitric acid. Si and P concentrations were
determined colorimetrically by the molybdenum blue method
(Song et al., 2012a; Li et al., 2013). C and N concentrations
(approximately 5-mg sample) were analyzed with the Elementar
August 2020 | Volume 11 | Article 1304
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FIGURE 1 | Distribution of grass types in China, with locations of the study region and sampling sites (orange triangles with numbers consistent with Table 1;
modified from Yang et al., 2019).
TABLE 1 | Locations and environmental parameters of sampling sites with sampled plant species.

Sites Longitude (°E) Latitude (°N) MAT* (°C) MAP* (mm) Altitude (asl, m) Sampled species

1 114.68 41.05 3.35 405.61 1,473 L. chinensis, C. squarrosa and
A. mongolicum

2 114.33 41.08 3.22 394.85 1,554 L. chinensis, C. squarrosa and
S. krylovii

3 114.85 41.48 3.35 405.61 1,400 L. chinensis, C. squarrosa and
A. mongolicum

4 114.45 41.70 3.54 344.20 1,378 C. squarrosa and S. krylovii
5 114.25 42.00 3.22 301.58 1,464 L. chinensis, C. squarrosa,

A. mongolicum and S. krylovii
6 115.03 42.18 2.32 355.95 1,312 L. chinensis and C. squarrosa
7 114.68 42.70 3.43 282.96 1,159 L. chinensis
8 115.32 42.40 2.32 355.95 1,265 L. chinensis
9 115.17 42.07 2.32 355.95 1,452 L. chinensis, C. squarrosa and

S. krylovii
10 115.53 42.38 2.32 355.95 1,378 L. chinensis, C. squarrosa and

A. mongolicum
11 115.90 42.72 2.12 335.45 1,304 L. chinensis, C. squarrosa and

A. mongolicum
12 116.03 42.65 1.64 364.19 1,338 L. chinensis, C. squarrosa,

A. mongolicum and S. krylovii
13 115.88 42.30 2.32 367.14 1,382 C. squarrosa and S. krylovii
14 116.15 42.20 1.87 393.47 1,385 C. squarrosa
15 117.23 42.57 1.21 428.77 1,545 A. mongolicum and S. krylovii
16 117.23 42.80 1.21 428.77 1,432 L. chinensis and S. krylovii
17 117.07 43.30 1.25 404.35 1,269 S. krylovii
18 117.87 43.52 1.92 392.15 941 C. squarrosa
19 118.33 43.32 4.63 384.52 792 L. chinensis and C. squarrosa
20 118.58 43.63 4.87 377.80 907 L. chinensis
21 119.13 44.08 4.96 378.20 707 C. squarrosa
22 119.65 43.83 6.66 359.43 441 C. squarrosa
23 120.80 44.52 5.92 380.02 297 C. squarrosa
24 122.03 44.15 6.70 344.05 185 L. chinensis and C. squarrosa
25 121.67 43.37 7.17 367.59 223 C. squarrosa
26 120.78 43.40 7.25 352.98 295 C. squarrosa
27 121.35 42.42 7.80 455.02 325 C. squarrosa
28 120.23 42.17 6.26 430.14 650 L. chinensis, C. squarrosa and

S. krylovii
29 119.13 42.33 7.94 386.46 573 C. squarrosa and S. krylovii
Frontiers in Plan
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vario EL III (Elementar Analyzer systeme GmbH, Hanau,
Germany) and each analyzed sample had three replicates.

The soil noncrystalline Si were classified into four fractions
operationally based on an improved stepwise chemical extraction
method (Kurtz et al., 2002; Detmann et al., 2012; Song
et al., 2014b).
Data Calculations and Statistical Analysis
At each site, to estimate the aboveground biomass of the four
species we used the average importance value (IV) of each species
in three repetitive sample plots to represent the percentage of the
total biomass. IV of each species was calculated using the
following equation:

IV = RA + RC + RHð Þ=3 (1)

where RA represents relative abundance, RC represents relative
coverage, and RH represents the relative height of the
corresponding species (Liu et al., 2008). Aboveground biomass
(g m−2) of each species was calculated using the following
equation:

Biomassi = Total biomass� IVi (2)

where i represents L. chinensis, C. squarrosa, A. mongolicum, or
S. krylovii.

The total element (C, N, or P) accumulation (g m−2) for each
species was calculated using the following equation (taking C as
an example):

Total Ci uptake = C concentation �  Biomassi (3)

where i represents L. chinensis, C. squarrosa, A. mongolicum, or
S. krylovii.

One-way analysis of variance (ANOVA) was calculated to
determine whether the average values of C, N, P and Si
concentrations differed significantly among different species
[p < 0.05 with the Least Significant Difference (LSD) test].
Linear regression analysis was applied to analyze the correlation
(examined with Pearson’s correlation coefficients) between Si and
C, N, or P for each species and all samples. In order to distinguish
the independent effect of four explanatory factors (MAT, MAP,
altitude, and soil noncrystalline Si) on C, N, and P accumulation
in plants, the hierarchical variation partitioning (HP) was
calculated for the four kinds of species and all samples in R
3.6.1 (Hao et al., 2020).
RESULTS

Si, C, N, and P Concentrations and
Associated Ratios in Grass Species
Si concentrations ranged from 0.23% to 2.27% among the four
species (Table 2). Average concentrations of Si in L. chinensis, C.
squarrosa, A. mongolicum, and S. krylovii were 1.12%, 1.28%,
0.83%, and 0.96%, respectively, but were not significant (P >
0.05) (Table 2). In addition, the four grasses had similar
Frontiers in Plant Science | www.frontiersin.org 4
concentrations of either C, N, or P (Table 2). C concentrations
ranged from 41.71% to 45.49% and N from 1.73% to 2.09%. P
concentrations were 0.15% ± 0.03%, 0.16% ± 0.05%, 0.15% ±
0.05%, and 0.12% ± 0.04% for the four grass species. The C.
squarrosa had significantly higher Si and P concentrations, while
S. krylovii had significantly higher C concentration compared
with other species (Table 2).

C:N, N:P, and C:P ratios stoichiometry for L. chinensis, C.
squarrosa, A. mongolicum and S. krylovii are shown in Table 2.
The C:N and N:P ratios ranged from 13.62 to 48.30 and 5.22 to
24.45, respectively (Table 2). C:P ratios ranged from 157.34 to
699.58 with an average value of 326.12 ± 118.81.

Relationships Between Si and Other
Parameters
Significant negative correlations were found between Si and C
concentrations in L. chinensis, C. squarrosa and for all the
samples (Figure 2A). In contrast, Si concentrations were
positively correlated with P in L. chinensis, A. mongolicum, and
all the samples (Figure 2C). However, Si concentrations did not
correlate with N concentrations both within and between all
species (Figure 2B). Si concentration was negatively correlated
with both C:P and N:P ratios for L. chinensis, A. mongolicum, and
all the samples (P < 0.05) (Figures 2E, F), and Si concentration
was only positively correlated with C/N for S. krylovii (Figure
2D). However, a positive relationship between Si % and C:N
occurred only in S. krylovii.

Strong positive correlations were observed between total C, N,
and P accumulations and soil noncrystalline Si (Figure 3),
especially for L. chinensis and all samples. The altitude also
played an important role in N and P accumulation for L.
chinensis (Figures 3G, K). Based on the HP analysis, the soil
noncrystalline Si had relatively higher independent effect values
on the C, N, and P accumulations for L. chinensis and all the
samples compared with MAT, MAP, and altitude (Figure 4).
Besides, soil noncrystalline Si concentration was positively
correlated with aboveground biomass (Figure 5).
DISCUSSION

Impacts of Si on C, N, and P
Concentrations in Grasses
Our data revealed a significant negative correlation between Si
and C concentrations in tissues of aboveground parts of the
sampled grasses (Figure 2A). Similar results were obtained in
studies of reeds (Schaller et al., 2012a; Schaller et al., 2012b),
wetlands (Schaller et al., 2016), Si-fertilized winter wheat (Neu
et al., 2017), and rice straw in paddies (Klotzbücher et al., 2018).
Two possible reasons could explain these findings: i) the
accumulation of Si may have a “diluting effect” on the
concentrations of C and other elements in plants (Cooke and
Leishman, 2012); ii) Si uptake in plants is a “trade-off strategy”
between Si and some organic C compounds (Schoelynck et al.,
2010; Klotzbücher et al., 2018). In this study, the “diluting effect”
is less likely to occur due to a positive correlation between Si and
August 2020 | Volume 11 | Article 1304
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P concentrations (Figure 2C). The Si deposition in tissue works
similarly to lignin, causing plants to be resistant to environmental
stresses (Epstein, 1994) (Figure 6). Moreover, compared to the
synthesis of structural organic compounds, Si deposition is a “low
energy cost” strategy for most plants (Raven, 2010; Schoelynck
et al., 2010; Schaller et al., 2012a; Klotzbücher et al., 2018).

In this study, Si concentration in grass was not correlated with
N concentration and this is consistent with the result of rice
(Klotzbücher et al., 2018; Li et al., 2018b). This effect may be
Frontiers in Plant Science | www.frontiersin.org 5
caused by the offset between the “diluting effect” and the
promoting influence that cannot be quantified in this study.
However, the Si concentration was positively correlated with P.
Similar trends have been reported in other types of grasses (Eneji
et al., 2008), reeds (Schaller et al., 2012b), and wheat (Kostic
et al., 2017; Neu et al., 2017). This may be related to the
interaction between Si uptake and P metabolism in plants
(Kostic et al., 2017). Kostic et al. (2017) found that the
application of Si could enhance P bioavailability in soils with
TABLE 2 | Aboveground biomass, concentrations of Si, C, N, and P and stoichiometric ratios for the four grass species (standard deviations are given in parentheses).

Sample species Biomass (g m–2) Si (%) C (%) N (%) P (%) C:N N:P C:P

Leymus chinensis (n = 16) 7.65 (4.72) 1.12 (0.44)ac 43.68 (1.13)a 2.09 (0.41)a 0.15 (0.03)ab 21.04 (4.93) 14.84 (2.71) 327.05 (116.93)
Cleistogenes squarrosa (n = 23) 8.92 (6.78) 1.28 (0.39)c 43.38 (0.58)a 2.01 (0.42)a 0.16 (0.05)b 22.68 (5.96) 13.84 (5.26) 289.19 (95.51)
Agropyron mongolicum (n = 7) 4.60 (1.17) 0.83 (0.41)ab 43.77 (0.58)ab 1.85 (0.35)a 0.15 (0.05)ab 24.76 (5.62) 13.10 (3.19) 322.81 (91.25)
Stipa krylovii (n = 11) 14.58 (14.80) 0.96 (0.31)ab 44.37 (0.36)b 1.73 (0.56)a 0.12 (0.04)a 28.20 (8.81) 14.94 (2.49) 404.12 (141.20)
Total (n = 57) 8.44 (5.84) 1.12 (0.42) 43.70 (0.83) 1.96 (0.46) 0.15 (0.05) 23.54 (6.93) 14.24 (4.50) 326.12 (118.81)
August 2
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Different letters of the superscripts represent the statistical significances among different species (p < 0.05).
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FIGURE 2 | Relationships between Si concentrations and C, N, and P concentrations (A–C), Si concentrations and stoichiometric ratios of N:P, C:P, and C:N (D–F)
for these four species. The red dots, lines and text represent Leymus chinensis, blue represent Cleistogenes squarrosa, the green represent Agropyron mongolicum
and yellow represent Stipa krylovii. The black dots, lines, and text represent all grass samples.
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low P concentrations through up-regulating P transporter gene
expressions or improving rhizospheric organic acids (Figure 6).
C:N:P Stoichiometry Regulated by Si
N and P are vital nutrients for plant growth and biosynthesis of
organic matter. C:N and C:P stoichiometry can represent the
plants’ nutrient status in response to varying environmental
conditions (Körner, 1989; Reich and Oleksyn, 2004). Previous
studies have highlighted the important roles of N and P status,
climate, and phylogeny in controlling C:N:P ecological
stoichiometry (Wright et al., 2004; Kerkhoff et al., 2006; He
et al., 2008; Olde Venterink and Gusewell, 2010; Song et al.,
2014a; Li et al., 2018b). In this study, Si concentrations in the
aboveground grass tissues were negatively correlated with grass
C but positively with P, resulting in a significant negative
correlation between grass Si and the C:P ratio. This may
indicate that Si uptake could have a profound impact on the
utilization of plant nutrients (Song et al., 2014a; Li et al., 2018b).

Moreover, N:P stoichiometry can be used to assess the
nutrient balance of plants and whether N or P limits plant
growth at the ecosystem level (Koerselman and Meuleman, 1996;
Verhoeven et al., 1996; Elser et al., 2000; Güsewell et al., 2003;
Güsewell, 2004). For example, N:P < 14 indicates that N limits
Frontiers in Plant Science | www.frontiersin.org 6
the growth of plants, whereas N:P > 16 indicates P limitation
(Koerselman and Meuleman, 1996; Aerts and Chapin, 1999).
P is considered a major growth-limiting factor in the grasslands
of Northern China (Han et al., 2005; He et al., 2008). Our
analysis showed that N:P stoichiometry decreased with an
increasing Si concentration (Figure 2F), suggesting that Si
may partly enable plants to govern the nutrient balance and
alleviate P deficiency in the grasslands of northern China. These
findings may support the promising potential role of Si in
grassland management.

Implications and Limitation of the Study
Although the biogeochemical cycles of C, N, and P influence
most ecosystem processes (Chapin, 1980; Chapin et al., 1990;
Hessen et al., 2004), Si plays a promising role in regulating the
biogeochemical cycles of C, N, and P in grasslands (Conley, 2002;
Blecker et al., 2006; Song et al., 2012a; Song et al., 2012b; Song
et al., 2014a; Trinh et al., 2017). For example, the element release
and CO2 consumption during silicate weathering and the
sequestration of organic matter during the formation and
accumulation phytolith in plants and soil.

In addition to these mechanisms, Si absorption from soil
and deposition in grasses could also affect grassland C, N, and
P cycles by controlling the synthesis of structural organic
A B D

E F G

I

H

J K L

C

FIGURE 3 | Relationships between environmental factors (MAT, MAP, altitude, and soil noncrystalline Si) and C, N, and P accumulation. The red dots, lines, and
text represent L. chinensis, blue represents C. squarrosa, green represents A. mongolicum, and yellow represents S. krylovii. The black dots, lines, and text
represent all grass samples. The effects of environmental factors to C accumulation (A–D), N accumulation (E–H) and P accumulation (I–L).
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compounds and elemental stoichiometry. Increasing evidence
shows that Si uptake by plants can enhance the accumulation of
C and nutrient elements (Eneji et al., 2008; Song et al., 2014a;
Neu et al., 2017; Li et al., 2018b). For example, Li et al. (2018a)
summarized the positive effects of Si on total C accumulation in
plants under different stresses in terrestrial ecosystems and found
that Si-mediated recovery could potentially lead to a 35%
increase in C accumulation. In line with these findings, the soil
noncrystalline Si had significantly positively effect on plant C
accumulation (Figure 3), which was caused by the significant
increased aboveground biomass with total soil non-crystalline Si
concentration in our study area (Figure 5). We suggest that the
Si could promote the C, N, and P accumulation in plants, while
with a certain biomass, C storage in aboveground parts of
grassland plants would potentially decrease, and P storage
would increase significantly due to Si uptake. However, these
phenomena are not consistent among the four species in our
study, and this inconsistency may result from different sample
numbers and species characteristics. Besides, the insignificant
relationships between climate and C, N, and P accumulation in
plants might be partly caused by the relatively small differences
in precipitation.

Si in soil and Si uptake in plants could not only affect C, N,
and P concentrations and accumulations in fresh tissues but
also influence the processes of plant litter decay since litter
decomposition rates are closely related to the chemical
composition of plant tissues, such as lignin concentrations and C,
N, and P stoichiometry (Taylor and Parkinson, 1989; Gijsman et al.,
1997; Koukoura et al., 2003). In grasslands, microorganisms in soils
generally preferentially decompose plant litter with low lignin
contents, low C:P ratios and high P concentrations (Zhang et al.,
2008; Talbot and Treseder, 2012; Yang et al., 2014). Therefore, the
positive effect of Si on the uptake of P over C as observed in the grass
species in this study provides additional evidence that litter
A

B

C

FIGURE 4 | The independent effect (IE; %) of environmental factors (MAT,
MAP, altitude, and soil noncrystalline Si) on C (A), N (B), and P (C)
accumulation based on hierarchical variation partitioning (HP).
FIGURE 5 | Relationships between soil noncrystalline Si concentrations and
biomass of sample plots.
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decomposition rates may increase significantly due to increased Si
content (Schaller and Struyf, 2013; Marxen et al., 2016). However,
the effects of increased Si incorporation on litter decay are
complicated. For example, the protective effects of phytolith on
litter may restrict the activity of fungal decomposers in soils
(Schaller et al., 2014). Hence further research is needed to
examine the relative importance of these opposing effects. Though
the possible mechanism for Si regulating the C, N, or P cycles are
discussed above, these are mainly based on previous researches of
pot or field experiments and more mechanisms on natural
ecosystems should be further investigated.
CONCLUSIONS

In this study, we assessed the possible impacts of Si on
stoichiometry and accumulation of C, N, and P in grasses over
large landscape scales in northern China. Results showed that C
concentrations in aboveground grass tissues (ranging from 41.71%
to 45.49%) were significantly negatively correlated with Si
concentrations (0.23% to 2.27%). P concentrations ranged from
0.10% to 0.20%, positively correlating with Si concentrations,
while the correlation between Si and N was not significant.
Additionally, the C:P and N:P ratios were significantly negatively
correlated with Si concentrations. Compared with other
environmental factors, soil noncrystalline Si had significant
influences on plant C, N, and P accumulations. These results
indicate that Si contents in soil and deposition in grasses may
influence organic C synthesis and adjust nutrient utilization. We
also suggest that Si deposition may promote P absorption and
Frontiers in Plant Science | www.frontiersin.org 8
mitigate the limitation of P, considering that the grassland soil in
northern China is generally limited in P. Si may also play a
promising role in affecting C, N, and P biogeochemical cycles in
the grasslands and other terrestrial ecosystems that are dominated
by Si-accumulating plants.
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